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Abstract: - The paper is focused on some theoretical questions of the Database Theory. The result which 
concerns equivalence of table algebra for infinite tables and corresponding relational calculi is presented. This 
result generalizes the classical result about the equivalence of Codd’s relational algebra and tuple (domain) 
relation calculus. Concept of table (relation) is considered in terms of nominal sets. Under relation is 
understood any set of tuples (with common scheme), in particular infinite. Furthermore only one universal 
domain is considered. The classical relational calculi are filled up by functional and predicate signatures on the 
universal domain (while usually consider only binary predicates and functional signature is generally empty). 
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1 Introduction 
Today, Database Management Systems or DBMS 
are used in almost all spheres of human activities 
that related to the preservation and processing of 
information. The development of database 
technology is largely based on the relational model 
of data proposed by E. F. Codd in 1970. The 
Relational Algebra was introduced by E. F. Codd as 
a set of operators on the relations [1]. The scientist 
also defined a tuple relation calculus and presented 
an algorithm for reducing an arbitrary relation-
defining expression (based on the calculus) into a 
semantically equivalent expression of the relational 
algebra [2]. 

A little later M. Lacroix and A. Pirotte (1977) 
suggested an alternative version of tuple relational 
calculus – domain relational calculus [3]. In this 
version variables represent single domain values 
rather than entire tuples.  

A set of relational algebra operations proposed 
by E.F. Codd, in course of time was expanded to 
meet the needs of query languages. A. Klug (1982) 
extended relational algebra and relational calculus to 
include aggregate functions and showed equivalence 
thus obtained two formal languages [4]. 

Three principal approaches to the design of 
query languages are discussed by J.D. Ullman 
(1982) in [5]: relational algebra, tuple relational 
calculus and domain relational calculus. Author 
restricted the relational calculi for use only finite 
relations, i.e. infinite relations are not considered. 
The restricted relational calculi expressions are 
called "safe". In this case, the equivalence of 

relational algebra and corresponding relational 
calculi in which consideration is restricted to only 
safe expressions is proved. 

The issue of the equivalence of relational algebra 
and relational calculi is also considered by D. Мaier 
(1983) [6]. Author discussed three query systems: 
tuple relational calculus, domain relational calculus 
and tableau queries. It was shown that both tuple 
relational calculus and domain relational calculus 
are equivalent in expressive power to relation 
algebra. D. Мaier introduced two interpretations for 
formulas of both tuple relational calculus and 
domain relational calculus which called unlimited 
and limited interpretations. A class of safe 
expressions for which both interpretations always 
yield the same value is introduced too. However, 
D. Мaier offers the readers to prove items of some 
theorems. It is not good, because the readers are 
unable to verify their proofs. 

Specifying of table (relation) in terms of nominal 
sets is carried out by V. Redko, J. Brona, D. Buy, S. 
Poliakov [7]. Traditionally the finite set of tuple is 
understood under the table and the authors take it 
into account. However, as a rule, mathematical 
statements about standard properties of specification 
of relation operations remain true for infinite 
relations. Further under relation we will understand 
any set of tuples (with common scheme), in 
particular infinite. This raises the problem of the 
equivalence of table (relational) algebra and tuple 
(domain) calculus. In this paper the solution of this 
problem is proposed. 
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2 Table Algebras of Infinite Tables 
and Generalized Relational Calculi 
Among the two sets that are considered, A  is the set 
of attributes and D  is the universal domain. 

Definition 1. An arbitrary (finite) set of attributes 
A⊆R  is called the scheme.  

Definition 2. A tuple of the scheme R  is a 
nominal set on pair R , D . The projection of this 
nominal set for the first component is equal to R .  

In other words, a tuple of the scheme R  is a 
function D→Rs : . 

Definition 3. A table of scheme R  ( A⊆R ) is 
pair Rt, , where t  is a set (in particular infinite) of 
tuples of fixed scheme R .  

Thus, a certain scheme is ascribed to every table.  
The set of all tuples (tables) on scheme R  is 

designated as )(RS  ( )(RT  respectively) and the set 
of all tuples (tables) is designated as S  (T
respectively). Hence, ))(()( RSPR =T , 



A⊆

=
R

RSS )( , 


A

TT
⊆

=
R

R)( , where )(AP  is a power 

set of the set A .  
Definition 4. The table algebra of infinite tables 

is the algebra ,, ,ΞΩPT  where T  is the set of all 

tables, ,,,,,,\,,{ ,,,,,
1
2

21
R

R
RRRRXRpRRRP Rtξπσ ÷⊗=Ω Ξ   

}~ R  is the signature, Ξ∈∈ ξ,Pp , 
A⊆21,,, RRRX , Ξ,P  are the sets of parameters. 

