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Abstract: - Text compression is generally considered only as lossless compression. Kaufman and Klein in [1] 
introduce the idea of semi-lossless text compression: the decompressed text will not be identical to the original 
text, but, just as for a decompressed JPEG image of good quality that is not identical to the original but can be 
used in the place of the original in many applications, our brain will adjust the data to make it usable and 
understandable. In this paper we experiment with semi-lossless compression on a case study of small text files 
in Italian language. 
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1 Introduction 
The following text circulated on the internet in 
September 2003: 
 “Aoccdrnig to rscheearch at Cmabrigde Uinervtisy, 
it deosn't mttaer what oredr the ltteers of a wrod are 
in; the olny iprmoetnt tihng is taht the frist and lsat 
ltteer be at the rghit pclae. The rset can be a total 
mses and you can sitll raed it wouthit a porbelm. 
Tihs is bcuseae the huamn mnid deos not raed ervey 
lteter by istlef, but the wrod as a wlohe.” 

The interesting thing that comes out from this 
example and from similar texts that are easily 
available on the internet is that we are capable to 
understand written texts even if there are many 
errors or typos. In this paper we are interested in the 
compression of written text files.  

Data compression is the coding of data to 
minimize its representation. Compression is 
motivated by the economic and logistic needs to 
save space in storage media and to save bandwidth 
in communication.   

On the downside, compressed data must be 
decompressed to be used, and this extra processing 
may be detrimental to some applications.  

Data compression is generally called lossless if 
the reconstructed data is identical to the original; 
otherwise, it is called lossy compression (also 
irreversible or noisy). 

Text compression is generally considered only as 
lossless compression. 

Kaufman and Klein in [1] introduce the idea of 
semi-lossless text compression: the decompressed 
text will not be identical to the original text, but, just 
as for a decompressed JPEG image of good quality 

that is not identical to the original but can be used in 
the place of the original in many applications, our 
brain will adjust the data to make it usable and 
understandable. 

 Kaufman and Klein in [1] propose to use this 
semi losslessly compressed text in applications in 
which the correct spelling is not important, such as 
short email messages or SMS data exchanged 
through cellular phones or via internet applications 
like WhatsApp or others. 

In this paper we experiment with semi-lossless 
compression on a case study of small text files in 
Italian language.  

This paper is organized as follows: the next 
section outlines the case study formulation. Section 
3 presents our experimental results and Section 4 
our conclusions. 
 
 
2 A Case Study 
To explore the potentialities of semi-lossless text 
compression we have experimented a number of 
well known text compression algorithms (Huffman 
coding [2], Gzip [3], Bzip [4]) on a test set of five 
small text files in the Italian language. The files are 
of different sizes but they are all small files, because 
of the hypothesis in [1] that semi-lossless 
compression could be useful for small text messages 
or small files. 

Each word in the text set has been rearranged 
accordingly with the example shown in the previous 
section: the first and the last letter in the word are in 
the right place and the inner parts of the word are 
rearranged. 
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2.1 Rearranging the letters in a word 
There are several ways to adjust (or to mess up the 
words by leaving n place the first and last character 
of each word. 

The first solution could be to write the inner 
letters in a word in random order. Another solution 
could be to organize these letters in alphabetical 
order. A third possibility is to arrange the characters 
by frequency: the distribution of character in the 
Italian language is well known, and it is possible to 
sort the letters in their of frequency order from the 
most frequent to the least frequent (E, A, I, O, N and 
so on ...). 

A last approach may be to try to group the 
characters based on the probability of a particular 
letter to appear after another. In our experiments we 
have tried all four approaches. 

 
 
3 Experimental Results 
We have experimented the four ways of rearranging 
the letters in a word on the set data composed of 
five small text files in the Italian language. 

From the point of view of readability, all the 
resulting files are enough readable, with a clear slow 
down in the reader’s speed in understanding the 
words.  

