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Abstract: - Natural language is the most convenient means that people use to communicate with each other 
conventionally. This is also the case for casual and intuitive interaction between ordinary non-expert people and 
artifacts such as robots. Therefore, it is doubtless that the technology of Natural Language Understanding 
(NLU) should play a key role at such scenes of humans and machines. In this paper, focusing on spatiotemporal 
(or 4D) language, NLU by human based on mental image is attempted to simulate so that robots can understand 
texts in the same way as people. The proposed methodology is quite distinguished from conventional ones and 
shows a good potential for providing robots with an NLU mechanism guided by humanlike awareness control 
based on mental image. 
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1 Introduction 
In not so far a future, robots will be indispensable 
partners of humans in various fields. They will be 
employed not only to assist people in daily life 
activities but also to save victims’ lives at 
unexpected disasters, as well known as rescue 
robots. There are several ways to communicate with 
robots, for example: direct wired control, radio 
frequency, Wi-Fi, and so on. Anyway, without 
brains to comprehend natural language, they will not 
be able to respond to human command correctly and 
effectively. Thus, Natural Language Understanding 
(NLU) is a significant field of computer based 
systems which can understand ordinary human 
language. 
In 1950, A. M. Turing [1] upset the world by his 
philosophical question ‘Can machines think?’ and 
presented his idea, so called ‘Turing test’, that 
whether or not a machine is thinking could be 
judged from its human-likeness in natural language 
conversations with humans. This test concerns 
seriously NLU by human, which has been the 
central theme in such research fields as Artificial 
Intelligence (AI) and Cognitive Science since then. 
Although the Turing test was very influential to AI 
and Human-Computer Interaction (HCI), these two 
communities were opposite to each other in the view 
of the way how human and computer should 
interact. That is, AI is oriented by knowledge of 
human intelligence and HCI, by system design for 

its implementation.  T. Winograd [2] suggested that 
both of AI and HCI should be needed for human-
like intelligence in ‘T’ shape, namely, T-Shaped 
model whose depth and width represent AI and 
HCL discipline, respectively. The famous computer 
program ELIZA [3] is positioned in a very shallow 
level of this model, that is, doesn’t really understand 
NL but is designed well enough to pass the Turing 
test.  Then, in order to improve such a defect of this 
test, several ideas have been proposed, for example, 
‘Recognizing Textual Entailment (RTE)’ by I. 
Dagan et al [4] and its variant, ‘Winograd Schema 
Challenge’ by H.J. Levesque [5]. By the way, it is a 
hot topic that the Q-A machine ‘Watson’ [6] 
developed by IBM won the human champions on a 
famous American quiz show, Jeopardy, as a real-
time challenger but the machine is based on Big 
Data Analysis employing conventional NLP 
techniques and does not really understand NL [7], 
either. However, it is remarkable that the developing 
team applied UIMA [6, 8, 9], a framework to 
analyze unstructured data (for example text, voice, 
etc.) to be structured data (that is, for relational 
database), resulting in quite great reduction of the 
execution time, about two hours the system  spent to 
answer a question at the beginning. 
As easily imagined from the mention above, it is 
quite difficult to make the machine understand NL 
in a human-like way. For example, how can people 
perceive and distinguish an ambiguous expression 
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such as S1 so easily? For another example, why can 
we affirm the question S3 about S2 so immediately?  
 
(S1) I saw the cloud in my airplane. 
(S2) Tom was with the book in the bus running 

from Town to University. 
(S3) Did Tom carry the book from Town to 

University? 
 
An ordinary English speaker can recognize the 
objects as mental images evoked by S1 - S3, so their 
spatial relations could be reflected clearly enough to 
be drawn in pictures. At the present level of NLU 
technologies, it is extremely difficult to make a 
robot understand these sentences in the same way as 
humans do by employing mental images. 
M.Yokota [10, 11] has proposed a mental image 
model and a formal language named ‘Language for 
Mental-Image Language (Lmd)’ in Mental Image 
Directed Semantic Theory (MIDST). Based on 
MIDST, he and his coworkers [12, 13] have been 
attempting to simulate such NLU by humans as 
mental image processing, so called, ‘Mental–image 
Based Understanding (MBU)’. 
This paper describes MBU based on MIDST to 
simulate human mental imagery, focusing on 4D 
expressions to obtain the results in an acceptable 
way (like Q&A). To explore more in the detail, its 
remainder is organized as follows. Section 2 
considers mental image processing in human, and 
section 3 applies Lmd to meaning representation of 
NL expressions. Section 4 shows the simulation of 
NLU by humans and the results, and finally section 
5 discusses and concludes the paper. 
 