The operations of signature ΞΩ ,P  are defined in [8].  
Lemma 1. Any expression over table algebra of 

infinite tables can be replaced by equivalent to him 
expression which uses only operations of selection, 
join, projection, union, difference and renaming.  

Proof. To prove the first statement we will show 
that operations of intersection, division, active 
complement can be expressed through the 
operations noted in formulation of lemma. Indeed, 
the following equalities hold:  

1) ( );,\,\,,, 21121 RtRtRtRtRt RRR =  
2) ( ) '11',2211 \,,,

1
1
2 RRR

R
R RtRtRt π=÷               

'\ R ( ,( 1,',' 11
tRRRR ππ )

2,'1 RR
R ⊗ ),,\, 1122 1

RtRt R  where 

,12 RR ⊆  ;\' 21 RRR =  
3) ( ) ,,\,,~ RtRtCRt RR =  where

( ) ( ),,...,),( ,}{},,...,{}{},{,
1121

1
RtRtRtC RAAAAAARA n

nn
ππ

−
⊗⊗=

 and },...,{ 1 nAAR =  is a scheme of the table Rt,  
(see, for example, [6], [7]).  

 
 

3 Generalized Relational Calculi 
Relational calculus is the basis of most relational 

query languages because unlike relational (table) 
algebra, calculus expresses only what must be the 
result, and does not determine how to get it. 
Relational calculus is based on first-order predicate 
calculus. There are two forms of relational calculus: 
tuple calculus and domain calculus. These forms 
have been proposed by E. Codd [2] and M. Lacroix 
and A. Pirotte [3] respectively. 

 
 

3.1 Generalized tuple relational calculus 
Consider generalized tuple relational calculus. 

In the classical tuple relational calculus and domain 
relational calculus only binary predicates usually 
consider and functional signature is generally 
empty. In this paper tuple relational calculus is 
extended by arbitrary predicate and functional 
signatures on the universal domain D . 

As known, tuple relational calculus builds its 
expressions from tuples. A tuple relational calculus 
expression looks like as { })(|)( xPRx , where P  is a 
predicate over tuple variable x , and R  is а scheme. 
This expression indicates table Rt, , )(RTt∈  that 
contains tuples on which predicate P  is true. 

The set of legal tuple relational calculus 
formulas will be defined relative to: 

• a set of attributes A  and universal domain 
;D  

• a set of object variables (tuple variables) 
,..., 21 xx ; 

• a set of object constants ,..., 21 dd ; 
• a set of function symbols ,..., 21

21
nn ff , 1≥in ; 

• a set of predicate symbols ,..., 21
21
mm pp , 1≥im ; 

• a set of constant tables symbols along with 
their schemes; constant tables are denoted as 

Rt, ; 
• a set of variable tables symbols along with 

their schemes; variable tables are denoted as 
RX , . 

The universal domain D  is the domain of 
interpretation of object constants, and the set of all 
tuples over D  is the domain of interpretation of 
object variables. We use x  as syntactic variable, the 
domain of change of which is the set of variables; 
f  as syntactic variable, the domain of change of 

which is the set of function symbols; p  as syntactic 
variable, the domain of change of which is the set of 
predicate symbols; d  as syntactic variable, the 
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domain of change of which is the set of constants; A 
as syntactic variable, the domain of change of which 
is the set of attributes.  

Definition 5. The following expressions are 
terms (induction on length of terms): 

a) d  is a term; 
b) х(A) is a term; 
c) if nuu ...,1  are terms, f   is a function symbol 

of arity n  then )...,( 1 nuuf  )...,( 1 nuuf  is a term; 
d) an expression is a term if and only if it can be 

shown to be a term on the basis of conditions а), b) 
and с).  

We use u  as syntactic variable, the domain of 
change of which is the set of terms. We will 
formulate the rules of formulas construction.  

Definition 6. There are three kinds of atomic 
formulas (atoms): 

а1. For any constant table Rt,  and for any tuple 
variable x , )(xRt  is an atom. )(xRt  stands 
for Rt,∈x .  

