
A Solution of the Mastermind Board Game in Scratch Suitable for
Education - Results of the Preliminary Case Study

TOMAS HORNIK, PETR COUFAL,

MICHAL MUSILEK AND STEPAN HUBALOVSKY
Department of Cybernetics

University of Hradec Kralove
Hradecká 1227, Hradec Králové

CZECH REPUBLIC
tomas.hornik@uhk.cz, petr.coufal@uhk.cz,

michal.musilek@uhk.cz, stepan.hubalovsky@uhk.cz
https://www.uhk.cz/en-GB/UHK/

Abstract: - The article is a case study of a specific problem - popular board game Mastermind and its solution
in Scratch, visual online programming language. A preliminary version of this paper was presented at APSAC
2017. Emphasis is put on the educational perspective both in the logic behind the solution itself and on the way
the problem can be presented to elementary school pupils. The article is focused on logical explanation of the
solution and on work with several specific programming elements, like IF-ELSE conditions, data structures and
simple bug hunting feature. The difficulty is suitable for elementary school pupils as a complex task meant for
superior individuals or a group of pupils. It was successfully tested as a small scale preliminary study
conducted on pupils aged between 12 and 15 at an extracurricular group. The results of the qualitative research
are presented at the end of this paper.

Key-Words: - Algorithmic Thinking, Algorithm Development, Education, Elementary School, Mastermind
Game Solution, Programming, Scratch, Educational Programming Languages

1 Introduction
The teaching of algorithm development and
programming is no longer a domain of highly
specialized and technically oriented high schools
and universities, but progressively appears at
elementary schools as well. There were some
attempts on children programming languages as far
back as in 1960s, for example KAREL or LOGO
[1]. Both of them are still used, albeit in a limited
extent. With the sharp increase in the amount of
technology involved in every day life of ordinary
people, the need for teaching of understanding how
the programs work is also heightened and text based
programming languages are being at least
accompanied (if not replaced) by visual languages,
such as Blockly, Scratch, Snap! (formerly BYOB),
KODU, LEGO Mindstorms NXT-G, and others.

All these languages are very robust and can be
used for creation of quite complex codes. Following
chapters deal with a solution of board game
Mastermind in Scratch. The solution goes beyond
merely re-creating the game, because it also
includes an algorithm by means of which the
computer can solve every game of the original
Mastermind (six colors, four positions) in
maximally ten rounds. Selected solution is fully

explained in chapter three and specific problems are
pointed out from the educational point of view in
chapter four.

2 Problem Formulation
Mastermind is a commercial logical board game for
two players that develops logical thinking. One
player hides a secret code (combination of colors on
certain positions), while the other one is trying to
find it out. Every guess is evaluated by black and
white pegs indicating how close to the hidden code
it was. Black peg means that the guessing player
guessed a color correctly and even put it in the
correct place. White peg means that a guessed color
is correct, but it is misplaced. Everything is made
more difficult by the fact, that order of black and
white pegs evaluating the guess is random and has
no connection with the actual position of colors
within the guess (e.g. a white peg on the first place
in the evaluation does not mean, or does not have to
mean, that the color on the first place is correct, but
should be elsewhere).

The guessing player loses when he or she reaches
the end of the playfield by exceeding given amount

Tomas Hornik et al.
International Journal of Computers

http://www.iaras.org/iaras/journals/ijc

ISSN: 2367-8895 214 Volume 2, 2017

of possible guesses. There are variations of the
game with more colors or positions, and in some
versions it is allowed to use one color on multiple
positions, or to use no colored peg at all, thus
omitting a spot within the hidden code. Both the
possibility of multiple occurences of a single color
and ommission of a spot in the secret code are
decisions made by the players themselves, because
these changes make the game increasingly difficult
and at the same time do not require any physical
alterations in the implementation of the game itself.
The detailed explanation of the rules including
examples exceeds the scope of the paper and can be
found for example on official website of Pressman,
one of the manufacturers producing the game [2].

