
Semi-Lossless Text Compression: a Case Study

BRUNO CARPENTIERI
Dipartimento di Informatica

Università di Salerno
Italy

bc@dia.unisa.it

Abstract: - Text compression is generally considered only as lossless compression. Kaufman and Klein in [1]
introduce the idea of semi-lossless text compression: the decompressed text will not be identical to the original
text, but, just as for a decompressed JPEG image of good quality that is not identical to the original but can be
used in the place of the original in many applications, our brain will adjust the data to make it usable and
understandable. In this paper we experiment with semi-lossless compression on a case study of small text files
in Italian language.

Key-Words: - Text Compression, Lossless Compression, Semi-Lossless Compression.

1 Introduction
The following text circulated on the internet in
September 2003:
 “Aoccdrnig to rscheearch at Cmabrigde Uinervtisy,
it deosn't mttaer what oredr the ltteers of a wrod are
in; the olny iprmoetnt tihng is taht the frist and lsat
ltteer be at the rghit pclae. The rset can be a total
mses and you can sitll raed it wouthit a porbelm.
Tihs is bcuseae the huamn mnid deos not raed ervey
lteter by istlef, but the wrod as a wlohe.”

The interesting thing that comes out from this
example and from similar texts that are easily
available on the internet is that we are capable to
understand written texts even if there are many
errors or typos. In this paper we are interested in the
compression of written text files.

Data compression is the coding of data to
minimize its representation. Compression is
motivated by the economic and logistic needs to
save space in storage media and to save bandwidth
in communication.

On the downside, compressed data must be
decompressed to be used, and this extra processing
may be detrimental to some applications.

Data compression is generally called lossless if
the reconstructed data is identical to the original;
otherwise, it is called lossy compression (also
irreversible or noisy).

Text compression is generally considered only as
lossless compression.

Kaufman and Klein in [1] introduce the idea of
semi-lossless text compression: the decompressed
text will not be identical to the original text, but, just
as for a decompressed JPEG image of good quality

that is not identical to the original but can be used in
the place of the original in many applications, our
brain will adjust the data to make it usable and
understandable.

 Kaufman and Klein in [1] propose to use this
semi losslessly compressed text in applications in
which the correct spelling is not important, such as
short email messages or SMS data exchanged
through cellular phones or via internet applications
like WhatsApp or others.

In this paper we experiment with semi-lossless
compression on a case study of small text files in
Italian language.

This paper is organized as follows: the next
section outlines the case study formulation. Section
3 presents our experimental results and Section 4
our conclusions.

2 A Case Study
To explore the potentialities of semi-lossless text
compression we have experimented a number of
well known text compression algorithms (Huffman
coding [2], Gzip [3], Bzip [4]) on a test set of five
small text files in the Italian language. The files are
of different sizes but they are all small files, because
of the hypothesis in [1] that semi-lossless
compression could be useful for small text messages
or small files.

Each word in the text set has been rearranged
accordingly with the example shown in the previous
section: the first and the last letter in the word are in
the right place and the inner parts of the word are
rearranged.

B. Carpentieri
International Journal of Computers

http://www.iaras.org/iaras/journals/ijc

ISSN: 2367-8895 130 Volume 1, 2016

2.1 Rearranging the letters in a word
There are several ways to adjust (or to mess up the
words by leaving n place the first and last character
of each word.

The first solution could be to write the inner
letters in a word in random order. Another solution
could be to organize these letters in alphabetical
order. A third possibility is to arrange the characters
by frequency: the distribution of character in the
Italian language is well known, and it is possible to
sort the letters in their of frequency order from the
most frequent to the least frequent (E, A, I, O, N and
so on ...).

A last approach may be to try to group the
characters based on the probability of a particular
letter to appear after another. In our experiments we
have tried all four approaches.

3 Experimental Results
We have experimented the four ways of rearranging
the letters in a word on the set data composed of
five small text files in the Italian language.

From the point of view of readability, all the
resulting files are enough readable, with a clear slow
down in the reader’s speed in understanding the
words.

We have compressed the resulting files by using
Huffman coding, Gzip, and Bzip.

