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Abstract: This paper presents a parallel Variable Neighborhood Search (pVNS) algorithm for solving instances
of the Traveling Salesman Problem (TSP). pVSN uses two parallelization levels in order to reach near-optimal
solutions for TSP instances. This parallel approach is evaluated by means of an experimental multi-clusters of
computers in which the nodes in each cluster uses several threads for calculating the path cost of a candidate
solution and a message passing based communication scheme between two clusters is implemented for sharing
their solutions. The results obtained indicate that the use of this parallelization scheme leads to an execution time
reduction of the VNS method and one near optimal solution is reached due to a best exploitation of the solution
space.

Key–Words: Variable neighborhood search, parallel algorithm, traveling salesman problem

1 Introduction
An objective of combinatorial optimization is to im-
plement better algorithms for searching an optimal so-
lution to a problem inside a finite collection of can-
didate solutions [1]. This area brings together many
computationally complex problems in which usually
the number of solutions is very high, making it im-
practical to evaluate all of them in order to find the op-
timal solution. The use of parallelization for solving
combinatorial optimization problems is an approach
that has gained importance in recent years [2]. Par-
allel combinatorial optimization algorithms are rais-
ing significant interest in science and technology since
they are able to solve complex problems in different
domains (communications, genomics, logistics and
transportation, environment, engineering design, etc.)
[3]. For example, in [4] it is described an efficient load
balancing strategy for grid-based branch and bound
algorithm and in [5] a parallel genetic annealing algo-
rithm for solving the Job Shop Scheduling Problem is
presented.

The traveling salesman problem (TSP) is per-
haps the most well known combinatorial optimiza-
tion problem. Applications of TSP and its variants
go way beyond the route planning problem of a trav-

eling salesman and spans over several areas of knowl-
edge including mathematics, computer science, oper-
ations research, genetics, engineering and electronics
[6]. TSP is among the NP-hard problems and many
different approaches are used to solve this problem
in an acceptable time especially when the number of
cities is high [7]. Within the process of finding near-
optimal TSP solutions, several techniques have been
proposed that use different neighborhood structures
and local search procedures ([8, 9, 10, 11, 12]). A hy-
brid approach that combines different neighborhood
structures to find better solutions within an iterated lo-
cal search algorithm is presented in [13].

High-performance computing (HPC) is an ap-
proach that has been used in recent years for solving
complex problems in science, engineering and busi-
ness. In [14] it is established that HPC can be achieved
using a cluster of computers or a Grid computing or a
workstation personal computer with a multi-core sys-
tem. A cluster is one single system comprised of in-
terconnected computers that communicate with one
another either via message passing or by direct inter-
node memory access using a single address space
[15]. In México the Instituto Tecnológico de Veracruz
(ITVer) and the Universidad Autónoma del Estado de
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Morelos (UAEM) share the resources of their clusters
in an experimental multi-clusters architecture named
Tarantula minigrid [16].

This paper presents a parallel approach of a Vari-
able Neighborhood Search (VNS) method described
in [17]. This parallel approach, called pVNS, per-
forms a concurrent finding of new candidate solutions
for TSP instances in a multi-clusters of computers.
pVNS uses two levels of parallelization: first, a set of
threads in each node of a cluster is used for calculat-
ing the path cost of a TSP solution and then a message
passing mechanism for the communication between
clusters is implemented. The experimental results ob-
tained show that a reduction in the execution time of
pVNS method is produced and a substantial improve-
ment in the solution is reached. The remainder of this
paper is organized as follows: The definition of TSP,
the neighborhood structures and the VNS method is
presented in sections 2, 3 and 4, respectively. Section
5 describes the parallel approach for VNS proposed
in this work and one analysis of the experimental re-
sults is provided in section 6. Finally, in section 7 the
conclusions and future works are detailed.