Even though the game was invented in early
1970s, it is still an attractive topic for
mathematicians. Every modification of the game
usually requires different approach from the
guessing player and from the scientific point of view
the game was even proved to be NP Complete
problem. [3][4] New solutions trying to minimize
the number of necessary rounds are still being
introduced. Donald Knuth proved it is possible to
solve the game in five or less rounds. [4] Temporel
and Kovacs created a heuristic hill climbing
algorithm, that induces new potential guesses with
minimum computation. [5] They stated, that there is
one more aspect, beside the minimal number of
rounds necessary to solve the code, that should be
minimised. This aspect is the amount of
combinations evaluated before a new guess is
chosen. They assess the fitness of every evaluated
combination and each new guess, based on a
relatively simple mathematical formula, must be
consistent with all previous guesses. [5]

It is possible to create even so complex solutions
in Scratch, mainly because of its overall robustness,
which opens new possibilites for further research.
However, it is not advisable to implement so
difficult ideas as examples in real world teaching
practice. All these solutions are not suitable for
educational purposes and neither are the more
difficult variants of the game. This paper deals with
the original version consisting of six colors and four
positions, where multiple use of the same color is
allowed but empty spots are not. Solution presented
in following chapter is slow regarding the average
and maximal number of rounds, but it is very
straightforward from the point of view of logic and
requires minimal computational power.

3 Problem Solution
All the aforementioned solutions require deeper
understanding of mathematics and an ability of
advanced abstract thinking. Following solution is
intended for pupils at elementary schools in the age
of 12 to 15. Pupils at this age are already able to
think in abstract terms [6], however this ability is
not yet fully developed. The program itself is rather
complex for an elementary pupil, but it is relatively
easy to explain.

The solution was implemented in Scratch 2.0
online. When working with Scratch, it is necessary
to keep in mind certain aspects of the language, as
for variables. There are just general variable and a
simple list. Another trait connected with Scratch is
its realization in Flash. Even though Flash is still a
rather robust tool on computers, utter absence of
native support on Android and iOS phones and
tables makes it "obsolete" for this particular group
of users. Although it may seem superficial, the
inability to use pupils own mobile phones and
tablets is something, that should be taken into
consideration when speaking of the education
process. [7] This deficiency is only temporary and
the problem will be addressed by Scratch 3.0 based
on HTML-5. [8]

3.1 Algorithm Division
Compartmentalization of a given problem is one of
the first steps necessary for the algorithm
development in any programming language. This
skill is also easily transferable into every day life,
since everyone is dealing with more or less complex
problems on a daily basis. By learning the skill of
compartmentalization pupils are acquiring an ability
to subdivide intricate tasks into more manageable
fragments. This should also be the primary goal in
teaching of programming at elementary schools.
There is no need to turn every pupil who encounters
programming at elementary school into a
professional programmer, just as it nonsense to
presume that everyone who learns basics of Physics
can and will be a theoretical or nuclear physicist.

The algorithm itself can be very roughly divided
into following steps/categories:
1. Decision of how to store the data (selection and

naming of basic variables, creation and naming
of necessary lists)

2. Preparation of a new game (erasing all the lists,
setting all the variables on their default value,
random generation of a new hidden code and
initial guess)

Tomas Hornik et al.
International Journal of Computers

http://www.iaras.org/iaras/journals/ijc

ISSN: 2367-8895 215 Volume 2, 2017

Fig. 1. Overall length of the final program created in Scratch.

3. Creation of universal evaluation custom block
(a process called after every guess that tells the
number of black and white pegs according to the
guess and decides victory or defeat)

4. Enumeration of all the possible decisions (based
on two rows of guesses and their evaluation by
black and white pegs)

5. Addressing of exceptions (one specific
combination of black and white pegs and the
possibility of having 3 or even 4 same colors)

6. Addition of graphics (background and colored
dots representing guesses)

7. Final Calculations (counting number of games
and average rounds within them)

3.2 Data Structures and Conditions
The program contains seven lists and sixteen
variables - for standard game calculations, round
calculations, exception handling, error notification,
graphical representation and auxiliaries utilized in
computations throughout the whole code. From the
point of view of pupils, this is a lot of different and
confusing numbers, but every variable and list has
specific purpose. In spite of full implementation of
global and local variable system in Scratch, it was
avoided and all the variables are global.

The flow of the program is controlled by four
basic structures - loops with counter, repeat-until
loops, IF conditions and IF-ELSE conditions. The
difference between IF and IF-ELSE conditions is
relatively simple, yet the pupils have hard time

deciding which one of these they should use under
given circumstances.