Rearrangement Input size Compressed size
Original 4242 bytes 2562 bytes
Random 4242 bytes 2562 bytes
Alphabetic 4242 bytes 2562 bytes
Probabilistic 4242 bytes 2559 bytes
Frequency 4242 bytes 2539 bytes

Table 1: Huffman coding file F1

Figure 1: Huffman coding file F1

Tables 1, 2, and 3 show the results obtained by
compressing the first file F1.

Table 1 describes on each line the results
obtained compressing via Huffman coding the file
F1 where the inner letters of each word, have been
rearranged, respectively, with the Random,
Alphabetic, Probabilistic or Frequency
rearrangement methods described in the previous
section.

The first line (Original) refers to the original file
in which no mess up with the inner letters has been
done.

Figures 1, 2, and 3 are instead a graphical
representation of the compression results obtained
by Huffman coding, Gzip and Bzip on the file F1.

The compression, for each compressed file, is
shown as a percentage of the dimensions of the
original file .

Table 4, Table 5 and Table 6 show the results
obtained on file F2.

Table 7, Table 8 and Table 9 show the results
obtained on file F3.

The figures from Figure 4 to Figure 9 are the
graphical representation of the compression results
obtained by Huffman coding, Gzip and Bzip on the
test files F2 and F3.

Rearrangement Input size Compressed size
Original 4242 bytes 1785 bytes
Random 4242 bytes 2381 bytes
Alphabetic 4242 bytes 1839 bytes
Probabilistic 4242 bytes 1844 bytes
Frequency 4242 bytes 1863 bytes

Table 2: Gzip coding file F1

Figure 2: Gzip coding file F1

B. Carpentieri
International Journal of Computers

http://www.iaras.org/iaras/journals/ijc

ISSN: 2367-8895 131 Volume 1, 2016

Rearrangement Input size Compressed size
Original 4242 bytes 1716 bytes
Random 4242 bytes 2308 bytes
Alphabetic 4242 bytes 1723 bytes
Probabilistic 4242 bytes 1774 bytes
Frequency 4242 bytes 1814 bytes

Table 3: Bzip coding file F1

Figure 3: Bzip coding file F1

Rearrangement Input size Compressed size
Original 46888 bytes 28228 bytes
Random 46888 bytes 28228 bytes
Alphabetic 46888 bytes 28228 bytes
Probabilistic 46888 bytes 28098 bytes
Frequency 46888 bytes 27672 bytes

Table 4: Huffman coding file F2

Figure 4: Huffman coding file F2

Rearrangement Input size Compressed size
Original 46888 bytes 4885 bytes
Random 46888 bytes 22037 bytes
Alphabetic 46888 bytes 5042 bytes
Probabilistic 46888 bytes 5050 bytes
Frequency 46888 bytes 5099 bytes

Table 5: Gzip coding file F2

Figure 5: Gzip coding file F2

Rearrangement Input size Compressed size
Original 46888 bytes 5994 bytes
Random 46888 bytes 20082 bytes
Alphabetic 46888 bytes 6086 bytes
Probabilistic 46888 bytes 6242 bytes
Frequency 46888 bytes 6218 bytes

Table 6: Bzip coding file F2

Figure 6: Bzip coding file F2

B. Carpentieri
International Journal of Computers

http://www.iaras.org/iaras/journals/ijc

ISSN: 2367-8895 132 Volume 1, 2016

Rearrangement Input size Compressed size
Original 1037 bytes 689 bytes
Random 1037 bytes 689 bytes
Alphabetic 1037 bytes 689 bytes
Probabilistic 1037 bytes 689 bytes
Frequency 1037 bytes 678 bytes

Table 7: Huffman coding file F4

Figure 7: Huffman coding file F3

Rearrangement Input size Compressed size
Original 1037 bytes 526 bytes
Random 1037 bytes 637 bytes
Alphabetic 1037 bytes 536 bytes
Probabilistic 1037 bytes 540 bytes
Frequency 1037 bytes 541 bytes

Table 8: Gzip coding file F3

Table 8: Gzip coding file F3

Rearrangement Input size Compressed size
Original 1037 bytes 555 bytes
Random 1037 bytes 659 bytes
Alphabetic 1037 bytes 558 bytes
Probabilistic 1037 bytes 563 bytes
Frequency 1037 bytes 581 bytes

Table 9: Bzip coding file F3

Figure 9: Bzip coding file F3

Similar results are available also for file F4 (that
is the larger file) and for file F5. Those results are
omitted here for brevity but they are consistent with
the ones shown.