2 Traveling salesman problem
TSP is a classical reference in combinatorial optimiza-
tion and it has become a standard case for testing the
effectiveness of several optimization methods [18]. In
[19] it is established that TSP is probably the most im-
portant among the combinatorial optimization prob-
lems that it has served as a testbed for almost every
new algorithmic idea, and was one of the first opti-
mization problems conjectured to be hard in a specific
technical sense.

In its mathematical formulation, cities are the ver-
tices of a graph K, edges of this graph represent the
opportunity of to travel between two cities, and a tour
is a hamiltonian cycle in K. The task in TSP is to
arrange a tour of several cities such that each city is
visited only once and the length of the tour (or some
other cost function) is minimized [20].

In [9] it is defined that given N cities, TSP re-
quires a search for a permutation π : {1, . . . , N} →
{1, . . . , N}, using a N ×N cost matrix C, where ci,j
denotes the cost of travel from city i to j, that mini-
mizes the path length in equation 1.

N−1∑
i=1

cπ(i),π(i+1) + cπ(N),π(1) (1)

where π(i) denotes the city at i-th location in the tour.
Different classes of TSP can be identified by the

properties of the cost matrix. In symmetric TSP ci,j =

cj,i for i, j : 1, . . . , N , otherwise the problem is re-
ferred as a asymmetric TSP. Euclidean TSP is a spe-
cial case of symmetric TSP in which the vertices are
points in the Euclidean space and the weight on each
edge is the Euclidean distance between its endpoints.

3 Neighborhood structures
Any combinatorial optimization problem requires the
use of techniques that allows a better exploitation of
the solution space in order to reach near-optimal so-
lutions. Local search techniques utilize a neighbor-
hood structure for defining a set N of candidate solu-
tions. Therefore, any solution s′ is directly reachable
from s through a movement ρ, thus s′ ∈ N (s). This
neighborhood structure is implemented in an iterative
technique with the purpose of improving the quality
of solutions, according to the objective function of the
problem. A critical aspect of designing some opti-
mization algorithms is choosing an appropriate neigh-
borhood structure.

In [17] four different neighborhood structures
were applied for searching a near-optimal solution of
a TSP instance:

• One adjacent pair [21, 22, 23]: One element in
position i of a solution s is randomly selected and
it is permuted with the element in position i + 1
of the same solution.
• One random pair [22, 24, 25]: This structure

performs a single permutation between two non-
adjacent elements of s placed on random posi-
tions i and j.
• Two adjacent pairs [26]: Two elements of s in

random positions i and j are selected and they are
interchanged with their adjacent elements: Ele-
ment in position i permutes with element in po-
sition i + 1, and element in position j permutes
with element in position j + 1.
• Two random pairs [25, 27, 28]: This structure

performs two permutations between four non-
adjacent elements of s placed on random posi-
tions ia, ib, ja and jb. Element in position ia per-
mutes with element in position ib and element in
position ja permutes with element in position jb.

4 Variable Neighborhood Search
VNS is a framework for building heuristics based
upon systematic changes of neighborhoods both in
a descent phase, to find a local minimum, and in a
perturbation phase to escape from the corresponding
valley [29]. VNS is able to handle variable neigh-
borhood sizes, due to the random interaction of the
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structures during the execution time, which improves
the exploitation of the solution space. In [17] the
four different neighborhood structures previously de-
scribed have been implemented in order to search
near-optimal solutions of TSP instances using a VNS
method. Figure 1 shows the structure of this VNS
method.

Figure 1: Flowchart of VNS method proposed in [17].

