

Software Development Effort Estimation by Using Neural Networks – A
Case Study

Tuğçe Uğurlu Altuntaş1, S. Emre Alptekin2*

1Institute of Science, Industrial Engineering Program
2Industrial Engineering Department

*corresponding author
Galatasaray University

Ciragan Cad. No.36 34357 İstanbul
TURKEY

ugurlut@gmail.com, ealptekin@gsu.edu.tr

Abstract: - The software industry is growing rapidly and gaining importance all over the world. Nearly all
companies and institutions from various industries have software projects to develop new applications and
platforms. As required with every project, accurate effort estimation has become a crucial problem for the
companies, especially for project managers. Since 1970s different methods and models have been developed
for estimating software projects’ efforts. The first milestone model was COCOMO, which is a constructive
method proposed in the late 1970s. Many different models followed, the most popular and usable models being
Function Point and Use Case Point. After 2000s, due to advances in technology, Artificial Neural Networks has
gained in importance especially among the problem domains that benefit from data analysis and self-learning.
Software development effort estimation also share similar characteristics as there is typically old projects’ data
on hand that should help foresee new projects’ efforts. Therefore, in this paper we build a software estimation
model by using neural network methodology. The features for the network were chosen as a result of an
extensive survey. The applicability of the methodology is demonstrated via real-life software project data
provided by one of the largest banks in Turkey.

Key-Words: - Software development effort estimation, neural networks, back propagation algorithm

1 Introduction
A project is a temporary endeavor with a beginning
and an end which creates a unique product or
service [1]. An effort estimation is a prediction of
how long a development activity will take to finish
[2].

Since software industry and digitalization gained
in importance, software effort estimation became
the most important problem for IT companies.
McKinsey and Oxford University’s study showed
that 66 percent of the large software project is over
budget and 33 percent is over schedule, also 17
percent of the IT projects gone so bad that the
existence of the company is threatened [3].

Both under and over estimation results in waste
of time, resources, money and even lost prestige.
According to Brode and Khalkar underestimating
the costs is characterized by budget overruns, under
developed functions and poor quality end-product
[4]. Similarly, overestimation commits too many
resources to the projects and could lead to lost
contracts could mean lost jobs. Rita Mulhacy

defines the term “padding”, which is related with
overestimating, as a sign of poor project
management which can damage reputation of a
project manager [5].

Since 1970s many studies and methods have
been published to overcome software project effort
estimation problems. All the methods aim to
estimate efforts accurately. Here, estimation
accuracy simply defines the comparison of the
estimate to the actual effort that is known after the
task has been finished [2]. COCOMO is the first
algorithmic effort estimation model studied in late
1970s. After COCOMO, Use Case Point and
Function Point methods have become the de facto
standard for accurate software efforts estimation.

Since 2000s, artificial intelligence and especially
neural networks are noticed by the software industry
for their ability to handle complex relationships
between inputs (factors/features) and outputs
(estimated effort). Neural networks in this context
define a supervised learning model which uses
historical data to explain the relationship between

Tugçe Ugurlu Altuntas, S. Emre Alptekin
International Journal of Computers

http://www.iaras.org/iaras/journals/ijc

ISSN: 2367-8895 115 Volume 2, 2017

inputs and outputs with the help of so called training
algorithms and produce outputs for the new
scenarios without subjective manual calculations
and adjustments. The model potentially improves
itself by each new data added to retrain the network.

In this paper, a feed forward neural network
model will be proposed to estimate software
projects’ efforts accurately for the software project
department at one of the largest banks in Turkey.
Two different learning algorithms will be applied to
obtain the best output with the minimum error. The
findings will be compared with the current
approaches applied by the organization.

The remainder of the paper is organized as
follows: in Section 2, related work is summarized.
Section 3 presents the methodologies that form the
proposed model. The data gathering process and
obtained results as part of model evaluation are
given in Section 4. Section 5 concludes the study
discussing the findings and further study
possibilities.

2 Related Work
Software project effort estimation is a continuous
activity starting with the initiation phase and
continuing until closing phase [4]. There are a lot of
software cost estimation methods. Although
different groupings are found in the literature, three
categories are usually used to classify estimation
methodologies: Expert judgement, algorithmic
estimation and learning based estimation.