The decisions in guessing colors and their order
use following logic - the solver inputs two dots of
one color and two dots of different color. Six colors
are represented by numbers from 1 to 6, so the first
line is 1122. If this line has at least one hit (either
white or black), the solver inputs four dots with only
color 1 and from there he or she decides what is in
the hidden task. If the first row from the guess has
zero white and zero black pegs, the two colors are
eliminated and second line made of just one of the
two colors is skipped. The process is repeated three
times. Despite having some exceptions, the logic
behind the solution is simple enough to be fully
understood by the pupils after the first explanation.
All the possible combinations are shown bellow.

Table 1. Possible combinations of a two line guess.
Second line made of only one color can be evaluated with
black pegs only and the decision making starts from
there. Black pegs are B, white pegs are W and the
number of them is written before the letter (two black
pegs = 2B).

2nd line Possible combinations with the first line
0B 1B

0W
0B
1W

2B
0W

0B
2W

1B
1W

1B 1B
0W

1B
1W

2B
0W

0B
1W

0B
2W

0B
3W

2B
1W

1B
2W

3B
0W

2B 2B
0W

0B
2W

1B
1W

3B
0W

0B
3W

1B
2W

2B
1W

3B 3B
0W

2B
0W

1B
2W

1B
1W

Tomas Hornik et al.
International Journal of Computers

http://www.iaras.org/iaras/journals/ijc

ISSN: 2367-8895 216 Volume 2, 2017

Fig. 2. Side by side comparison of the game. Graphical visualization is on the right side, whereas hidden
graphics with most of the variables and lists shown is on the left side.

Nesting of IF-ELSE blocks is in this case far
superior to basic IF conditions not only because
when the correct option is found the unnecessary
code section is skipped, but also because if the
correct option is not found, the ending section can
terminate the program and write an error message.
This error message can be changed in context of the
place where it happened within the program and
thus it can make bug hunting process (= tracing
errors within the program [9]) much easier.

3.3 Weaknesses of the Algorithm
In contrast with solutions of other authors (see
chapter 2) this algorithm lacks the robustness and
takes a lot of guesses. Where other complex
solutions get close to four rounds per average game
and maximum number of rounds is five (see chapter
2), this solution takes seven rounds in average and
in the most unfavorable case it is ten rounds.
Nevertheless, the algorithm still manages to beat the
game every time.

Another weakness lies in its inability to adapt to
more difficult Mastermind versions. Addition of
more colors, more positions or reduction of
maximum rounds before defeat causes the algorithm
to fail and the algorithm does not work.

3.4 Graphical Representation of the Game
Implementation of graphical elements into the
program is relatively simple if the pupils understand
the program they wrote. This teaches them that
readability and logical layout of the program really
is important. It also shows how boring computation
can be relatively easily turned into a full scale game

given just a few simple sprites (2D pictures
representing objects from the game). When they see
with their own eyes the difference (see figure 2) and
how difficult it is to create the code part of the
program, they can realize that games are equal part
of graphics and coding.

4 Stressed Educative Elements of the
Solution
The aforementioned solution is a project suitable as
the final program presented at the end of a course.
While creating a project of such a complexity pupils
have to demonstrate deeper understanding of all the
programming principles they had been learning
throughout the given course as well as the ability to
merge them within a single program. The teacher
can give the pupils advice during any of the stages;
however, it is advisable to show how should the
solution work on an exemplary game. This way all
the pupils can work towards the same goal and can
help one another. The first step in the development
of the algorithm was for pupils to segment the
whole task into several more or less independent
sub-tasks. This skill is the most important one for
pupils' every day life. Teaching of programming
presents an opportunity to show students basic
principles of compartmentalization and its impact on
efficiency. It also teaches sequential thinking -
finding the beginning and moving from there in
premediated manner.

Although the program can be created as a single
procedure, the resulting outcome is not legible and it
is apt to take advantage of the possibility to create
Custom Blocks. The Custom Blocks are almost

Tomas Hornik et al.
International Journal of Computers

http://www.iaras.org/iaras/journals/ijc

ISSN: 2367-8895 217 Volume 2, 2017

necessary for the Evaluation procedure, but they are
also beneficial for making the program well
arranged. For the same purpose it is also good to
insist on employment of comments.