 
2 Mental Image Processing 
MIDST proposes a mind model imitating human’s 
nervous system where mental images are 
represented by the formal language Lmd. This is one 
kind of knowledge representation language 
employed for many-sorted predicate logic, 
consisting of five kinds of term: matter (x and y), 
value (p and q), attribute (a), pattern (g), and 
standard (k) to be placed in such a formula as (1) 
called ‘Atomic Locus Formula’, often abbreviated 
as (1’). Then, a logical combination of well-formed 
atomic locus formulas is simply called ‘Locus 
Formula’. 
 
         L(x,y,p,q,a,g,k)                    (1) 

L(x,y,p,q,α), where α = (a,g,k)                           (1’) 

The atomic locus formula is the unit to articulate 
the image of an event in space and time, roughly 
reading that x causes y to change attribute a (e.g., 
color) monotonically from value p (e.g., red) to q 
(e.g., blue) during some time interval, where p and q 
are relative to the standard k, and g is the parameter 
to indicate whether the change event is in time or in 
space, called, ‘Temporal Change Event’ and ‘Spatial 
Change Event’, respectively. 
The matter terms, x and y can refer to ‘Event Causer 
(EC)’ and ‘Attribute Carrier (AC)’, respectively. An 
atomic locus formula holds for a time-interval, 
namely, [ti, tf], so p and q are used to indicate the 
values at ti and tf, respectively. The attribute a and 
standard k can be defined as in [10]. As for the 
parameter g, consider the following examples, S4 
and S5. 

(S4) The bus runs from Town to University. 
(S5) The road runs from Town to University. 

The sentences S4 and S5 look similarly, but they are 
quite different because of the concepts of temporal 
change event (g=Gt) and spatial change event 
(g=Gs). These two change events keep on the 
relationship between AC and the Focus of the 
Attention of the Observer (FAO) (through eyes or 
so). S4 refers to a temporal change event such that 
FAO is kept on the running bus (AC). On the other 
hand, S5 describes a spatial change event such that 
FAO runs along the road (AC) extending spatially. 
Therefore, these events must be distinctively 
defined as (2) and (3), respectively, where A12 
stands for the attribute constant, ‘Physical 
Location’. Therefore, for example, (2) can read that 
x causes y to stay at p (for p=q) or move from p to q 
(for p≠q). 

(Ǝx,k)L(x,x,Town,Univ.,A12,Gt,k)˄bus(x)  (2) 

(Ǝx,k)L(x,x,Town,Univ.,A12,Gs,k)˄road(x)  (3) 

In MIDST, Tempo-Logical Connectives (TLCs) are 
used to represent both the logical and the temporal 
relationships between locus formulas [14], of which 
the most frequently used are ‘Simultaneous AND’ 
and ‘Consecutive AND’. They are called ‘SAND’ 
and ‘CAND’ in short, symbolized by Π and ●, 
respectively. For the sake of simplicity, quantifiers 
(i.e., ∀ and ∃) are to be omitted and, moreover, (2) 
and (3) will be reduced to the forms (2’) and (3’), 
respectively. 

L(Bus,Bus,Town,Univ.,Λt)              (2’) 
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L(Road,Road,Town,Univ.,Λs)              (3’) 

Anyway, to let a machine know how people should 
be aware of natural language, MBU is provided with 
a methodology to simulate human mental imagery, 
but how can we translate that imagery into Lmd? 
Now consider S4 again. If we can take the imaged 
scene out of our brain, it must be like a motion 
picture of the bus running from Town to University 
as shown in Fig.1. However, it remains still difficult 
to translate this image into logical form as is 
because this picture has too much information. So, a 
certain abstract alternative such as Fig.2 is needed. 
In Fig.2, the circles represent the objects in the 
sentence, and the broken arrow refers to its 
movement. Here, note that neither the color nor the 
shape of each symbol is significant at all. What 
happens if we apply the principle of highly abstract 
picture to S2? Yes, the answer must be as in Fig.3, 
and it is not doubtful whether MBU based on 
MIDST can return the correct answer to the question 
S3 depicted in Fig.4. 