5 Parallel Variable Neighborhood
Search

An analysis of the execution time profile of the VNS
sequential version proposed in [17] indicates that the
determination of the path cost of each candidate solu-
tion constructed using the neighborhood structures is
the most expensive procedure since it consumes 99%
of the total execution time, then one parallel VSN
(pVNS) is implemented in order to reduce this execu-
tion time. For improving the exploitation of the search
space, pVNS uses a group of solutions instead only
one candidate solution in its iterative process.

pVNS performs a concurrent finding of new can-
didate solutions of a TSP instance in a multi-clusters
of computers in order to reach a near-optimal solu-
tion. pVNS uses two levels of parallelization: first, a
set of threads on each cluster node for calculating the
path cost of a TSP solution is used and then a mes-
sage passing mechanism for the communication pro-

cess between clusters is implemented. For construct-
ing this parallelization scheme one node in each clus-
ter is asigned as the master node in which the VNS
procedure is executed. Master node sends a candidate
solution to each one of the other nodes in the cluster
(the slave nodes) in order to calculate the path costs
of this group of candidate solutions (figure 2). Im-
plementation details of these two parallelization levels
are described in the next paragraphs.

Figure 2: Master node sends candidate solutions and
receives the path cost of each one.

Parallelization Level 1: It is a shared memory paral-
lelization scheme in which a slave node i in the cluster
receives a candidate solution si and evaluates it. This
solution is divided into n segments and each one is
proccesed by a independent thread Tj in order to de-
termine its partial path cost f(si,Tj ) of each segment.
When all threads have finished their part of the paral-
lel computation, slave node i determines the total path
cost f(si) and sends it to the master node. This paral-
lelization level is depicted in figure 3.

Figure 3: A set of threads calculates the path cost of
solution si.

Rodrigo E. Morales-Navarro et al.
International Journal of Computers 

http://www.iaras.org/iaras/journals/ijc

ISSN: 2367-8895 280 Volume 1, 2016



Parallelization Level 2: In order to exploit the advan-
tages of a parallel processing scheme, pVNS utilizes
a group of candidate solutions instead of only one as
in the sequential version of VNS proposed in [17].
First, a master node delivers candidate solutions and
receives their path costs calculated by the slave nodes
in the cluster (figure 2) and then updates the group
of solutions comparing the path costs received. This
send-receive process with the slave nodes is repeated
until a stop condition is reached. Additionally, be-
fore of delivering new candidate solutions, each mas-
ter node of the multi-clusters architecture shares its
better solutions with the others using a message pass-
ing mechanism as is shown in figure 4. With this inter-
change procedure only the best solutions of this dis-
tributed searching scheme is preserved as a the new
set of candidate solutions.

Figure 4: Solutions interchange between two clusters.

6 Experimental results
Experimental tests of pVNS were realized in the
Tarantula minigrid that is a multi-clusters architecture
configured as a Virtual Private Network (VPN) using
OpenVPN in order to avoid the need for grid pack-
ages such that Globus or gLite 32. Basic components
of Tarantula miniGrid are shown in table 1.

Table 1: Tarantula miniGrid components.

Software

Red Hat Enterprise Linux 4, Compiler gcc version
3.4.3, OpenMPI 1.2.8, MPICH2-1.0.8, Ganglia 3.0.6, NIS
ypserv-2.13-5, NFS nfs-utils-1.0.6-46,OpenVPN, Torque +
Maui.

Hardware

ITVer cluster: A master node with a dual-core system of
3.2 Ghz and 14 slave nodes (dual and quad core systems)
of 2.33 GHz.
UAEM cluster: A master node with a dual dual-core sys-
tem of 2.8 GHz and 18 slave nodes with a dual-core system
of 2.0 Ghz.

pVNS method is codified in C language and two

libraries for implementing parallel tasks are utilized:
OpenMP for the parallelization level 1 and MPI for
the parallelization level 2.

One TSP instance randomly generated for 4000
cities was utilized for evaluating the pVNS perfor-
mance and the average results of 30 executions of
the method using a group of 60 candidate solutions
were obtained. Due to the heterogeneity of the nodes
used in the multi-clusters architecture, tests were per-
formed using different node configurations:

Test 1: Sequential VNS (1 quad-core node).

Test 2: Sequential VNS (1 dual-core node).

Test 3: pVNS, 10 processes (2 quad-core nodes, 1
dual-core node).