а2. For any variable table RX ,  and for any 
tuple variable x , )(xRX  is an atom. )(xRX  
stands for RX ,∈x .  

а3. For any terms muu ...,1 , and for any predicate 
p  of arity m  on the universal domain D , 

)...,( 1 muup  is an atom.  
We use the connectives ¬ , ∧ , ∨ , quantifiers 
∀∃,  and brackets ()  to build formulas from atoms. 

We use P , Q  and G  as syntactic variables, the 
domain of change of which is the set of formulas.  

Definition 7. The following expressions are 
formulas (induction on length of formulas): 

f1. Every atom is a formula.  
f2. If P  is a formula, then ¬ P  is a formula.  
f3. If P  і Q  are formulas, then )( QP ∧ , 

)( QP ∨  are formulas.  
f4. If x  is a tuple variable, P  is a formula, 

A⊆R  is a scheme, then Px )(R∃  is a 
formula. 

f5. If x  is a tuple variable, P  is a formula, 
A⊆R  is a scheme, then Px )(R∀  is a 

formula. 
f6. If P  is a formula, then ( )P  is a formula. 
f7. There are no other formulas. 
In general case tuple variables can be free or 

bound in a formula. Sense of these concepts is the 
same as well as in the predicate calculus: an 
occurrence of a variable x  is said to be bound in a 
formula if either it is the occurrence of x in a 

quantifier ( x∀  or x∃ ) in a formula or it lies within 
the scope of a quantifier ( x∀  or x∃ ) in a formula. 
Otherwise, the occurrence is said to be free in a 
formula. A variable is said to be free (bound) in a 
formula if it has a free (bound) occurrence in a 
formula (see, for example, [9]).  

A scheme (a finite set of attribute) ),( Pxscheme  
and a set of attributes with which tuple variable x  
occurs in a formula P , ),( Pxattr , are defined for 
every tuple variable x . The expressions 

),( Pxscheme  and ),( Pxattr  are defined only when 
x  has a free occurrence in formula P , and takes 
place including ),(),( PxPx schemeattr ⊆  (that 
follow from subsequent determinations, on 
condition of determination of expressions). 

We use the concepts of free and bound variables, 
the scheme, and the set of attributes with which 
tuple variable occurs in a formula to define the class 
of legal formulas.  

Definition 8. We will define expression attr  for 
terms first: 

1. if du = , then ∅=),( uxattr ; 
2. if xu = (A), then =),( uxattr {A}, аnd 

(,( yxattr A)) ∅= , where yx ≠ ;  
3. if )...,( 1 nuufu = , where iu  are terms then 

),(),(
1

i

n

i
attrattr uxux

=
=  . 

Definition 9. Consider the cases where P  is an 
atomic formula, then 

а1. if )(xP Rt= , then x  is free in P  and 
Rattrscheme == ),(),( PxPx ; 

а2. if )(xP RX= , then x  is free in P  and 
Rattrscheme == ),(),( PxPx ; 

а3. if )...,( 1 muupP = , where iu  are terms, and 

kxx ,...,1  are all variables of these terms, then 
this tuple variables are free in formula P , 

),( Pxischeme  is undefined, and 

),(),(
1

ji

m

j
i attrattr uxPx

=
=  , ki ,...,1= . 

Atomic formulas are all legal.  
Definition 10. The construction of all legal 

formulas proceeds by induction on the length of 
formulas. Assume G  and Q  are both legal 
formulas. 

f2. If GP ¬= , then P  is legal, and all 
occurrences of variables in P  free or bound 
as they are in G . For every variable x  that 
occurs free in G , 
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),(~),( GxPx schemescheme −  and 
),(),( GxPx attrattr = .  

f3. If QGP ∧=  or QGP ∨= , then all 
occurrences of variables in P  are free or 
bound as their corresponding occurrences are 
in G  and Q . Assume variable x  occurs 
free in subformulas G  and/or Q . Define the 
scheme, and the set of attributes with which 
tuple variable x  occurs in a formula for 
formula P . Next cases take place.  

a. The schemes of formulas 
),( Gxscheme  and ),( Qxscheme  are 

both defined. Formula P  is legal if 
equality ),(),( QxGx schemescheme =  
holds. After determination 

),(),( GxPx schemescheme = . 
b. The scheme is defined for only one 

subformula. Assume ),( Gxscheme  is 
defined, and ),( Qxscheme  is 
undefined. Then 

),(),( GxQx schemeattr ⊆  must hold 
for P  to be legal. After determination 

),(),( GxPx schemescheme = .  
c. The scheme is undefined for both 

subformulas, then ),( Pxscheme  is 
undefined.  

