
Best Practices in SAP Environment

MIHAELA MUNTEAN, DIANA TÂRNĂVEANU
Business Information Systems Department

West University of Timişoara
Str. V. Pârvan, nr. 4, Timişoara

ROMANIA
mihaela.muntean@e-uvt-ro, diana.tarnaveanu@e-uvt.ro, http://www.feaa.uvt.ro

Abstract: - Today’s economy is strongly influenced by information technology, therefore organizations have to
deal with many challenges like integrated information and consistency, security, advanced reporting and
customer service facilities. Finding relevant information to base their decision on, is one of the greatest
challenge managers have to face. SAP is a highly flexible, customized solution, where the information is
processed once and is accessible to all modules. It offers many reporting services, the goal for the developers
being using the most efficient tool to find the solution of the problem. This paper presents best practices in SAP
Environment through two study cases, using reporting tools specific to SAP ABAP and SAP Business
Warehouse module.

Key-Words: - decision making, best practices, SAP ABAP, SAP Business Warehouse

1 Retrieving relevant information and
decision making
Many organizations often implement an enterprise
resource planning solution, like SAP; all the
individual department functions being integrated
into a single software application [1]. Out of many
advantages, improved productivity, increase
efficiency, decrease costs and streamline processes
stand out [2]. SAP makes it easier to track the
workflow across various departments. Alongside
other reporting services, it can also integrate
Business Intelligence functionalities that can give
overall insights on business processes and identify
potential areas of problems/improvements.
 Managers need support in every step of the
decision process; a tailored solution should be
created for manipulating data, searching the relevant
information and performing complex calculus, time
being an important resource.

2 Queries using SAP ABAP
ABAP (Advanced Business Application
Programming – originally Allgemeiner Berichts-
Aufbereitungs-Prozessor, German for „general
report creation processor”) is a programming
language developed by SAP for programming
business applications in the SAP environment [3]
[4]. ABAP is an interpretative 4GL which supports
structured programming and modularization; it has
been enhanced as an object-oriented language; it is
capable of handling multi-language applications;

fully integrates an SQL standard and is platform-
independent [5].

2.1 Basic ABAP concepts
The most common ABAP object is the report.
Reports are programs which generate lists of data.
They may involve a small amount of interactivity,
but mainly they supply data to the front-end
interfaces, the SAP GUI, etc. When a user runs a
report, typically at the first step a selection screen is
displayed. Once the selection parameters are
inserted and the report is executed, they cannot
intervene in the execution of the program. The
program runs and then displays the output.

Modularization means taking sequence of
ABAP statements and placing them in their
own, separate module. Those modules can be
called from the program. Modularization allows
single tasks to be focused upon one at a time,
without the distraction and confusion which can
be caused if the code is in the middle of a large,
complicated structure. Creating individual
source code modules prevents from having to
write the same statements again and again. It is
also of a great help in the case of support [6].

Two techniques can be used for local
program modularization in the ABAP
programming language: subroutines (also
known as FORM routines) and methods in local
classes. Even if it is technically possible to call

Mihaela Muntean, Diana Târnaveanu
International Journal of Computers

http://www.iaras.org/iaras/journals/ijc

ISSN: 2367-8895 223 Volume 1, 2016

mailto:mihaela.muntean@e-uvt-ro
mailto:diana.tarnaveanu@e-uvt.ro
http://www.feaa.uvt.ro/

a subroutine from another program, it is not
advisable because it contradicts the principle of
encapsulation of data and functions. There are
also two techniques for global modularization
in the ABAP programming language: function
modules that are organized into function groups
and methods in global classes. Globally defined
modularization units can be used by any
number of programs in the same time. They are
stored centrally in the Repository and loaded
when required [7]. All global variables defined
in the main program can be addressed from a
subroutine. But in order to formalize the
subroutine and make it work with different data
objects for each situation, the global variables
are replaced with placeholders called formal
parameters, and together form the subroutine
interface. Whenever a subroutine is define, the
interface must be declared. When the subroutine
is called, formal parameters must be specialized
by means of corresponding global variables
(actual parameters), in order to reference the
subroutine processing to real variables. This
assignment of actual parameters to formal
parameters when calling a subroutine is called
parameter passing [8].
 Function Groups are a special type of
ABAP program; they are not executable
programs, so they can’t be called using a
transaction code. Their only purpose is to serve
as main programs for function modules.
Generally, a Function Group contains many
functions modules which perform related
functions or that operate on similar data.
Function Modules are part of programs that can
be stored globally, and in this way used by all
ABAP programs. Function modules perform
tasks of general interest to other programmers
[9]. Usually these tasks are well-defined
functions that all users need, regardless of
application. Some well-defined tasks include
performing tax calculations, determining
factory calendar dates, and calling frequently-
used dialogs. By using them, the developer can
take advantage of modularization [10].
 ABAP programs use screens to obtain input
from users. The most general type of screen is a
dialog screen, which you create using the
ABAP Workbench tools Screen Painter and
Menu Painter. These tools allow to create