Test 4: pVNS, 10 processes (3 quad-core nodes).

Test 5: pVNS, 20 processes (5 dual-core nodes).

Test 6: pVNS, 20 processes (5 quad-core nodes).

Test 7: pVNS, 20 processes (9 dual-core nodes, 1
quad-core node).

Test 8: pVNS, 30 processes (9 dual-core nodes, 3
quad core nodes).

6.1 Execution time and total path cost
Figures 5 and 6 show the average total execution time
and the average total path cost obtained applying the
eigth tests described previously. Figure 5 shows a sub-
stantial reduction in the execution time of pVNS in
comparison with the better execution time of the se-
quential version of VNS. The generation of 60 candi-
date solutions using 30 processes (test number eight)
yields a total cost much smaller than the sequential
one: the execution time was reduced approximately
23 times compared to the execution time of sequential
version using one quad-core node (test number two).

Figure 5: Average total execution time of pVNS.

Rodrigo E. Morales-Navarro et al.
International Journal of Computers 

http://www.iaras.org/iaras/journals/ijc

ISSN: 2367-8895 281 Volume 1, 2016



A comparative graph of several average total path
costs produced by the different node configurations is
shown in figure 6. The better average total path cost
produced by the tests with the sequential algorithm
was 187,339 (test number two), while the better av-
erage total path cost was 186,025 (test number three)
for the tests with the parallel version. Parallel versions
of VNS always produce better candidate solutions due
to the fact that they implement a better exploitation of
the search space by using a group of candidate solu-
tions instead of to use only one candidate solution in
each iteration of a sequential version of VNS.

Figure 6: Average total path costs of pVNS.

6.2 Speedup
Speedup is the measure for the gain of the parallel pro-
gram over the sequential version. In figure 7 is de-
picted the speedup obtained using different node con-
figurations for the pVNS method. It can be seen that
the speedup varies depending on the combination of
the nodes of the Tarantula minigrid. The speedup in-
crease curve turns out to be as expected, obtaining an
efficiency of 66% when the node configuration use 30
processes (9 dual-core nodes and 3-quad core nodes).

7 Conclusions and future work
The implementation of this proposal of two paral-
lelization levels using OpenMP and MPI generates
a substantial reduction in the execution time for the
VNS method, obtaining results in less time than the
sequential version of VNS. Parallelization with MPI
allows to expand the search in the space of solutions,
since having several candidate solutions improves the
explotaition of the solution space and it is more prob-
able that a near-optimal solution can be reached.

In addition, with the use of a multi-clusters ar-
chitecture, a greater computing power is obtained that

Figure 7: Speed-up of pVNS.

allows concurrently evaluating several candidate so-
lutions. It can be seen that the use of parallelization
reduces approximately 23 times the execution time of
the algorithm.

The hybridization of OpenMP and MPI is an in-
teresting approach that merits further study. The next
steps in this work will be oriented in two directions:
First the experimental study will be improved using
several test cases obtained from the literature and then
a study about the effect of latency when the nodes of
different clusters are shared across the multi-clusters
architecture using MPI will be developed. Another fu-
ture work is to implement different heuristics as evo-
lutionary algorithms and swarm intelligence methods
in order to solve TSP instances in a parallel environ-
ment.
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[13] M.A. Cruz-Chávez, A. Martı́nez-Oropeza and
S.A. Serna-Barquera, Neighborhood Hybrid Struc-
ture for Discrete Optimization Problems, Proc. of
IEEE CERMA 2010, pp. 108–113, 2010.

[14] E. Mahdi, A Survey of R Software for Parallel Com-
puting, American Journal of Applied Mathematics
and Statistics, 2(4), pp. 224–230, 2014.

[15] G. Bell and J. Gray, What’s next in high-performance
computing?, Communications of the ACM, 45(2),
pp. 91–95, 2002.

[16] R. Rivera-Lopez, A. Rodrı́guez-León, M.A. Cruz-
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