In all cases ),(),(),( QxGxPx attrattrattr = . 
f4. If GxP )(R∃=  then x  must occur free in 

G  for P  to be legal. Furthermore, if 
),( Gxscheme  is defined, then equality 

Rscheme =),( Gx  must hold if including 
Rattr ⊆),( Gx  is held. ),( Pxscheme  and 

),( Pxattr  are not defined, since x  does not 
occur free in P . Any occurrence of a 
variable xy ≠  is free or bound in P  as it 
was in G . If y  occur free in P , then 

),(~),( Gschemescheme yPy −  and 
),(),( GyPy attrattr = . 

f5. If GxP )(R∀= , then all restrictions and 
definitions are the same as in f4. 

f6. If )(GP = , then P  is legal, and freedom, 
boundness, scheme  and attr  are the same as 
for G .  

After introducing the set of legal formulas we 
can give a finally determination of expression of 
tuple calculus. 

Definition 11. Generalized tuple relation calculus 
expression has the form )}(|)({ xPx R , where  

1) formula P  is legal; 

2) x is the only tuple variable that occurs free 
in P ; 

3) if ),( Pxscheme  is defined, then 
Rscheme =),( Px , otherwise, 

Rattr ⊆),( Px , where ),( Pxscheme  is the 
scheme of tuple x  in the formula P , 

),( Pxattr  is the set of attributes with which 
tuple variable x  occurs in the formula P .  

 
 

3.1 Generalized domain relational calculus 
Domain relational calculus is quite similar to 

tuple relational calculus. But there are essential 
differences. There are no tuple variables in the 
domain relational calculus, but there are variables to 
represent components of tuples, instead. Domain 
relational calculus are also supported by the 
membership condition: ( ) RdAdAt ,,...,,, 2211 , 
where R  is scheme, iA  is attribute of table t and id  
is variable of domain or literal (object constant). 
This condition is true iff in the set t  there is a tuple 
having specified values over universal domain D  
for specified attributes.  

The set of legal domain relational calculus 
formulas will be defined relative to: 

• a set of attributes A  and universal domain 
;D  

• a set of object variables (tuple variables) 
,..., 21 xx ; 

• a set of object constants ,..., 21 dd ; 
• a set of function symbols ,..., 21

21
nn ff , 1≥in ; 

• a set of predicate symbols ,..., 21
21
mm pp , 1≥im ; 

• a set of constant tables symbols along with 
their schemes; constant tables are denoted as 

Rt, ; 
• a set of variable tables symbols along with 

their schemes; variable tables are denoted as 
RX , . 

The universal domain D  is the domain of 
interpretation of object constants and object 
variables. We use x  as syntactic variable, the 
domain of change of which is the set of variables; 
f  ( p ) as syntactic variable, the domain of change 

of which is the set of function (predicate) symbols; 
d  as syntactic variable, the domain of change of 
which is the set of constants; A as syntactic variable, 
the domain of change of which is the set of 
attributes. 

Definition 12. The following expressions are 
terms (induction on length of terms): 
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a. any object constant Ad  is a term, where A  is 
an attribute associated with this constant; 

b. any object variable Ax  is a term, where A  is 
an attribute associated with this variable; 

c. if nuu ...,1  are terms, f   is a function symbol 
of arity n  then )...,( 1 nuuf  )...,( 1 nuuf  is a 
term; 

d. an expression is a term if and only if it can be 
shown to be a term on the basis of conditions 
а), b) and с).  

We use u  as syntactic variable, the domain of 
change of which is the set of terms.  

Definition 13. There are three kinds of atomic 
formulas (atoms): 

а1. For any constant table Rt, , where 
A⊆= },...,{ 1 nAAR , ),...,( 1

1
nA

n
A

Rt aa  is an 
atom, iA

ia  is a constant or variable which 
associated with attribute iA .  

а2. For any variable table RX , , where 
A⊆= },...,{ 1 nAAR , ),...,( 1

1
nA

n
A

RХ aa  is an 
atom, iA

ia  is a constant or variable which 
associated with attribute iA .  

