
Screen Control System Based on Fingertip Tracking : AirFlick

YANG-KEUN AHN, KWANG-SOON CHOI, YOUNG-CHOONG PARK
Korea Electronics Technology Institute

121-835, 8th Floor, #1599, Sangam-Dong, Mapo-Gu, Seoul
REPUBLIC OF KOREA

ykahn@keti.re.kr

Abstract: - This paper suggests a method of extracting fingertips from 3D information obtained from single-
depth cameras in a smart-device environment, and for controlling the screens without directly touching them.
This method extracts fingertips from hand images, and controls the screen by reading the fingertips’tracking
information. First, we extract hand areas in real time by utilizing depth information, and remove the noise by
preprocessing the extracted hand areas to obtain the hand area through labeling. Next, we extract prospective
fingertips from the areas and obtain final fingertips after a verification process. Fingertip movement
information is indicated as a graph, and movement at a pace exceeding a certain critical level generates flick
events. Finally, the key codes obtained from such events are relayed to application contents to control the
screen.

Key-Words: - Finger Tracking, Fingertip Detection, Air Touch, Screen Control System, Finger Touch

1 Introduction
It has become very easy to encounter devices
equipped with touch screens on a daily basis in
modern society, ranging from small smart phones to
larger monitors and laptops. It is, however, still
difficult to directly use touch screens in some
restrictive situations, such as when fingertips are
covered with water or food. It is also difficult for
users to directly control touch screens as the size of
displays grows larger.

In order to address such problems, research has
recently been conducted to recognize a user’s
fingertips, not on the touch screen, but within a
spatial dimension, and then to understand certain
gestures. Such a spatial touch method, based on
vision technology utilizing a high-speed camera
attached to a mobile device, was suggested by the
lab of Ishikawa Oku at the University of Tokyo, but
it was found to require not only high-performance
camera equipment to track fingertips, but also a
process of initialization [1]. Takeoka et al.
suggested extracting fingertips by using the Z-touch
method [2], but this method failed to accurately
estimate the continuous depth values of fingertips
due to the issue of processing speed. Tsukada et al.
layered two panels in an effort to enhance accuracy,
only to increase the cost of equipment [3].

This paper introduces a screen-controlling
system based on the recognition of fingertip
tracking information. Chapter 2 suggests the method
of extracting a simple and robust group of fingertip
candidates, and Chapter 3 discusses the method of

extracting accurate fingertips from the candidate
group through exception handling and verification.
Chapter 4 describes an experimental example of
recognition rates of gestures that control the screen
without physical contact, and then applies the results
to application programs, based on the movement
tracking information of the extracted fingertips.
Chapter 5 provides the conclusion of this study.

Fig. 1 Flow chart of system control

The system suggested in this study operates in
two different parts: the part of extracting fingertips

Yang-Keun Ahn et al.
International Journal of Computers

http://www.iaras.org/iaras/journals/ijc

ISSN: 2367-8895 69 Volume 2, 2017

and characteristics and the part of tracking
coordinates and recognizing gestures. Fig. 1
provides the flow chart for the suggested system’s
control.

2 Preprocessing
In the preprocessing stage, hand areas are extracted
from input images (Fig. 2, (a)). A median filter is
applied in order to remove noise from the input
images. Pixel information that exists within a certain
area is extracted from the pixels closest in depth
images from which noise was eliminated, and then
the extracted areas are binarized (Fig. 2, (b)). Later
only hand areas are extracted through labeling (Fig.
2, (c)).

Fig. 2 Process of extracting hand areas (a) Depth

image (b) Binarization after extracting close areas (c)

Extracting hand areas through labeling

3 Screen Controlling Method through
Fingertips Tracking
This chapter describes the method of extracting
fingertips from extracted hand-area information, and
controlling the screen by means of fingertip trace
information.