screens for data input and output. You often use
screens purely for data input. In these cases,
you can use a selection screen. Selection
screens provide a standardized user interface in
the R/3 System. Users can enter both single
values and complex selections. Input
parameters are primarily used to control the
program flow, while users can enter selection
criteria to restrict the amount of data read from
the database [110]. ALV stands for ABAP List
Viewer, as named initially, because it was only
available in ABAP. It is now a more general
concept, which is available in Java too, and
GRID was introduced later. ALV is a generic
tool that outputs data in a table form (rows and
columns) with integrate functions to manipulate
output and export it. It is also possible to make
ALV editable via ALV control. SAP provides a
set of ALV function modules which can be put
into use to embellish the output of a report.
ALV provides inbuilt functions to the reports
such as: sorting of records, filtering of records,
totals and sub-totals, download the report output
to Excel/HMTL, changing the order of the
columns in the report and hide the unwanted
columns from the report [12]. The ABAP
Dictionary manages the database tables and
contains current information about a database
table's technical attributes [9]. It is the central
facility in the SAP system where tables and
other objects are created and maintained [13].
 A transparent table in the dictionary has a
one-to-one relationship with a table in the
database. Its structure in R/3 Data Dictionary
corresponds to a single database table. For each
transparent table definition in the dictionary,
there is one associated table in the database
[14]. The database table has the same name, the
same number of fields, and the fields have the
same names as the R/3 table definition. They
are used to hold application data. Application
data is the master data or transaction data used
by an application. We can either use native SQL
or OPEN SQL to access transparent tables.
Secondary indexes can be created and buffering
can be done in transparent tables [15].

2.2 Study Case – Querying a Sales Order
Information about a sales/order document are stored
in VBAK table, the details of the order in VBAP,

Mihaela Muntean, Diana Târnaveanu
International Journal of Computers

http://www.iaras.org/iaras/journals/ijc

ISSN: 2367-8895 224 Volume 1, 2016

the other related tables maintaining information
regarding sales requirements, release order data,
delivery due, schedule lines, shipping, billing, etc –
Fig. 1.

Fig. 1. Sales and Distribution Tables [16]

 This study case offers an example of a
modularized ABAP program used for querying the
tables and displaying relevant information in a list,
offering the manager relevant information in due
time.

2.2.1 Output table
The retrieved relevant information should be saved
in a transparent table created based on a global table
type. The global table type is built based on a
structure which should be created having the desired
output fields with the same types and technical
attributes as the fields from the inquired tables –
Fig.2.

Fig. 2. Structure’s fields

 The selected fields are: sales document (vbeln),
sales document item (posnr), created on (erdat),
time (erzet), created by (ernam), quotation valid
from (angdt), quotation valid to (bnddt), document
date (audat), sd document category (vbtyp), material

(matnr), plant (werks), etc. Special attention require
the fields netwr (net values) and waerk (document
currency) – Fig. 3. They should be built based on
similar fields with the same respective types.

2.2.2 Querying the SD tables
A function group should be created, as a container
for the function module. The function module’s
objective is to query the Sales and Distribution
tables: vbak and vbap. The import parameter is the
material number (matnr), the export parameter is the
output table. Source Code tab will contain the code
that queries the tables. The function module will be
saved in a function group, and can be called from
any other report, making the code more efficient.
The query is displayed in Fig. 3.

Fig. 3. The query

2.2.3 Creating the screen and calling the
function
When creating the screen, a parameter for material
number is needed. It will have the same data type as
the one from the vbap table.

SELECTION-SCREEN BEGIN OF BLOCK 1.
 PARAMETERS: p_matnr TYPE vbap-matnr.
SELECTION-SCREEN END OF BLOCK 1.

On the execution screen, when the input parameter
is inserted, the query is performed with its value –
Fig. 4.