The solution of the game needs 7,05 rounds in
average to win the game (based on a cycle of 10 000
consecutive games), but the logic behind it is very
easy to explain and presents interesting
opportunities for teaching of algorithm
development. Even though the amount of possible
decisions needed to finish the game is very limited
(see table 1) pupils must enumerate all of them,
otherwise the program does not work (or at least not
always). This forces the pupils to think from
different points of view. The pupils have a strong
tendency to create a solution functional for the
problem only within current circumstances. In other
words - if it works now, it will work every time. The
necessity to consider all the possible circumstances
(like different values stored in variables) is not taken
into account and the given section of code is
perceived as unwaveringly correct.

Same problem also creates an opportunity to
show the pupils how to implement basic bug-
hunting tool. After the pupils find out on their own
how difficult it is to search for bugs in the whole
program, they appreciate something, that would tell
them exactly in which section of the program the
problem occurs (see chapter 3.2).

When a pupil reaches fully functional algorithm,
he or she can add an option to "re-play" the game as
many times in a row as the user wants. This allows
to test the solution exhaustively by simply letting it
repeat itself several hundred or even thousand times.
Such a loop requires enormous amount of time in
Scratch's standard mode, but there is a Turbo Mode,
which "runs the project extremely fast, having
minimal to no wait between blocks." [10]

Faster pupils can also implement round counter
and calculation for maximal and minimal length of a
round occurring during the long reiterative run of
the program. Based on these numbers they can also
add calculation for average round length. Since the
Mastermind Game is a complex problem (as stated
in chapter 2), the pupils are welcome to try and
create their own solution, after they successfully
finish this one. From this point of view, the creation
of a new program is more of a brain teaser than
purely algorithmic problem and as such, possibly
only the gifted pupils can do so.

Scratch also proved to be robust enough for
implementation of far more complex solutions for
the Mastermind game created for example by Knuth
or Temporel and Kovacs. These solutions can be
shown to pupils in order to prove that even though

different solutions may lead in the end to the same
results, but the path itself can be entirely different in
approach, complexity, demands put on the computer
and given programming language as well as in the
overall efficiency of the final program.

5 Preliminary Qualitative Case Study
Further testing was conducted as a small scale
preliminary study with pupils aged between 12 and
15 at an extracurricular group. Extracurricular
groups are voluntary clubs organized by a school or
some (usually) non-profit organization owned by a
city or a district that offers an option to further
engage in different areas of interest. With respect to
their inherent nature, resulting groups are usually
non-homogenous and only link between individual
participants can be the subject matter.

The testing group was composed of seven pupils,
two girls (age 12 and 14), and five boys (age 12, 12,
14, 14, 15). Since the group is organized by a school
(Elementary School Uprkova 1, Hradec Kralove,
Czech Republic), all the pupils were from the same
school. The pupils ranged from 6th grade up to 8th
grade and they differed in their level of abilities,
from slightly below average up to very gifted one.
Distinct differences could also be seen in their
attention span, persistence as well as in the overall
way of thinking (way they approached same
problem entirely differently).

The trial showed that understanding of the logic
behind the solution was without any problem. All
the pupils were able to grasp how the presented
solution works. Determination of steps necessary for
the solution of the problem was skipped by six of
the seven pupils, who just unrestrainedly started to
try putting something together without any prior
consideration or planning. The seventh pupil (8th
grade boy, aged 15, very apt) planned the work
ahead and needed minimal to no help during the
whole course of the work. The abovementioned six
pupils got quickly entangled in their chaotic solution
and had to start over. The steps were identified
collectively as following: 1. start state of the game
(preparation of variables and/or restart of the game);
2. random generation of a secret code; 3. black and
white pegs evaluation; 4. generation of a new guess;
5. evaluation if the game is won or lost.

Even after individual steps were specified, pupils
with short attention span and/or low persistence had
a very strong tendency to skip from step to step
without properly completing them. This led to a
massive amount of unnecessary mistakes originating
from unfinished parts of the code. Letting the pupils
work in pairs (except the gifted one) substantially

Tomas Hornik et al.
International Journal of Computers

http://www.iaras.org/iaras/journals/ijc

ISSN: 2367-8895 218 Volume 2, 2017

helped, since they corrected each other's mistakes
and in most cases, they were also able to stay on a
given step until its completion.