3.1 Extracting Fingertip Candidates
We explore pixel information from the left of the Y
axis to the right side of the extracted hand area. The
X and Y coordinates of the first point met becomes
the fingertip. This is indicated with the dotted-line

arrow in (a) of Fig. 3. But if the fingertip is tilted to
the left or right as shown in (b) of Fig. 3, the top
pixel is mistakenly recognized instead of the actual
fingertip.

Fig. 3 Process of extracting fingertip candidates (a)

Process of exploring fingertips (b) Example of

mistaken recognition and actual fingertip

In order to address this problem, the ratio of

width to height of hand areas is used, based on the
fact that, during a natural gesture, the fingertip is
bound to head the left or upper side. In this case, the
width ratio of the hand area becomes larger than the
height ratio. Fig. 4, (a) shows the standby gesture,
with which the height becomes larger than the width
in general. In addition, (b) displays the width-height
ratio when the fingertip tilts to the left, while (c)
shows the ratio when the fingertip tilts to the right.
As indicated, the width is larger than the height.

Fig. 4 Width-height ratio of the hand area (a)

Standby (b) Tilted to the left (c) Tilted to the right

By means of the width-height ratio suggested,

the fingertip is extracted in the following manner.
When it is tilted to the left, the X and Y coordinates
of the far left pixel are designated as the fingertip;

Yang-Keun Ahn et al.
International Journal of Computers

http://www.iaras.org/iaras/journals/ijc

ISSN: 2367-8895 70 Volume 2, 2017

and when it is tilted to the right, those of the far
right pixel are designated as the fingertip. The
direction to which the hand is tilted is determined by
the location of the Y coordinate in the far left and
right pixels. In Fig. 5 (a), the Y coordinate in the left
is located higher than the Y coordinate in the right.
In contrast, in Fig. 5 (b) the right-side Y coordinate
is higher than the Y coordinate in the right.
Although it does not belong to the scope of normal
gestures, if the left-side fingertip in Fig. 5 (c) is
extracted in accordance with the above algorithm,
the right-side elbow is mistakenly recognized as a
fingertip.

Fig. 5 Process of extracting fingertip candidates

when tilted to the left or right (a) Tilted to the left (b)

Titled to the right (c) Exception handling of

abnormal gestures

In order the resolve the problem, the radius of the

fingertip is set, and any movement beyond such
boundary is handled as an exception in order to
prevent the fingertip’s coordinates from getting
away. As shown in Fig. 5 (c), since the fingertip’s
coordinates stay within the circle and the right
elbow is outside the circle, the problem of fingertips
going off can be resolved.

3.2 Fingertip Verification
The previous chapter showed how to verify fingertip
candidates. In this chapter, fingertip candidates are
verified to confirm whether they are real fingertips.
Finger 6 (a) shows the normal hand image from
which the fingertip is to be extracted. Fig. 6 (b) is
not the normal hand image and should be handled as

an exception, so as not to extract a fingertip from
this image.

Fig. 6 Fingertips of normal and abnormal poses (a)

Fingertip of the normal pose (b) Fingertip of the

abnormal pose

Fig. 7 Converting to binarized and outlined images

(a) Binarized image (b) Outlined image

In order to verify if the extracted candidates are

real fingertips, a curvature-based algorithm for
fingertip-extracting is used. In order to apply this
algorithm, the binarized image in Fig. 7 (a) is
converted to the outlined image shown in Fig. 7 (b).
When straight lines are drawn to the two adjoining
pixels within a certain scope from fingertip
candidates, it becomes possible to obtain an angle
with the candidates. Fig. 8 (a) shows the example of
a fingertip angle of the normal hand image, and (b)
shows the fingertip angle of the abnormal hand
image. As shown in Fig. 8, the angle of the normal
hand image is smaller than that of the abnormal
image. As a means to ensure higher accuracy, this
paper verifies fingertips by utilizing the
accumulated total of angle values of a series of
continuous pixels as shown in the example of Fig. 8
(c), instead of the angle data of one adjacent pixel.