Fig. 4. Material number – Input parameter

Mihaela Muntean, Diana Târnaveanu
International Journal of Computers

http://www.iaras.org/iaras/journals/ijc

ISSN: 2367-8895 225 Volume 1, 2016

 In order to call the function, the Pattern button
should be used, facilitating the creation of the
function. The function can then be easily
customized, some clauses can be dropped and the
other just uncommented and ready to be used – Fig.
5.

Fig. 5. Inserting a function using Pattern button

 When customizing the function, actual
importing and exporting parameters are used.

FORM read_data USING im_v_matnr1 type vbap-
matnr CHANGING ch_t_vbap1 type zsd_t_sorder.
CALL FUNCTION 'ZMM_GET_SORDER'
 EXPORTING
 im_v_matnr = im_v_matnr1
 IMPORTING
 ex_t_sorder = ch_t_vbap1.
ENDFORM.

2.2.4 Displaying the result
For displaying the result the ALV functionality is
used. REUSE_ALV_GRID_DISPLAY is a standard
SAP function module that performs output of a
simple list (single-line) functionality. Its pattern
include import, export, tables parameters and a list
of exceptions. A field catalog is prepared using the
internal table (LT_FIELDCAT) of type
SLIS_T_FIELDCAT_ALV.[xx]

FORM alv_display USING im_t_vbap TYPE zsd_t
_sorder.
 TYPE-POOLS: slis.
 DATA: lt_fieldcat TYPE slis_t_fieldcat_alv,
 ls_fieldcat TYPE slis_fieldcat_alv,
 ls_layout TYPE slis_layout_alv.

 PERFORM alv_fieldcat CHANGING lt_fieldcat.
 CALL FUNCTION 'REUSE_ALV_GRID_DISPL
AY'
 EXPORTING
 i_callback_program = sy-repid
 is_layout = ls_layout
 it_fieldcat = lt_fieldcat
 TABLES
 t_outtab = im_t_vbap
 EXCEPTIONS
 program_error = 1
 OTHERS = 2.

 IF sy-subrc <> 0.
 MESSAGE e001(00) WITH 'Atentie, eroare
ALV!'.
 ENDIF.
ENDFORM.

 Field catalog contains descriptions of the list
output fields (usually a subset of the internal output
table fields). The field catalog for the output table is
built-up in the caller's coding [x].

FORM alv_fieldcat CHANGING ch_t_fieldcat TYP
E slis_t_fieldcat_alv.
 DATA: ls_fieldcat TYPE slis_fieldcat_alv.
 ls_fieldcat-fieldname = 'VBELN'.
 ls_fieldcat-key = 'X'.
 ls_fieldcat-reptext_ddic = 'VBELN'(003).
 APPEND ls_fieldcat TO ch_t_fieldcat.
 CLEAR: ls_fieldcat.
…
 ls_fieldcat-fieldname = 'WAERK'.
 ls_fieldcat-reptext_ddic = 'WAERK'.
 APPEND ls_fieldcat TO ch_t_fieldcat.
 CLEAR: ls_fieldcat.
END FOR.

The results are shown in Fig. 6.

Fig. 6. The queried tables

This example shows a useful and time-efficient way
to query the tables and obtain relevant information
for an order sale.

3 SAP BW Infoproviders for
reporting
3.1 Introducing the concepts
Reporting in the SAP BW environment implies the
access to and the process of multiple data sources in
a single report [20]. Reports are query-based
objects, designed to deliver relevant information to
the end-users and enable business analysis. In SAP
BW, the InfoProviders are objects that provide data
for a query. They can be persistent, also called data
targets, like InfoObject, DataStoreObject (DSO) and
InfoCube or non-persistent, like MultiProvider,
InfoSet and VirtualProvider [20].
 Working with queries in the SAP BW
environment is limited by the fact that a query
can only be based on a single InfoProvider.
Therefore, the non-persistent InfoProviders are
used to combine data from various persistent