The most common used estimation approaches
are expert judgement based methods in software
industry [6]. Since, at the beginning of the projects,
project team does not have a proper data to estimate
the cost, expertise based methods are preferred by
companies. Expert judgement based methods
generate cost estimations based on experts’ or
project team’s opinions. According to Leinonen,
expert judgement estimation can be used if there is
no quantified data for the project [4].

Also lack of time is another reason to choose
expert judgement based approaches. Thus, taking
less time and without gathering detailed data are the
main advantages of expert judgement methods. The
main disadvantage is, as Boehm states, even if a
person has experience, this does not mean that
his/her estimates are accurate [7]. Furthermore, in
real life scenarios, there are many unknowns about
project team members, who are estimators, make the
assumption and double it. This is usually considered

as a sign of padding which indicates poor project
management [5].

Algorithmic effort estimation methods consist of
mathematical models or calculations to provide
effort estimation [8]. Most of the algorithmic
estimation models use project size, environmental
and/or technical factors to calculate projects’ costs.
Depending on the model, calculation procedure
varies. In some models, source of line codes
(SLOC) is used, whereas others use function or use
case points. Also, factors and cost drivers are not
common among different methods. COCOMO and
Use Case Point are the most acknowledged methods
in algorithmic effort estimation models.

The Constructive Cost Model (COCOMO) is an
algorithmic effort estimation model developed by
Barry W. Boehm in the late 1970s. The model is
based on project size in SLOC and factors which are
obtained from 63 projects’ data. In 1997, COCOMO
II was developed as a successor of COCOMO.
‘COCOMO II is a parametric cost estimation model
that requires size, product and personnel attributes
as inputs and outputs the estimated effort in Person-
Months (PM)’ [9]. In COCOMO II, software
projects are classified into three groups as organic,
semi-detached and embedded projects. Organic
projects are the projects, which are made of small
teams or have few domains with good experience.
Semi-detached projects are made of medium sized
teams and have mixed experience among team
members. Embedded projects are the projects,
which have strict constraints, many domains and
hardware, software and operational needs. Each
project type has different coefficients for effort
estimation. Moreover, in COCOMO II there are four
types of cost drivers; product attributes, hardware
attributes, personnel attributes and project attributes.
These cost drivers also referred to as effort
multipliers have scale factors from very low to very
high. According to scaling, each attribute has a
unique coefficient just like project types.

Use Case Point (UCP) method is an effort
estimation model based on use cases, actors,
technical and environmental factors. ‘A use case
captures a contract between the stakeholders of a
system about its behaviour. The use case describes
the system’s behaviour under various conditions as
the system responds to a request from one of the
stakeholders, called primary actor’ [10]. The main
input of UCP method is use cases. Generally, in
medium and large size projects there are many use
cases and each use case has different number of

Tugçe Ugurlu Altuntas, S. Emre Alptekin
International Journal of Computers

http://www.iaras.org/iaras/journals/ijc

ISSN: 2367-8895 116 Volume 2, 2017

steps. In UCP method to calculate unadjusted use
case weight (UUCW) the use cases of the projects
are grouped into simple, average and complex
groups according to their step numbers. Each group
has different weights. After calculating UUCW,
unadjusted actor weight (UAW) is calculated. In a
software project, there can be many different types
of actors like client, customer, database, GUI etc.
Similar to UUCW calculation, actors are grouped
into three categories; simple, average and complex.
Likewise, each group has different weights. Next,
technical (TCF) and environmental (ECF)
complexity factors are calculated. In total, there are
13 technical and 8 environmental factors. Once
again, each factor has a different weight.

Learning based effort estimation models use
current knowledge and historical data of the
projects. As Gabrani and Saini stated, learning
based methods are trying to imitate natural
evolution and they are refining until finding an
optimal solution, so evolutionary learning based
methods became popular in recent years [11].
Artificial neural network (ANN) is the most widely
applied model under the umbrella terms Artificial
Intelligence and Machine Learning. ANNs are
preferred as they enable to model even complex
non-linear relationships and are pretty much capable
of approximating any measurable function without
an explicit model of the system [12]. As their
structure is based on an abstraction of human brain,
ANNs are able to learn and adapt to different
conditions. A typical ANN as is made up from
nodes in three layers; input layer, hidden layer(s)
and output layer as shown in Figure 1 [13].