Yang-Keun Ahn et al.
International Journal of Computers

http://www.iaras.org/iaras/journals/ijc

ISSN: 2367-8895 71 Volume 2, 2017

Fig. 8 Process of curvature-based fingertip

verification (a) Normal fingertip angle (b) Abnormal

fingertip angle (c) Example of accumulated fingertip

angles

4 Experiment Results and Application
Programs
The experiment was conducted with a computer,
equipped with a CPU with Intel(R) Core(TM) i7-
2600K 3.4GHz and a 8Gbyte memory. The depth
camera DS325[4] was connected to the computer at
60FPS, and the software processing time is provided
in Table 1 below. The entire arithmetic operation
from image input to gesture recognition took 16ms,
which means at least 60 frames per second of real-
time operation.

Table 1 Processing Time

Type Processing time (msec)
Acquiring depth images 5
Extracting hand areas 3

Extracting and verifying
fingertips

7

Wait 1
Total 16

In order to verify the arguments proposed in this

paper, we tested the left-flick and right-flick
gestures involving moving a fingertip fast to either

the left or right. In the experiment, a total of 10
users made 1,000 flick gestures, with each user
making 50 left and right gestures at random.

Table 2 Flick event recognition rates

User Left (50) Right (50) Total (%)
1 50 50 100
2 50 48 98
3 50 50 100
4 49 49 98
5 50 48 98
6 50 50 100
7 49 50 99
8 50 50 100
9 50 49 99

10 50 49 99
Total 498 493 99.1

Fig. 9 System hardware organization

The results are provided in Table 2, which shows

that left-flick gestures have a slightly higher
recognition rate than right flicks. This is related to
the higher degree of freedom of leftward gestures.
In addition, no left gestures were mistaken as right
gestures, or the vice versa, but in some cases
users’flick gestures were not recognized at all. This
is a result of user gestures failing to reach the
critical level, but did not affect the actual screen
controlling.

Fig. 9 displays the hardware organization of the
AirFlick system. The smart TV shows the screen
control, and the DS 325 camera is installed on the
lower part of the smart TV to face upward by about
30 degrees to capture a user’s gestures. The analysis

Yang-Keun Ahn et al.
International Journal of Computers

http://www.iaras.org/iaras/journals/ijc

ISSN: 2367-8895 72 Volume 2, 2017

of gestures is conducted by the computer connected
to the camera, and the results are sent to the smart
TV through the HDMI cable. Fig. 10 shows how the
AirFlick system proposed in this paper is actually
applied to application programs.

Fig. 10 AirFlick system (a) Standby (b) Flick to the

left (c) Flick to the right

5 Conclusion
This paper suggested a method of extracting
fingertips from 3D information obtained from
single-depth cameras in a smart-device
environment, and for controlling screens without
directly touching them. By means of the
preprocessing technique proposed in this paper, we
extracted hand areas in a robust manner before
extracting a simple and robust group of fingertip
candidates and verifying fingertips based on
curvature. Using information on the extracted
fingertips, we were able to control screens without
physically contacting them and observed at least
99% of recognition rate for gestures of finger
licking to the left and right.

References:
[1] Y. Hirobe, T.Niikura, Y. Watanabe, T.

Komuro, M. Ishikawa, “Vision-based Input
Interface for Mobile Devices with High-speed
Fingertip Tracking,” Adj. Proc. ACM UIST
2009, pp. 7-8.

[2] Y. Takeoka et al., “Z-touch: an infrastructure
for 3d gesture interaction in the proximity of
tabletop surfaces,” Proceedings of ITS’10,
2010.

[3] Y. Tsukada et al., “Layerd touch panel: the
input device with touch layers,” Proceedings of
CHI’02, 2002, pp. 584-585.

[4] http://www.softkinetic.com

Yang-Keun Ahn et al.
International Journal of Computers

http://www.iaras.org/iaras/journals/ijc

ISSN: 2367-8895 73 Volume 2, 2017