We have compressed the resulting files by using 
Huffman coding, Gzip, and Bzip. 

 
Rearrangement Input size Compressed size 
Original 4242 bytes 2562 bytes 
Random 4242 bytes 2562 bytes 
Alphabetic 4242 bytes 2562 bytes 
Probabilistic 4242 bytes 2559 bytes 
Frequency 4242 bytes 2539 bytes 
 

Table 1: Huffman coding file F1 
 

 
 

Figure 1: Huffman coding file F1 
 

Tables 1, 2, and 3 show the results obtained by 
compressing the first file F1. 

Table 1 describes on each line the results 
obtained compressing via Huffman coding the file 
F1 where the inner letters of each word, have been 
rearranged, respectively, with the Random, 
Alphabetic, Probabilistic or Frequency 
rearrangement methods described in the previous 
section.  

The first line (Original) refers to the original file 
in which no mess up with the inner letters has been 
done. 

Figures 1, 2, and 3 are instead a graphical 
representation of the compression results obtained 
by Huffman coding, Gzip and Bzip on the file F1. 

The compression, for each compressed file, is 
shown as a percentage of the dimensions of the 
original file . 

Table 4, Table 5 and Table 6 show the results 
obtained on file F2. 

Table 7, Table 8 and Table 9 show the results 
obtained on file F3. 

The figures from Figure 4 to Figure 9 are the 
graphical representation of the compression results 
obtained by Huffman coding, Gzip and Bzip on the 
test files F2 and F3. 
 
Rearrangement Input size Compressed size 
Original 4242 bytes 1785 bytes 
Random 4242 bytes 2381 bytes 
Alphabetic 4242 bytes 1839 bytes 
Probabilistic 4242 bytes 1844 bytes 
Frequency 4242 bytes 1863 bytes 
 

Table 2: Gzip coding file F1 
 

 
 

Figure 2: Gzip coding file F1 

B. Carpentieri
International Journal of Computers 

http://www.iaras.org/iaras/journals/ijc

ISSN: 2367-8895 131 Volume 1, 2016



 
Rearrangement Input size Compressed size 
Original 4242 bytes 1716 bytes 
Random 4242 bytes 2308 bytes 
Alphabetic 4242 bytes 1723 bytes 
Probabilistic 4242 bytes 1774 bytes 
Frequency 4242 bytes 1814 bytes 
 

Table 3: Bzip coding file F1 
 

 
 

Figure 3: Bzip coding file F1 
 
Rearrangement Input size Compressed size 
Original 46888 bytes 28228 bytes 
Random 46888 bytes 28228 bytes 
Alphabetic 46888 bytes 28228 bytes 
Probabilistic 46888 bytes 28098 bytes 
Frequency 46888 bytes 27672 bytes 
 

Table 4: Huffman coding file F2 
 

 
 

Figure 4: Huffman coding file F2 

 
Rearrangement Input size Compressed size 
Original 46888 bytes 4885 bytes 
Random 46888 bytes 22037 bytes 
Alphabetic 46888 bytes 5042 bytes 
Probabilistic 46888 bytes 5050 bytes 
Frequency 46888 bytes 5099 bytes 
 

Table 5: Gzip coding file F2 
 

 
 

Figure 5: Gzip coding file F2 
 
Rearrangement Input size Compressed size 
Original 46888 bytes 5994 bytes 
Random 46888 bytes 20082 bytes 
Alphabetic 46888 bytes 6086 bytes 
Probabilistic 46888 bytes 6242 bytes 
Frequency 46888 bytes 6218 bytes 
 

Table 6: Bzip coding file F2 
 

 
 

Figure 6: Bzip coding file F2 
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Rearrangement Input size Compressed size 
Original 1037 bytes 689 bytes 
Random 1037 bytes 689 bytes 
Alphabetic 1037 bytes 689 bytes 
Probabilistic 1037 bytes 689 bytes 
Frequency 1037 bytes 678 bytes 
 