Table 7 summarizes the combined results for all
the five files.

Rearrangement Huffman Gzip Bzip
Original 235364 18854 21751
Random 235364 31434 40997
Alphabetic 235364 19401 22055
Probabilistic 234285 19438 22542
Frequency 230750 19607 22493

Table 10: Compression results on the test data set
(in bytes)

As it is shown in tables 1, 4, 7 and 10, the

Probabilistic and the Frequency rearrangements
slightly improve the performances of Huffman
Coding.

On the other side, for Huffman coding the
performances obtained by Random and Alphabetic
are identical to the performance of Original.

This is due to the inner nature of Huffman
coding that has a statistical core that is sensible to a
reordering that is based on frequency and that is not
sensible to randomness.

B. Carpentieri
International Journal of Computers

http://www.iaras.org/iaras/journals/ijc

ISSN: 2367-8895 133 Volume 1, 2016

Tables 2, 5, 8, and 7 show that Gzip does not
take advantage of the rearrangements. The same is
for Bzip.

This is probably because both compression
algorithms are not based on statistical coding and
therefore the rearrangements we have applied are
not an improvement with respect to the original
situation.

This does not necessarily mean that semi-lossless
compression does not work for those algorithms, but
only that the specific rearrangements we have tried
are not suitable to improve those algorithms.

It is interesting to note that for both Gzip and
Bzip the Random rearrangement gives the worst
performance, because it breaks the correlation
between parts of the word and reduce the effectivity
of the two algorithms.

From the data compression point of view, the
most effective algorithm in this case study is Gzip:
because of the small length of the input files Bzip
(that is generally more performing than Gzip), does
not achieve the compression that often gets on larger
files.

4 Conclusion
In semi-lossless text compression the decompressed
text will not be identical to the original text, but our
brain will adjust the text data to make it usable and
understandable.

In this paper we have experimented with semi-
lossless compression on a case study of five small
text files in Italian language.

We have reported the experimental results for
Huffman coding, Gzip and Bzip on the files where
the inner letters of each word have been rearranged,
respectively, with the Random, Alphabetic,
Probabilistic or Frequency rearrangement methods.

All the resulting files were enough readable: the
text was still fully understandable, with a clear slow
down in the reader’s speed in understanding the
words.

The results we have obtained show a slight
compression improvement when using Huffman
Coding and Probabilistic or Frequency
rearrangements, but no improvement (actually a
worsening) when using Gzip or Bzip.

This does not necessarily mean that semi-lossless
compression does not work for those algorithms, but
only that the specific rearrangements we have tried
are not suitable to improve those algorithms.

Future research will involve testing on different
rearrangement methods that might be more suited
for non-statistical compression algorithms and also
testing with files in different languages.

Acknowledgements
 I wish to thank my students: Marco Lettieri, Alessia
D’Andria, Antonella Masi, Antonella Palladino and
Isabella Ruggiero that have conducted a preliminary
set of experiments on semi-lossless compression of
Italian texts.

References:
[1] Y. Kaufman and S. T. Klein, “Semi-lossless

text compression”, International Journal of
Foundations of Computer Science, Vol. 16, No.
6, 2005, pp. 1167-1178.

[2] I. H. Witten, A. Moffat, and T. Bell, Managing
Gigabytes. NY: Van Nostrand Reinhold, 1994.

[3] The Gzip home page, www.gzip.org.
[4] Bzip2: home, www.bzip.org.

B. Carpentieri
International Journal of Computers

http://www.iaras.org/iaras/journals/ijc

ISSN: 2367-8895 134 Volume 1, 2016