Fig. 1. A Fully Connected Two Layer Feedforward Network [13]

Each input layer node is connected to the next

hidden layer nodes and each hidden layer node is
connected to the next one ending with the output

layer node. Nodes in the input layer, hidden layers
and output layer and hidden layer numbers may
change depending on the problem. Each connection
between nodes represents a weight. Input layer
represents the input data for learning algorithm.

Hidden layer and output layer use the data from
previous layer and combine them with the
corresponding weights to trigger a so called
activation function. The output layer combines all
the outputs generated by the activation functions
and outputs a value once again using an activation
function. There are various activation functions used
in the literature, linear, sigmoid, Gaussian, etc.

There are different types of learning algorithms
for ANNs. One of the most popular types is multi-
layer perceptron with the combination of feed-
forward and back-propagation algorithms. Feed
forward computation uses the input and the hidden
layer nodes to compute output value [14]. Back-
propagation is used to correct the errors made
during the feed-forward phase. The algorithm
iteratively adjusts weights starting from the output
layer towards the input layer. When errors values
reach target values, the back-propagation algorithm
is ended [14]. The resulting trained network with the
associated weights is ready to be used for new
inputs.

In this context, ANNs are used to calculate
estimated software project efforts. Since it is a
learning based model, with enough previous project
data and feature set, the model can predict
accurately project efforts. Compared to other effort
estimation models, ANNs have an important
advantage, as they are trained using a company’s
own data, they can estimate project cost more
accurately for a specific company then a generic
model with a standard set rules. Moreover, ANNs
do not need an implicit or complete programming as
required by regression based methods.

In this paper, selected historical projects’ data
will be used to build an ANN model.

3 Proposed Methodology
The aim of this study is to build an ANN and use the
network to estimate software projects’ efforts. As
detailed in previous sections, an ANN depend on
input variables to make the estimation. In order to
build an ANN, five input variables are identified
through preliminary data analysis using surveys and
interviews. This initial step is required as ANNs
actually mimic the decision making process of
experts by replacing the expert opinion with a black-

Tugçe Ugurlu Altuntas, S. Emre Alptekin
International Journal of Computers

http://www.iaras.org/iaras/journals/ijc

ISSN: 2367-8895 117 Volume 2, 2017

box approach. Therefore, software project managers
of one of the largest bank in Turkey are consulted in
order to define the basic information that is needed
for software effort estimation. The relationship
between these inputs and the corresponding effort
estimation is handled by the trained ANN. For
training purposes, 77 IT projects’ data is obtained
from the bank’s Project Management department.

Input variables (parameter) selection is one of
the most important tasks to estimate software
projects’ efforts accurately. In literature, for
algorithmic models, different factor groups and
variables are used. Generally, they are grouped into
two categories as ‘Technical Factors’ and
‘Environmental Factors’. In this study, Use Case
Point, Function Point Analysis and Jensen Model’s
factors are considered to be used as input to our
proposed ANN model.

In UCP method, there are two types of factors
categorized as technical and environmental.
Technical factors define 13 parameters and
environmental factors consists of 8 parameters.
Similarly, to build a Value Adjustment Factor
(VAF), 14 ‘General System Characteristics’ (GSCs)
are used in Function Point Analysis (FPA) [15].
General system characteristics are also known as
technical factors. GSCs has some common factors
with UCP technical factors. Jensen model is a
software development schedule/effort estimation
model which incorporates the effects of any of the
environmental factors impacting the software
development cost and schedule [16]. Jensen model
defines 13 environmental factors. In our case,
besides UCP, FPA and Jensen Model parameters, 5
additional parameters are considered to have an
effect on project effort estimation as they are
already used by the experts of the selected bank’s IT
department.

In total, 53 factors from UCP, FPA, Jensen
Model and expert opinions are considered as
candidate inputs to the ANN model. As this list was
too comprehensive and it would require a lot of
project data to train the ANN, we consulted 6 expert
project managers to evaluate the importance of these
factor. As a result, 22 factors are identified as
having a considerable effect on software project
effort.