Mihaela Muntean, Diana Târnaveanu
International Journal of Computers

http://www.iaras.org/iaras/journals/ijc

ISSN: 2367-8895 226 Volume 1, 2016

InfoProviders and present the result as if they
were one source [20].
 InfoObjects are the basis for defining or
configuring all of the other InfoProviders. They
are divided into characteristics (for example,
customers), key figures (for example, revenue),
units (for example, currency, amount unit), time
characteristics (for example, fiscal year) and
technical characteristics (for example, request
number). Characteristics are sorting keys, such
as company code, product, customer group,
fiscal year, period, or region. They specify
classification options for the dataset and are
therefore reference objects for the key figures.
 In the InfoCube the characteristics are
stored in dimensions. The key figures provide
the values that are reported on in a query. Key
figures can be quantity, amount, or number of
items. They form the data part of an
InfoProvider. InfoCubes are mainly used for
multidimensional reporting (OLAP) and are the
primary objects used to support queries. They
physically store data and are optimized for the
performance of queries [20]. An InfoCube is
design as a star schema. The fact table contains
the key figures and the dimension IDs as
foreign keys. SAP BW uses an extended star
schema for InfoCubes. The schema is extended
because the master data used to build the
dimension tables is replaced by keys again [20].
A DSO stores data in transparent tables. Data is
extracted and unified at a very detailed level,
and for that reason, DSOs are not optimized for
reporting purpose. Key fields and data fields are
the two types of DSO components. Key fields
are InfoObjects that uniquely identify each line.
Data fields contain characteristics and key
figures loaded from the operational system.
Although it is not recommended to create
queries from DSOs, it can be done if required.
 MultiProviders combine data of several
InfoProviders and provide a single view of the
data. That means that a union operation takes
place at the database level, combining all values
for the InfoProviders. MultiProviders do not
store data: a query collects data directly from
the InfoProviders. To improve the performance
of a query, a MultiProvider should preferably
be based only on InfoCubes.

InfoSets do not store data: they combine data
from several InfoProviders. They use a join
operation to display data instead of the union
operation used by the MultiProviders. Four
types of join operations are possible in InfoSets:
inner join, left outer join, temporal join and
anti-join [20].
 VirtualProviders access data in real-time
directly from a source system. They function
like InfoCubes, except that they do not store
any data in the SAP BW system. There are
three options for creating a VirtualProvider:
based on the data transfer process for direct
access; based on a BAPI; based on a function
module. They should be used for queries with
small datasets and for few users because the
system has to execute the entire process in real
time [20].

3.2 Study case for Profit Analysis
In order to sustain a profit analysis by analytics,
a Profit InfoCube is recommended to be
designed (Figure 7). Starting with some
elementary characteristics and two key figures,
the profit analysis will be conducted. In order to
create the Data Source, the corresponding
structure will be defined with respect to the
Source structure (the Source contains
information stored in an Excel sheet). The
proposed cube has three dimensions: Produs,
Client and Data and two Key Figures
(Measures).

Fig. 7. Profit InfoCube [19]

Mihaela Muntean, Diana Târnaveanu
International Journal of Computers

http://www.iaras.org/iaras/journals/ijc

ISSN: 2367-8895 227 Volume 1, 2016

 Dimension and Key Figure of the InfoCube
are associated with elements of the Data Source
(Figure 8), this process being identified by
Transformation.

Fig. 8. Create Transformation [19]

 For activating the Extract-Transform-Load
process from the Source System into the
InfoCube an InfoPackage is needed followed by
the execution of the Data Transfer Process
(DTP) [20]. The Infocube by itself can be an
InfoProvider for reporting or as part of a
MultiProvider together with other InfoProviders
can support advanced reporting.

4 Reporting for Decision Making
4.1 Reporting with BEx
SAP BW is the Business Intelligence solution
provided by SAP for reporting and data analysis.
Data is extracted and loaded into SAP BW after
being identified from different systems. It is than
transformed into multi-dimensional structures to
prepare it for analyses.
 SAP BW has three architecture layers: 1-The
data acquisition layer; 2-The data warehouse layer;
3-The reporting layer (Figure 9). The Business
Explorer (BEx - Figure 10, 11) component provides
users with extensive analysis options.

Fig. 9. SAP BW architecture [20]

 The data is collected from SAP and non-SAP
source systems and is extracted in pull mode using
InfoPackage objects. It is then temporally store in

the staging area (PSA) before the transformations
from the source format to the desired destination
format take place. Afterwards, the loading process
of adding transformed data to data targets using the
Data Transfer Process (DTP) begins. The reporting
layer finally presents the data in reports (Figure 12)
and dashboards useful for decision-making.
 Back to the study case, in the BEx Query
Designer the report will be developed (Figure 10).

Fig. 10. BEx Query Designer

Fig. 11. BEx Analyzer

Fig. 12. Displaying the data

 Based on the end-user requirements, the
following derivated reports have been generated.