 
Fig.1. Mental imagery evoked by S4. 

 

 
Fig.2. Highly abstract picture of S4. 

 

 
Fig.3. Highly abstract picture of S2 (= S6). 

 

 
Fig.4. Highly abstract picture of S3. 

 
 
3 Application of Lmd 
For this work on MBU,  Lmd was applied to three 
types of stimulus sentences as follows, where SS, 
PrP, PaP and C denote ‘simple sentence’, ‘present 
particle construction’, ‘past particle construction’ 
and ‘conjunction’, respectively. 
 
[Type I] SS + PrP 

For example, 

(S6) Tom was with the book in the bus running  
        from Town to University. (=S2) 
 
[Type II] SS + PaP 

For example, 
(S7) Tom was with the book in the car driven 
          from Town to University by Mary. 
 
[Type III] SS + C + SS 

For example, 
(S8) Tom kept the book in a box before he drove 
        the car from Town to University with the box. 
 

As easily convinced, S6 - S8 are syntactically 
ambiguous that may be rather easy for humans to 
understand, but it is not the case for robots. 

For example, consider S6 (or S2). How can the 
machine know who/what was running from Town to 
University? —Tom, or book, or bus? Here, to see its 
syntactic possibilities, Dependency Grammar (DG) 
is employed to determine the relations between head 
words and their dependents. In principle, S6 can 
have twelve possible dependency trees, that is, 
syntactically ambiguous in twelve ways as shown in 
Fig.5. This can be formulated by a set of local 
dependencies such as (4), where each pair of 
parentheses is for the alternatives causing the 
syntactic ambiguity. 

{D11, D12, (D13|D13a), (D21|D21a|D21b),  
D22, (D23|D23a)}                (4) 
 

 
Fig.5. Dependencies possible for S6. 

 
According to our psychological experiment, 

almost all the human subjects reach very easily the 
most plausible image (i.e., Fig.3) that corresponds 
directly to the dependency tree defined by (5) and 
can be formulated as (6) in Lmd. 

 
       {D11, D12, D13, D21, D22, D23}  (5)  
  

L(Tom,Book,Tom,Tom,Λt)ΠL(z,Tom,Bus,Bus,Λt) 
ΠL(Bus,Bus,Town,Univ.,Λt)                (6) 
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Quite in the same way, the most plausible 
interpretations of S7 and S8 are given by (7) and 
(8), respectively. 

 
 
L(Tom,Book,Tom,Tom,Λt)Π 
L(z,Tom,Car,Car,Λt)ΠL(Mary,Mary,Car,Car,Λt) 
ΠL(Mary,Car,Town,Univ.,Λt)  (7) 
 
L(Tom,Book,Box,Box,Λt)● 
(L(Tom,Tom,Car,Car,Λt)Π 
L(Tom,Car,Town,Univ.,Λt)Π 
L(Tom,Box,Tom,Tom,Λt))    (8) 

 
 

4 Simulation of MBU 
Every semantic interpretation (e.g., (6)) of an NL 

expression (i.e., S6) is generated by unifying the 
word meanings according to its corresponding 
dependency tree (i.e., (5)). In this process, 
functional words such as verbs and prepositions are 
employed for structuring the locus formulas. For 
example, the meanings of ‘with’, ‘in’, ‘run’, etc. are 
given by (a) - (h) (where p≠q), whose concepts (e.g., 
with(x,y)) are defined as (9) - (16) in Lmd based on 
the authors’ own mental experiences. 