After the preselection, a survey is conducted on
19 IT experts to analyse the effect of the parameters
according to expert opinions and to select the most
relevant factors as input to ANN model. 22
preselected factors are scaled from “1-Irrelevant” to

“5-Highly Relevant” according to the effect on
software development effort estimation by the
experts.

An ‘effect level’ is calculated based on the
ratings of factors by IT experts. Weights are
assigned to each scale range and by multiplying
scale weight and experts’ choices, effect level is
obtained.

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝐿𝐿𝐸𝐸𝐿𝐿𝐸𝐸𝐿𝐿 = ∑ 𝑤𝑤𝑖𝑖5

𝑖𝑖=1 ∗ 𝐸𝐸𝑖𝑖 (1)
where i is the number of scale range from

irrelevant to highly relevant, w is the weight of scale
range and c is the number of choices for the factor.
According to the effect level calculation, top 5
factors with the highest effect level are selected as
the input factors to ANN model which are; “well
defined and stable requirements”, “dependence in
3rd party company’s code”, “multiple domain
integration”, “reusable code” and “complex security
requirements”.

Effort estimation using ANNs defines parameters
in order to find the optimal solution based on the
input parameters as part of the training process.
Complex relationships can be reproduced by ANNs
based using appropriate weight calculation
techniques [17]. The learning process within
artificial neural networks is a result of changes in
the network’s weights. The objective is to find a set
of weights, which should map any input to a correct
output [18]. Besides learning algorithm selection,
also learning type and training function selection is
also very important to create an ANN. According to
problem and obtained data type, there are three main
learning types; supervised learning, unsupervised
learning and reinforcement learning [18].

In supervised learning, the desired output is
provided along with the input values. When both
input and output variables is provided in the neural
network, and error based calculation is possible
based on target output and actual output [18]. In
unsupervised learning, only input variables are
given and no output variable is defined.
Unsupervised learning is able to find the structure or
relationships between different inputs. The widely
known examples for unsupervised learning are
clustering, anomaly detection and blind signal
separation. The third popular learning type is
reinforcement learning, which is very similar to
supervised learning. Reinforcement learning is
defined as the problem of getting an agent to act in
the world so as to maximize its rewards [18]. In this

Tugçe Ugurlu Altuntas, S. Emre Alptekin
International Journal of Computers

http://www.iaras.org/iaras/journals/ijc

ISSN: 2367-8895 118 Volume 2, 2017

learning type, instead of actual outputs a reward is
given to neural network.

In this paper, supervised learning is selected as
the learning type for the effort estimation with 77
completed project data with input and actual output
variables provided to create the ANN. Learning
algorithms are used to obtain weights of each
neuron and relationships between neurons and
layers while training the ANN. The most widely
known learning algorithm for supervised learning is
multi-layer perceptron with feed-forward network
and back-propagation learning.

Feed forward structure defines a straightforward
network that associate inputs with outputs. There are
many different types of Back Propagation functions
which can be used for supervised learnings.
Bayesian Regularization Back Propagation and
Levenberg-Marquardt Back Propagation are the
mostly adapted functions for back propagation
algorithms.

In Levenberg-Marquardt, all weights are updated
according to Levenberg-Marquardt optimization
which is also known as Damped Least-Squares
method. Damped Least-Squares method is used for
solving non-linear least square problems, especially
in least squares curve fitting. Similarly, in Bayesian
Regularization, training function obtains all the
weights of neurons by using Levenberg-Marquardt
optimization. In addition to Levenberg-Marquardt
optimization, squared errors and weights are
minimized by Bayesian Regularization function and
then function determines the correct combination to
provide an ANN which generalizes well. This
process is called Bayesian regularization [19].
Bayesian Regularization obtains a well-defined
statistical problem from a nonlinear regression in
the manner of ridge regression [19]. The benefit of
Bayesian Regularization is that all available data

can be used as training data, which means no test or
validation set is needed [20]. Since ANN algorithm
and nonlinear relationships are produced as a ‘black
box’, it is not possible before hand to correctly
identify which method will be superior, choose
Bayesian Regularization or Levenberg-Marquardt
Optimization. In this paper, both training functions
will be applied to the ANN to train the network.