Despite overall logical simplicity of the solution,
orientation in a program this vast proved to be a
problem for most of the pupils. A program of such
magnitude proved the pupils how important is to
divide it into logical parts using Custom Blocks and
how important is to comment individual sections of
code. Also enumeration of all the posible options
when deciding the next guess took a massive
amount of time, as expected, and showed how
invaluable can a simple bug hunting extension be.
Nobody was able (or willing) to do the extra work
suggested at the end of chapter 4 for faster pupils
and as such there is no way to evaluate how usable
are the ideas from the educative point of view.

Another important observation is, that pupils
could not work only with variables and lists. They
all had to immediately transfer the numbers into
visible graphical representations. Also most of the
reasoning was based on the graphical depiction.

4 Conclusion
In conclusion the idea of a Mastermind solution
proved to be partially fit for education. Average
pupils had considerable problems with most of the
work and time demands were enormous. As such it
is recommended to use the task only with very smart
pupils who are willing to choose it as a final project
and work on it in their free time. On the other hand,
if the automatic preparation of the new guess is
omitted, the process of creation of a Mastermind
game (consisting of randomly generated invisible
secret code, black and white pegs evaluation and
guessing based on the user input) is an activity
suitable for all the pupils and probably applicable in
regular IT lessons as well. However, deployment in
actual regular class is yet to be tested.

Acknowledgments. The paper has been supported by
Specific Research Project of Faculty of Science,
University of Hradec Kralove, 2017 and by Specific
Research Project of the Faculty of Education,
University of Hradec Kralove, 2017.

References:
[1] Musílek, M.: Kapitoly z dějin informatiky.

Gaudeamus, Hradec Kralove. ISBN 978-80-
7435-129-7. (2011)

[2] Mastermind Rules,
http://www.pressmantoy.com/game-
rules/Mastermind_rules.pdf

[3] Stuckman, J. and Zhang, G.Q.: Mastermind is
NP-Complete. (2006)

[4] Goodritch, Michael T.: On the algorithmic
complexity of the Mastermind game with
black-peg results. In: Information Processing
Letters 109 675–678. (2009)

[5] Temporel, A., Kovacs, T.: A heuristic hill
climbing algorithm for Mastermind. In:
UKCI’03: Proceedings of the 2003 UK
Workshop on Computational Intelligence,
Bristol, United Kingdom, pp. 189-196. (2003)

[6] Kohoutek, R.: Kognitivní vývoj dětí a školní
vzdělávání. In: Pedagogická orientace, 2008.
Vol. 18 No. 3, pp. 3--22. ISSN 1805-9511.
(2008)

[7] Rossing, Jonathan P., Miller, Willie M., Cecil,
Amanda K. and Stamper Suzan E.: iLearning:
The future of higher education? Student
perceptions on learning with mobile tablets. In:
Journal of the Scholarship of Teaching and
Learning, Vol. 12, No. 2, June 2012, pp. 1--26.
ISSN 1527-9316. (2012)

[8] Scratch 3.0. In: Scratch Wiki. [online].
Accessed 17 Jun. 2017. Available at:
https://wiki.scratch.mit.edu/wiki/Scratch_3.0
(2017)

[9] Ganesh, S. G.: Joy of Programming: Bug Hunt.
[online]. Accessed 17 Jun. 2017. Available at:
http://opensourceforu.com/2011/03/joy-of-
programming-bug-hunt/ (2017)

[10] Hidden Features: Turbo Mode. In: Scratch
Wiki. [online]. Accessed 13 Jun. 2017.
Available at:
https://wiki.scratch.mit.edu/wiki/Hidden_Featu
res#Turbo_Mode (2017)

[11] Milková, E., Petránek, K.: Programming
courses reflecting students' aptitude testing and
implementing learning style preferences
research results. In: International Journal of
Mathematics and Computer in Simulation, vol.
10, 2016, pp. 218–225. ISSN: 2074-1316.
(2016)

Tomas Hornik et al.
International Journal of Computers

http://www.iaras.org/iaras/journals/ijc

ISSN: 2367-8895 219 Volume 2, 2017