 
(a) x (be) with y: 

with(x,y)  L(x,y,x,x,Λt)            (9) 
 

(b) x (be) in y: 
in(x,y)  L(z,x,y,y,Λt)          (10) 

 
(c) x run from p to q: 

run(x,p,q)  L(x,x,p,q,Λt)            (11) 
 

(d) x carry y from p to q: 
carry1(x,y,p,q)L(z,y,x,x,Λt)ΠL(x,x,p,q,Λt)  (12) 

 
(e) x carry y from p to q: 

carry2(x,y,p,q)L(z,x,p,q,Λt)ΠL(x,y,p,q,Λt)  (13) 
 

(f) x drive y from p to q: 
drive(x,y,p,q)L(x,x,y,y,Λt)ΠL(x,y,p,q,Λt)    (14) 

 
(g) x move y from p to q: 

move(x,y,p,q)L(x,y,p,q,Λt)             (15) 
 

(h) x keep y in z: 
keep(x,y)  L(x,y,z,z,Λt)                                (16) 

 
On the other hand, entity names such as ‘Tom’, 
‘book’ and ‘bus’ are non-functional but utilized for 

disambiguation in syntactic dependency. Our 
psychological experiment revealed that the subjects 
remembered their own experiences in association 
with the entity names and that they selected the 
dependency corresponding to their most familiar 
experience among all the possibilities. For example, 
the names in S6 made the people remember the 
images in the way as formulated by (17) – (19), 
where A ≈>B reads that A evokes B, and + and − 
denote whether the image is positive (i.e., probable) 
or negative (i.e., improbable), respectively. 
 
Tom ≈> { +L(x,Tom,Human,Human,Θt), 
    +L(Tom,Tom,p,q,Λt),…}                                 (17) 
 
Book ≈> {−L(Book,Book,p,q,Λt), 
    +L(Human,Book,Human,Human,Λt),…}        (18) 
 
Bus ≈> {+L(Bus,Bus,p,q,Λt),+L(Bus,x,p,q,Λt), 

+L(x,Human,Bus,Bus,Λt),…}                          (19) 
 

In (17), Θt represents ‘Quality’ or ‘Category’ with 
g=Gt, and then +L(x,Tom,Human,Human,Θt) is 
interpretable as ‘it is positive that Tom is a human’. 
In the same way, +L(Tom,Tom,p,q,Λt) as ‘it is 
positive that Tom moves by himself’, and 
−L(Book,Book,p,q,Λt) as ‘it is negative that a book 
moves by itself’. It is sure that the subjects reached 
the most plausible interpretation (6) almost 
unconsciously by using these evoked images for 
disambiguation. For example, the image for D13 is 
more probable than that for D13a because of (17) 
and (19); D21b is improbable because of (18); and 
the combination of D13 and D21a results in 
somewhat strange image that Tom was running in 
the bus, and therefore D21a is seldom selected. 
Furthermore, as well as disambiguation, question-
answering in MBU was simulated, which is 
performed by ‘Pattern Matching (PM)’ between the 
locus formulas of an assertion and a question, for 
example, (6) of S6 and (20) of S9. Actually, ‘carry’ 
is defined in the two ways as (12) and (13) but, from 
now on, only either of them is considered for the 
sake of simplicity. For example, (20) adopts (12). 

(S9)   Did Tom carry the book from Town to 
University? 

 
      L(z,Book,Tom,Tom,Λt)Π 

           L(Tom,Tom,Town,Univ.,Λt)                  (20) 
 

If (6) includes (20) as is, the answer is positive, but 
this is not the case. That is, direct trial of PM to the 
locus formulas  (6) – (8) does not always lead to the 
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desirable outcomes. Therefore, a number of 
postulates and inference rules must be introduced. 
The postulates such as P1-P3 are formulas 
representing pieces of people’s commonsense 
knowledge about the world, where ‘AB’ reads ‘A 
implies B’ or ‘if A then B’. 