Table 7: Huffman coding file F4 
 

 
 

Figure 7: Huffman coding file F3 
 
Rearrangement Input size Compressed size 
Original 1037 bytes 526 bytes 
Random 1037 bytes 637 bytes 
Alphabetic 1037 bytes 536 bytes 
Probabilistic 1037 bytes 540 bytes 
Frequency 1037 bytes 541 bytes 

 
Table 8: Gzip coding file F3 

 

 
 

Table 8: Gzip coding file F3 
 

 
 
Rearrangement Input size Compressed size 
Original 1037 bytes 555 bytes 
Random 1037 bytes 659 bytes 
Alphabetic 1037 bytes 558 bytes 
Probabilistic 1037 bytes 563 bytes 
Frequency 1037 bytes 581 bytes 

 
Table 9: Bzip coding file F3 

 

 
 

Figure 9: Bzip coding file F3 
 

Similar results are available also for file F4 (that 
is the larger file) and for file F5. Those results are 
omitted here for brevity but they are consistent with 
the ones shown. 

Table 7 summarizes the combined results for all 
the five files. 

 
Rearrangement Huffman Gzip Bzip 
Original 235364 18854 21751 
Random 235364 31434 40997 
Alphabetic 235364 19401 22055 
Probabilistic 234285 19438 22542 
Frequency 230750 19607 22493 
 

Table 10: Compression results on the test data set  
(in bytes) 

 
As it is shown in tables 1, 4, 7 and 10, the 

Probabilistic and the Frequency rearrangements 
slightly improve the performances of Huffman 
Coding. 

On the other side, for Huffman coding the 
performances obtained by Random and Alphabetic 
are identical to the performance of Original. 

This is due to the inner nature of Huffman 
coding that has a statistical core that is sensible to a 
reordering that is based on frequency and that is not 
sensible to randomness. 
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Tables 2, 5, 8, and 7 show that Gzip does not 
take advantage of the rearrangements. The same is 
for Bzip.  

This is probably because both compression 
algorithms are not based on statistical coding and 
therefore the rearrangements we have applied are 
not an improvement with respect to the original 
situation. 

This does not necessarily mean that semi-lossless 
compression does not work for those algorithms, but 
only that the specific rearrangements we have tried 
are not suitable to improve those algorithms. 

It is interesting to note that for both Gzip and 
Bzip the Random rearrangement gives the worst 
performance, because it breaks the correlation 
between parts of the word and reduce the effectivity 
of the two algorithms. 

From the data compression point of view, the 
most effective algorithm in this case study is Gzip: 
because of the small length of the input files Bzip 
(that is generally more performing than Gzip), does 
not achieve the compression that often gets on larger 
files. 
 
 
4 Conclusion 
In semi-lossless text compression the decompressed 
text will not be identical to the original text, but our 
brain will adjust the text data to make it usable and 
understandable.  

In this paper we have experimented with semi-
lossless compression on a case study of five small 
text files in Italian language. 

We have reported the experimental results for 
Huffman coding, Gzip and Bzip on the files where 
the inner letters of each word have been rearranged, 
respectively, with the Random, Alphabetic, 
Probabilistic or Frequency rearrangement methods. 

All the resulting files were enough readable: the 
text was still fully understandable, with a clear slow 
down in the reader’s speed in understanding the 
words. 

The results we have obtained show a slight 
compression improvement when using Huffman 
Coding and Probabilistic or Frequency 
rearrangements, but no improvement (actually a 
worsening) when using Gzip or Bzip. 

This does not necessarily mean that semi-lossless 
compression does not work for those algorithms, but 
only that the specific rearrangements we have tried 
are not suitable to improve those algorithms. 

Future research will involve testing on different 
rearrangement methods that might be more suited 
for non-statistical compression algorithms and also 
testing with files in different languages. 
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