4 Model Evaluation

4.1 Data Preparation
Artificial Neural Networks are inspired by human
brain’s nervous system. One of the most interesting
character of human brain is ability to learn. Similar
to human brain, ANNs learn and when they are
learning they need historical data to create the
complex nonlinear relationships between input and
output variables.

In this study, an ANN has been created for software developm
day a team member has spended. At the end of the
projects, all projects’ accumulated actual effort
information calculated from each resources’ time
sheets. For the proposed ANN, actual effort is set as
the target value.

Well defined and stable requirements”,
“dependence in 3rd party company’s code”,
“multiple domain integration”, “reusable code and
complex security requirements” are the chosen input
factors for the ANN model as mentioned before.
Each factor is scaled to obtain input parameter
values for the projects as shown in Table 1.

77 projects’ project managers are asked to give a
grade for each project’s factors. As a result, each
historical project data has been graded for the 5
selected input variables and historical project data
with actual effort is obtained.

Table 1: Chosen Factors and Scales
Factor Name Scale Definition Range of Values

Well-defined and stable requirements From 1 to 5. 1 for weak defining/no stability, 5 for well-
defined and stable requirements 1 2 3 4 5

Dependence on 3rd party company's code 1 if there is a dependence on 3rd party code, 0 if not. 1 0

Multiple domain integration Domain number. From 1 to n. 1 . . . n

Reusable code 1 if projects need to be developed with reusable code, 0 if
not. 1 0

Complex security requirements From 1 to 5. 1 if the project doesn’t need any security
developments, 5 for highly complex security needs. 1 2 3 4 5

4.2 Results As detailed in data preparation section ANN is
created with 5 chosen factors. Both Bayesian

Tugçe Ugurlu Altuntas, S. Emre Alptekin
International Journal of Computers

http://www.iaras.org/iaras/journals/ijc

ISSN: 2367-8895 119 Volume 2, 2017

Regularization and Levenberg-Marquardt Optimi-
zation training functions are applied to ANN. 77
completed project data is used to train ANN with
scaled input values and actual efforts. Project data is
divided as training, validation and test data sets with
the ratios %70, %15 and %15 in order.

Magnitude Relative Error (MRE) is used to compare training functions. With Levenberg-Marquardt Optimization funct
with a % 8.471 MMRE.

𝑀𝑀𝑀𝑀𝐸𝐸 = |𝑎𝑎𝐸𝐸𝐸𝐸𝑎𝑎𝑎𝑎𝐿𝐿 𝐸𝐸𝐸𝐸𝐸𝐸𝑒𝑒𝑒𝑒𝐸𝐸 −𝐸𝐸𝑒𝑒𝐸𝐸𝑖𝑖𝑒𝑒𝑎𝑎𝐸𝐸𝐸𝐸𝑒𝑒 𝐸𝐸𝐸𝐸𝐸𝐸𝑒𝑒𝑒𝑒𝐸𝐸 |

𝑎𝑎𝐸𝐸𝐸𝐸𝑎𝑎𝑎𝑎𝐿𝐿 𝐸𝐸𝐸𝐸𝐸𝐸𝑒𝑒𝑒𝑒𝐸𝐸
 (2)

Additionally, margin of error for the bank’s

estimation with its own estimation technique is
calculated by using bank’s initial effort estimation
and actual effort. As a result, bank’s MMRE is
found as %25.921. As a sample, 30 projects’ actual
efforts, ANN estimations and the bank’s own
estimations are shown in Table 2.

Table 2: Sample Project Effort Estimations

Project
No

Actual
Effort

ANN -
Bayesian

Regularization

ANN - Levenberg-
Marquardt

Optimization

The Bank's
Initial

Estimation

ANN - Bayesian
Regularization

MRE

ANN - Levenberg-
Marquardt

Optimization MRE

The
Bank's

Estimation
MRE

1 119 104.850 200.002 120 11.891 68.069 0.840
2 138 169.174 206.616 124 22.590 49.722 10.145
3 148 190.406 201.814 110 28.652 36.361 25.676
4 155 190.960 237.662 144 23.200 53.330 7.097
5 158 159.648 168.695 167 1.043 6.769 5.696
6 170 154.387 162.881 135 9.184 4.187 20.588
7 171 165.355 189.700 60 3.301 10.936 64.912
8 183 175.585 174.637 195 4.052 4.570 6.557
9 185 130.266 141.282 191 29.586 23.631 3.243