(P1) Postulate of Matters as Values:  
  L(z,x,p,q,Λt)ΠL(w,y,x,x,Λt) 

 L(z,x,p,q,Λt)ΠL(w,y,p,q,Λt) 
 

(P2) Postulate of Shortcut in Causal Chain:  
 L(z,x,p,q,Λt)ΠL(w,y,x,x,Λt) 

 L(z,x,p,q,Λt)ΠL(z,y,p,q,Λt) 
 

(P3) Postulate of conservation of values in time:  
 (L(z,x,p,p,Λt)ΠX1)•X2 

 (L(z,x,p,p,Λt)Π X1)•(L(z,x,p,p,Λt)ΠX2) 
 

P1 reads that if ‘z causes x to move from p to q 
while w causes y to stay with x’ then ‘w causes y to 
move from p to q’. Similarly, P2, so that if ‘z causes 
x to move from p to q while w causes y to stay with 
x’ then ‘z causes y to move from p to q as well as 
x’. Distinguished from these two, P3 is conditional. 
That is, it is valid only when X2 does not contradict 
with ‘L(z,x,p,p,Λt)’. 

On the other hand, inference rules such as CS, SS and 
SC are introduced as follows. 

 
(CS) Commutativity Law of Π: 

XΠY  YΠX 
(SS) Simplification Law of Π: 

XΠY  X 
(SC) Simplification Law of •: 

X•Y X,    X•Y Y 
 

In order to answer the question S9 to S6, PM is used 
to compare (6) and (20) as follows. 
 
Apply CS to (6): 
(6)  L(Tom,Book,Tom,Tom,Λt)Π 

L(Bus,Bus,Town,Univ.,Λt)Π 
          L(z,Tom,Bus,Bus,Λt)          (D1) 

 
Apply P1 to D1 (at the underlined part): 
D1  L(Tom,Book,Tom,Tom,Λt)Π 

L(Bus,Bus,Town,Univ.,Λt)Π 
       L(z,Tom,Town,Univ.,Λt)            (D2) 

 
Apply SS to D2: 
D2  L(Tom,Book,Tom,Tom,Λt)Π 

        L(z,Tom,Town,Univ.,Λt)    (D3) 
 

Apply P2 to D3: 
D3  L(z,Book,Tom,Tom,Λt)Π 

        L(Tom,Tom,Town,Univ.,Λt)                 (D4) 
The PM process finds that (20) = D4, and then it 

is proved that Tom carried the book from Town to 
University. 

For another example, consider the stimulus 
sentence S7 and the question S10.  
(S10) Did Mary carry the car from Town to 
University? 
Adopting (13) for ‘carry’, the interpretation of S10 
can be given by (21). 
 

L(z,Mary,Town,Univ.,Λt)Π 
L(Mary,Car,Town,Univ.,Λt)                        (21) 

 
In order to answer the question S10 to S7, PM 
works as follows, where ‘AB’ reads ‘B is 
deduced from A’. 
 
Apply CS to (7): 
(7)  L(Tom,Book,Tom,Tom,Λt)Π 
             L(z,Tom,Car,Car,Λt)Π 
             L(Mary,Car,Town,Univ.,Λt)Π 
            L(Mary,Mary,Car,Car,Λt)                      (D5) 
 
Apply P1 to D5: 
D5 L(Tom,Book,Tom,Tom,Λt)Π 
              L(z,Tom,Car,Car,Λt)Π 
              L(Mary,Car,Town,Univ.,Λt)Π 
              L(Mary,Mary,Town,Univ.,Λt)              (D6) 
 
Apply CS to D6: 
D6 L(Tom,Book,Tom,Tom,Λt)Π 
              L(z,Tom,Car,Car,Λt)Π 
              L(Mary,Mary,Town,Univ.,Λt)Π 
              L(Mary,Car,Town,Univ.,Λt)            (D7) 
 
Apply P2 to D7: 
D7  L(Tom,Book,Tom,Tom,Λt)Π 
              L(z,Tom,Car,Car,Λt)Π 
              L(z,Mary,Town,Univ.,Λt)Π 
              L(Mary,Car,Town,Univ.,Λt)                  (D8) 
 
Apply SS to D8: 
D8 L(z,Mary,Town,Univ.,Λt)Π 
              L(Mary,Car,Town,Univ.,Λt)                  (D9) 
 
Hence, the PM proves that (21) = D9 and it is 
concluded that Mary carried the bus from Town to 
University. 
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For the last example, consider the Type III sentence 
S8, and the question S11 whose interpretation is 
given by (22). 
 