Request 1. PROFIT and CHELTUIELI for COD
PRODUS = 11 and COD CLIENT 102 in detailed
and a synthetic form (Figure 13).
Request 2. Display the daily Total_PROFIT and
Total_CHELTUIELI (Figure 14).
Request 3. Display PROFIT and CHELTUIELI in a

Mihaela Muntean, Diana Târnaveanu
International Journal of Computers

http://www.iaras.org/iaras/journals/ijc

ISSN: 2367-8895 228 Volume 1, 2016

CHART diagram by illustrating the impact of each
product (Figure 15).

Fig. 13. Request1. Displaying the result

Fig. 14. Request 2. Displaying the data

Fig. 15. Request 3. Displaying the data

Request 4. Introduce VENIT in the report (Figure
16, 17).

Fig. 16. Adding a new, calculated field in the report

Fig. 17. Displaying the data

 This study case illustrate how SAP BW can
make decision making more effective, by
offering information from many different data
sources and displaying tailored reports based on
the manager’s requests.

5 Conclusion
The cost of a wrong decision making can be
high, the effect being direct or indirect, like a
chain reaction, on other elements of the
organization. The quantity of the information
that is constantly growing and market
fluctuations makes decision making difficult.
Information technologies can assist managers in
choosing from the multitude of alternatives.
 Considering that SAP is implemented in
the organization, we proposed some best
practices materialized in two study cases in
SAP ABAP and SAP BW that support the
manager in taking a time and cost-efficient
decision.

References:
[1] X1.http://www.excitingip.com/2010/advantages

-disadvantages-of-erp-enterprise-resource-
planning-systems/

[2] X2.http://www.workwisellc.com/5-benefits-
implementing-erp-software/

[3] X3.http://searchsap.techtarget.com/definition/A
BAP

[4] X4.Horst Keller, Sascha Kruger, ABAP Objects.
ABAP Programming in SAP NetWeaver, SAP
Press, Galileo Press, 2011

[5] X5.https://en.wikipedia.org/wiki/ABAP#cite_no
te-1

[6] X6.https://help.sap.com/saphelp_nw70/helpdata
/en/9f/db970e35c111d1829f0000e829fbfe/conte
nt.htm

[7] X7.http://www.saphub.com/abap-
tutorial/modularization-in-abap/

[8] X8.http://it.toolbox.com/wiki/index.php/What_a
re_Modularization_Techniques%3F

[9] X9. Peter Moxon, Beginner’s guide to SAP
ABAP. An introduction to programming SAP

Mihaela Muntean, Diana Târnaveanu
International Journal of Computers

http://www.iaras.org/iaras/journals/ijc

ISSN: 2367-8895 229 Volume 1, 2016

http://www.excitingip.com/2010/advantages-disadvantages-of-erp-enterprise-resource-planning-systems/
http://www.excitingip.com/2010/advantages-disadvantages-of-erp-enterprise-resource-planning-systems/
http://www.excitingip.com/2010/advantages-disadvantages-of-erp-enterprise-resource-planning-systems/
http://www.excitingip.com/2010/advantages-disadvantages-of-erp-enterprise-resource-planning-systems/
http://www.workwisellc.com/5-benefits-implementing-erp-software/
http://www.workwisellc.com/5-benefits-implementing-erp-software/
http://searchsap.techtarget.com/definition/ABAP
http://searchsap.techtarget.com/definition/ABAP
http://searchsap.techtarget.com/definition/ABAP
https://en.wikipedia.org/wiki/ABAP#cite_note-1
https://en.wikipedia.org/wiki/ABAP#cite_note-1
https://en.wikipedia.org/wiki/ABAP#cite_note-1
https://help.sap.com/saphelp_nw70/helpdata/en/9f/db970e35c111d1829f0000e829fbfe/content.htm
https://help.sap.com/saphelp_nw70/helpdata/en/9f/db970e35c111d1829f0000e829fbfe/content.htm
https://help.sap.com/saphelp_nw70/helpdata/en/9f/db970e35c111d1829f0000e829fbfe/content.htm
https://help.sap.com/saphelp_nw70/helpdata/en/9f/db970e35c111d1829f0000e829fbfe/content.htm
http://www.saphub.com/abap-tutorial/modularization-in-abap/
http://www.saphub.com/abap-tutorial/modularization-in-abap/
http://it.toolbox.com/wiki/index.php/What_are_Modularization_Techniques%3F
http://it.toolbox.com/wiki/index.php/What_are_Modularization_Techniques%3F
http://it.toolbox.com/wiki/index.php/What_are_Modularization_Techniques%3F

applications using ABAP, Sapprouk Limited,
2012

[10] X10.https://www.sapnuts.com/courses/core-
abap/modularization-in-abap/create-function-
modules.html