10 189 197.820 194.419 150 4.666 2.867 20.635
11 195 210.936 271.327 143 8.172 39.142 26.667
12 202 208.980 207.350 90 3.455 2.648 55.446
13 205 221.196 278.847 244 7.900 36.023 19.024
14 208 221.196 278.847 250 6.344 34.061 20.192
15 211 221.337 248.165 290 4.899 17.614 37.441
16 219 244.172 204.414 259 11.494 6.660 18.265
17 223 222.103 223.817 200 0.402 0.366 10.314
18 226 222.103 223.817 231 1.724 0.966 2.212
19 238 217.048 224.889 250 8.803 5.509 5.042
20 238 229.158 115.457 430 3.715 51.488 80.672
21 240 221.196 278.847 290 7.835 16.186 20.833
22 243 255.113 241.758 275 4.985 0.511 13.169
23 251 244.172 204.414 270 2.720 18.560 7.570
24 266 264.370 321.441 350 0.613 20.843 31.579
25 270 255.052 278.263 149 5.536 3.060 44.815
26 275 284.055 282.679 272 3.293 2.792 1.091
27 280 246.709 254.323 300 11.889 9.171 7.143
28 283 298.423 381.417 250 5.450 34.776 11.661
29 287 316.608 347.359 382 10.316 21.031 33.101
30 292 280.311 366.780 290 4.003 25.610 0.685

MMRE values of the Levenberg-Marquardt
Optimization and the Bayesian Regularization are
compared to find the best working ANN model.
Since the error rate difference is significant,
Bayesian Regularization is chosen as the optimum
learning algorithm for the software project effort
estimation neural network. According to McKinsey
and Oxford University’s studies, on average, %66 of
the large software project run over budget [3].
Considering a %66 error rate, %8.471 is a notably
improved value. Similarly, comparing to the bank’s
own initial estimation, which is based on the
numbers of the components to be developed, ANN
with Bayesian Regularization is producing more
accurate results.
5 Conclusion

Software projects are essential tools of a typical
organization to develop new applications and
platforms. However, mostly due to inherent
complexities of these projects combined with
limited resources and time constraints, projects tend
to overshoot initial resource estimations. Moreover,
as software projects continually are added to the list
of current tasks or changed to respond to changing
customer needs and/or competitors’ offerings,
accurate effort estimations are needed to manage
resources efficiently/effectively. In literature,
different methods and models have been proposed
to calculate software projects’ efforts. Though, these
approaches tend to fail in real life scenarios due to
the fact that own organization based tailored

Tugçe Ugurlu Altuntas, S. Emre Alptekin
International Journal of Computers

http://www.iaras.org/iaras/journals/ijc

ISSN: 2367-8895 120 Volume 2, 2017

solutions are usually required to correctly estimate
teams’ efforts.

Artificial neural networks with the ability to
handle complex relationships and to adapt to
changing conditions seems to attract a lot of
attention recently. Software development effort
estimation is one the areas that will benefit from
adaptable and learning frameworks. Therefore, in
this paper we build a software estimation model by
using neural network methodology. The features for
the network were chosen as a result of a survey
realized at one of the largest banks in Turkey. The
findings suggest that current approaches used at the
bank mostly lack accuracy and ANN based
methodology is handling the uncertainties and
complexities pretty effectively and therefore is a
superior approach than the classical algorithmic
estimation models at least for the current scenario.

As future work, historical project data set could
be extended to handle possible overfitting issues of
the neural network model. Also, input variable set
could be augmented by using other preselected
factors. Similarly, to generalize effort estimation
model, input variable selection surveys can be
realized with IT experts from different sectors like
telecom or insurance.

6 Acknowledgement
This research has been financially supported by
Galatasaray University Research Fund, with the
project number 16.402.015.

References:
[1] Project Management Institute, A Guide to the

Project Management Body of Knowledge,
PMBOK Guide, fifth edition, 2013.

[2] J. Leinonen, Evaluating Software Development
Effort Estimation Process in Agile Software
Development Context, Master’s Thesis,
University of Oulu, 2016.