а3. For any terms muu ...,1 , and for any predicate 
p  of arity m  on the universal domain D , 

)...,( 1 muup  is an atom.  
We use the connectives ¬ , ∧ , ∨ , quantifiers 
∀∃,  and brackets ()  to build formulas from atoms. 

We use P , Q  and G  as syntactic variables, the 
domain of change of which is the set of formulas.  

Definition 14. The following expressions are 
formulas (induction on length of formulas): 

f1. Every atom is a formula.  
f2. If P  is a formula, then ¬ P  is a formula.  
f3. If P  і Q  are formulas, then )( QP ∧ , 

)( QP ∨  are formulas.  
f4. If Ax  is a tuple variable, P  is a formula, 

A∈A  is a scheme, then Ax∃ ( A ) P  is a 
formula. 

f5. If Ax  is a tuple variable, P  is a formula, 
A∈A  is a scheme, then Ax∀ ( A ) P  is a 

formula. 
f6. If P  is a formula, then ( )P  is a formula. 
f7. There are no other formulas. 
Definition 15. Generalized domain relational 

calculus expression has the form 
)},...,(|,...,{ 11

11
nn A

n
AA

n
A xxPxx , where  
1) formula P  is a legal domain calculus 

formula with exactly the free variables 

nA
n

A xx ,...,1
1 ; every variable ix is associated 

with the attribute iA
ix , ni ,,1= , where 

ji AA ≠  for ji ≠ ; 
2) },...,{ 1 nAAR =  is a scheme of expression. 

 
 
3 Equivalence of Table Algebra of 
Infinite Tables and Corresponding 
Relational Calculi 
Theorem 1. If F  is the expression of table algebra 
of infinite tables, then it is possible effectively to 
build equivalent to it expression E  of generalized 
tuple relational calculus. 

Proof. For proof of the theorem we consider 
expressions of table algebra which contain the 
operations of union, intersection, difference, 
selection, projection, join and rename only because 
the operations of division and active complement it 
is possible to express through these operations (see 
Lemma 1). 

The proof proceeds by induction on the number 
of operators in F .  

Basis (No operators). There are two cases. 
Firstly, RtF ,=  is the constant table, where t  is a 
infinite set of the scheme R , then 

)}(|)({ xx RtRЕ = . Secondly, RXF ,=  is the 
variable table, then )}(|)({ xx RXRЕ = . 

Induction. Assume the theorem holds for any 
table algebra expression with fewer than k
operators. Let F  have k  operators.  

Case 1 (union). 21 FFF R= . 1F  and 2F  each 
have less than k  operators, and by the inductive 
hypothesis we can find tuple relational calculus 
expressions )}(|)({ xx PR  and )}(|)({ xx QR  
equivalent to 1F  and 2F  respectively. Then E  is 
{ })()(|)( xxx QPR ∨ .  

Case 2 (difference). 21 \ FFF R= . Then tuple 
relational calculus expressions )}(|)({ xx PR  and 
{ })(|)( xx QR  equivalent to 1F  and 2F  respectively 
exist as in Case 1. Then E  is 
{ })()(|)( xxx QPR ¬∧ .  

Case 3 (selection). ( )1,~ FF Rpσ= . Let 
)}(|)({ xx PR  be tuple relational calculus 

expression equivalent to 1F . Then E  is 
{ }))(),...,(()(|)( 1 mAAPR xxpxx ∧ , where 

},...,{ 1 mAAR =  is scheme of table that is the value 
of expression 1F . Assume that predicate-parameter 
of select is defined as 
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trueAsAstruesp m =⇔= ))(),...,(()(~
1p , )(RSs∈ , 

where p  is a signature predicate symbol of arity m . 
Case 4 (projection). )( 1, FF RXπ= . Let 

)}(|)({ xx PR  be tuple relational calculus 
expression equivalent to 1F . Then E  is 

))}()()()((|)({ AAPRRX
RXA

xyxxy =∧∧∃
∈ 


. 

Special case: if ∅=RX   then 
)}()(|)({ xxy PRE ∃∅= . 