[11] X11. http://www.sapdev.co.uk/dialog/basic-
dialog.htm

[12] X12.https://wiki.scn.sap.com/wiki/display/AB
AP/ALV

[13] X13.https://help.sap.com/saphelp_nw73ehp1/h
elpdata/en/cf/21ea0b446011d189700000e8322d
00/frameset.htm

[14] X14.Ahmed AlWadi, How to create Table in
SAP, Amazon Digital Services, 2013

[15] X15.http://www.erpgreat.com/abap/the-
different-types-of-sap-tables.htm

[16] X16.http://www.recercat.cat/bitstream/handle/2
072/5419/PFCLopezRuizAnnex3.pdf?sequence
=4

[17] X17.https://wiki.scn.sap.com/wiki/display/AB

AP/ALV+easy+tutorial [x]
[18] X18.http://www.se80.co.uk/sapfms/r/reus/reus

e_alv_grid_display.htm [xx]
[19] X19. Muntean, M., Advanced Business

Reporting, Proceedings of the IE 2016
International Conference, 2016, Inforec
Publishing House, pp. 126-132

[20] X20. ***, SAP BW Training Tutorial, http://
searchsap.techtarget.com/tutorial/SAP-BW
training-tutorial

Mihaela Muntean, Diana Târnaveanu
International Journal of Computers

http://www.iaras.org/iaras/journals/ijc

ISSN: 2367-8895 230 Volume 1, 2016

https://www.sapnuts.com/courses/core-abap/modularization-in-abap/create-function-modules.html
https://www.sapnuts.com/courses/core-abap/modularization-in-abap/create-function-modules.html
https://www.sapnuts.com/courses/core-abap/modularization-in-abap/create-function-modules.html
http://www.sapdev.co.uk/dialog/basic-dialog.htm
http://www.sapdev.co.uk/dialog/basic-dialog.htm
https://wiki.scn.sap.com/wiki/display/ABAP/ALV
https://wiki.scn.sap.com/wiki/display/ABAP/ALV
https://wiki.scn.sap.com/wiki/display/ABAP/ALV
https://help.sap.com/saphelp_nw73ehp1/helpdata/en/cf/21ea0b446011d189700000e8322d00/frameset.htm
https://help.sap.com/saphelp_nw73ehp1/helpdata/en/cf/21ea0b446011d189700000e8322d00/frameset.htm
https://help.sap.com/saphelp_nw73ehp1/helpdata/en/cf/21ea0b446011d189700000e8322d00/frameset.htm
https://help.sap.com/saphelp_nw73ehp1/helpdata/en/cf/21ea0b446011d189700000e8322d00/frameset.htm
http://www.recercat.cat/bitstream/handle/2072/5419/PFCLopezRuizAnnex3.pdf?sequence=4
http://www.recercat.cat/bitstream/handle/2072/5419/PFCLopezRuizAnnex3.pdf?sequence=4
http://www.recercat.cat/bitstream/handle/2072/5419/PFCLopezRuizAnnex3.pdf?sequence=4
http://www.recercat.cat/bitstream/handle/2072/5419/PFCLopezRuizAnnex3.pdf?sequence=4
https://wiki.scn.sap.com/wiki/display/ABAP/ALV+easy+tutorial
https://wiki.scn.sap.com/wiki/display/ABAP/ALV+easy+tutorial
https://wiki.scn.sap.com/wiki/display/ABAP/ALV+easy+tutorial
http://www.se80.co.uk/sapfms/r/reus/reuse_alv_grid_display.htm
http://www.se80.co.uk/sapfms/r/reus/reuse_alv_grid_display.htm
http://www.se80.co.uk/sapfms/r/reus/reuse_alv_grid_display.htm
http://searchsap.techtarget.com/tutorial/SAP-BWtraining-tutorial
http://searchsap.techtarget.com/tutorial/SAP-BWtraining-tutorial
http://searchsap.techtarget.com/tutorial/SAP-BWtraining-tutorial