[3] S. Chandrasekaran, S. Gudlavalleti, and S.
Kaniyar, Achieving Success in Large, Complex
Software Projects, McKinsey and Company,
Digital McKinsey Article, July 2014.

[4] J.G. Borade, and V. Khalkar, Software Project
Effort and Cost Estimation Techniques,
International Journal of Advanced Research in
Computer Science and Software Engineering,
Vol. 3(8), 2013, pp.730-739.

[5] R. Mulcahy, Rita Mulcahy's PMP Exam Prep,
Rita Mulcahy, eight edition, 2013.

[6] M. Jorgensen, and M. Shepperd, (2007). A
Systematic Review of Software Development

Cost Estimation Studies, IEEE Transactions on
Software Engineering, Vol. 33(1), 2007, pp.33-
53.

[7] B. Boehm, C. Abts, and S. Chulani, Software
Development Cost Estimation Approaches – A
Survey, Annals of Software Engineering, Vol.
10(1), 2000, pp.177-205.

[8] K. Usharani, V. Vignaraj Ananth, and D.
Velmurugan, A Survey on Software Effort
Estimation, International Conference on
Electrical, Electronics, and Optimization
Techniques, ICEEOT 2016, Chennai, India,
2016, pp. 505-509.

[9] A. Hira, S. Sharma, and B. Boehm, Calibrating
COCOMO® II for Projects with High
Personnel Turnover, International Conference
on Software and Systems Process, ICSSP '16,
ACM, New York, NY, USA, 2016, pp.51-55.

[10] A. Cockburn, Writing Effective Use Cases,
Addison-Wesley, 2001.

[11] G. Gabrani, and N. Saini, Effort Estimation
Models Using Evolutionary Learning
Algorithms for Software Development,
Symposium on Colossal Data Analysis and
Networking, CDAN'16, Indore, India, 2016,
pp.1-6.

[12] G.R. Finnie, and G.E. Wittig, A Comparison of
Software Effort Estimation Techniques: Using
Function Points with Neural Networks, Case-
Based Reasoning and Regression Models.
Journal of Systems and Software, Vol. 39 (3),
1997, pp.281-289.

[13] S. Aljahdali, A.F. Sheta, and N.C. Debnath,
Estimating Software Effort and Function Point
Using Regression, Support Vector Machine and
Artificial Neural Networks Models, 12th
International Conference of Computer Systems
and Applications, Marrakech, Morocco, 2015,
pp.1-8.

[14] D.E. Rumelhart, G.E. Hinton, and R.J.
Williams, Learning Internal Representations by
Error Propagation, Parallel Distributed
Processing: Explorations in the
Microstructures of Cognition, Vol. 1, MIT
Press, Cambridge, MA, 1986, pp.318-362.

[15] C.J. Lokan, An empirical analysis of function
point adjustment factors, Information and
Software Technology, Vol. 42 (9), 2000,
pp.649–659.

[16] J. Baik, The Effects of Case Tools on Software
Development Effort, Doctoral dissertation,
University of Southern California, 2000.

[17] S. Agatonovic-Kustrin, and R. Beresford, Basic
concepts of artificial neural network (ANN)
modelling, Journal of Pharmaceutical and

Tugçe Ugurlu Altuntas, S. Emre Alptekin
International Journal of Computers

http://www.iaras.org/iaras/journals/ijc

ISSN: 2367-8895 121 Volume 2, 2017

Biomedical Analysis, Vol. 22, 2000, pp.717–
727.

[18] D.J.C. MacKay, Bayesian Interpolation, Neural
Computation, Vol. 4(3), 1992, pp.415-447.

[19] F. Burden, and D. Winkle, Bayesian
Regularization of Neural Networks, Artificial
Neural Networks Methods and Applications of
the series Methods in Molecular Biology, Vol.
458, 2009, pp.23-42.

[20] K. Hirschen, and M. Schafer, Bayesian
Regularization Neural Networks for
Optimizing Fluid Flow Processes, Computer
Methods in Applied Mechanics and
Engineering, Vol. 195(7-8), 2006, pp.481-500.

Tugçe Ugurlu Altuntas, S. Emre Alptekin
International Journal of Computers

http://www.iaras.org/iaras/journals/ijc

ISSN: 2367-8895 122 Volume 2, 2017