(S11)   Did Tom move the book from Town to 

University? 
 
L(Tom,Book,Town,Univ.,Λt)               (22) 
 
Apply P3 to (8): 
(8)  L(Tom,Book,Box,Box,Λt)● 

(L(Tom,Book,Box,Box,Λt) Π 
L(Tom,Tom,Car,Car,Λt)Π        
L(Tom,Box,Tom,Tom,Λt)Π 
L(Tom,Car,Town,Univ.,Λt))                (D10) 

 
Apply CS to D10 several times: 
D10L(Tom,Book,Box,Box,Λt)● 

(L(Tom,Car,Town,Univ.,Λt)Π 
           L(Tom,Tom,Car,Car,Λt)Π 
           L(Tom,Box,Tom,Tom,Λt)Π 
           L(Tom,Book,Box,Box,Λt))                    (D11) 
 
Apply P2 to D11: 
D11L(Tom,Book,Box,Box,Λt)● 
          (L(Tom,Car,Town,Univ.,Λt)Π 
           L(Tom,Tom,Town,Univ.,Λt)Π 
           L(Tom,Box,Tom,Tom,Λt)Π 
           L(Tom,Book,Box,Box,Λt))            (D12) 
 
Apply P2 to D12 twice: 
D12L(Tom,Book,Box,Box,Λt)● 
         (L(Tom,Car,Town,Univ.,Λt)Π 
          L(Tom,Tom,Town,Univ.,Λt)Π 
          L(Tom,Box,Town,Univ.,Λt)Π 
          L(Tom,Book,Town,Univ.,Λt))                (D13) 
 
Apply SS and SC to D13: 
D13L(Tom,Book,Town,Univ.,Λt)          (D14) 
 
In this way, the system finds that (22) is deduced 
from (8). 

We have implemented our theory of MBU on a 
PC in Python, high-level programming language, 
while it is still experimental and evolving. Fig.6 and 
7 in APPENDIX show some of the results of 
question-answering by the MBU system. This can 
understand User’s assertions and answer the 
questions where the locus formulas were given in 
Polish notation, for example, as •∏ABC for 
(A∏B)•C. In the actual implementation, the 
theorem proving process was simplified as the PM 
process programmed to apply all the possible 

postulates to the locus formula of the assertion in 
advance and detect any match with the question in 
the assertion (extended by the postulates) by using 
the inference rules on the way.  During PM, the 
system is to control its awareness in a top-down way 
driven by the pair of AC and attribute contained in the 
question, for example, ‘Book’ and ‘Physical Location 
(Λt)’, which is very efficient compared to conventional 
PM methods without employing any kind of semantic 
information. 

 
 

5 Discussion and Conclusion 
This paper described an original NLU methodology 
called MBU (Mental-image Based Understanding), 
intending so that robots can understand texts in the 
same way as people. This is quite distinguished 
from conventional ones and shows a potential good 
enough to be a very powerful means for realizing 
awareness in computer and its understanding. To 
our best knowledge, there is no research similar to 
ours, namely, NLU based on the model of mental 
image processing. Therefore, we cannot present any 
quantitative comparisons with others while we have 
already commented on our qualitative advantage to 
conventional methodologies in the previous paper 
[13]. At conclusion, MIDST could provide the 
MBU system with an effective methodology to 
return the correct and satisfied answers in question-
answering. The system was designed to 
disambiguate an input sentence for its most 
plausible semantic interpretation by employing the 
mental images evoked by the entity names. 
Disambiguation is the most serious problem for any 
NLP system. Most of current approaches to it are 
based on the statistics about certain corpora of texts 
[15, 16] but they are what lead to the most plausible 
syntactic dependency but not to the most plausible 
semantic interpretation that is most essential to work 
robots appropriately by words. Our future work will 
include development of finer measurement of 
ambiguity for better disambiguation. 
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Appendix:  
 
 

 
Fig.6. Q-A for Type I stimulus sentence. 

 
 

 
Fig.7. Q-A for Type III stimulus sentence. 
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