Case 5 (join). 2,1
21
FFF

RR
⊗= . Let )}(|)({ 1 xx PR  

and { })(|)( 2 yy QR  be tuple relational  calculus 
expressions equivalent to 1F  and 2F  respectively. 
Then E  is ∧∃∃ )()(()(|)({ 2121 xyxz PRRRR   

))}.()()()()(
21

AAAAQ
RARA

yzxzy =∧∧=∧∧∧
∈∈

 

Case 7 (rename). )( 1, FRtF Rξ= , where 
AA→~:ξ  is an injective partial function that 

renames attributes. Tuple relational  calculus 
expression )}(|)({ xx PR  equivalent to 1F  exists. 
Then =∧∧∃=

∈
)()()((|)({

\2 CPRRЕ
domRC

yxxy
ξ

 

)))}(()()( AAC
domRA

ξ
ξ

yxx =∧∧=
∈ 

, where 

][\2 RdomRR ξξ = .  
Theorem 1 proves that generalized tuple 

relational  calculus is as expressive as table algebra 
of infinite tables (in terms of [6]).  

Now consider how for generalized tuple 
relational  calculus expression to build generalized 
domain relational  calculus expression. Consider the 

mapping of the form HE
ϕ

  such that to every 
expression of generalized tuple relational  calculus 
E  puts in correspondence equivalent expression of 
generalized domain relational  calculus H . Let 

)}(|)({ yPy RE = , where tuple y  is the only tuple 
variable that occurs free in P  and },...,{ 1 nAAR =  . 

Make the following replacements and obtain the 
generalized domain calculus expression 

)}.,...,(|,...,{ 11 nnH yyPyy=  First apply the mapping 
ϕ  to the terms of generalized tuple relational  
calculus: 

1) every object constant d  of generalized tuple 
relational  calculus becomes object constant 

Ad  of generalized domain relational  
calculus, where RA∈  is the attribute 
associated with this constant; 

2) every term x ( iA ) of generalized tuple 
relational  calculus becomes variable iA

ix  of 
generalized domain relational  calculus; 

3) every term ),...,( 1 nvvf  of generalized tuple 
relational  calculus, where iv  is the terms of 
generalized tuple relational  calculus, 

,,...,1 ni =  becomes term ),...,( 1 nuuf  of 
generalized domain relational  calculus, 
where ju  is the terms of generalized domain 
relational  calculus, nj ,...,1=  which derived 
from the previous replacements; 

Apply the mapping ϕ  to the atoms of 
generalized tuple relational  calculus: 

a1) any atom )(' zRt  of generalized tuple 
relational  calculus becomes ),,( 1

1'
mA

m
A

Rt zz  , 
where mA

m
A zz ,,1

1   are the variable of 
generalized domain relational  calculus, 

},...,{' 1 mAAR =  is the scheme of constant 
table ', Rt ; 

a2) any atom )(' zRX  of generalized tuple 
relational  calculus becomes ),,( 1

1'
mA

m
A

RX zz 

, where mA
m

A zz ,,1
1   are the variable of 

generalized domain relational  calculus, 
},...,{' 1 mAAR =  is the scheme of variable 

table ', RX ; 
a3) any atom ),...,( 1 mvvp  of generalized tuple 

relational  calculus, where iv  are the terms, 
mi ,...,1= , becomes ),...,( 1 muup , where ju  

are the terms of generalized domain 
relational  calculus which derived from the 
previous replacements, mj ,...,1= . 

Any formula P  of generalized tuple relational  
calculus replaced by P′ , where for each atoms 
made substitute a1-a3 and each free occurrence of z  
replaced by nA

n
A zz ,...,1

1 , },...,{ 1 nAAR =  is the scheme 
of z . A quantified subformula Gz )( 2R∃  of 
generalized tuple relational  calculus, 

},...,{ 12 mAAR = , becomes Gzz ′∃∃ )()...( 11
1

m
A
m

A AA m , 
while Gz )( 2R∀  becomes Gzz ′∀∀ )()...( 11

1
m

A
m

A AA m . 
After completing these changes, we will get 

expression of generalized domain relational  
calculus )},...,(|,...,{ 11

11
nn A

n
AA

n
AH yyPyy= . It should 

also be clear that the values that may be assumed by 
every variables iz  of generalized domain calculus 
are exactly those that could be assumed by z (A i ) in 
the original expression. Thus, the expressions E  
and H  are equivalent. Consequently, the following 
theorem takes place. 

Theorem 2. If E  is an expression of generalized 
tuple relational  calculus, then it is possible 

I. Glushko
International Journal of Computers 

http://www.iaras.org/iaras/journals/ijc

ISSN: 2367-8895 117 Volume 1, 2016



effectively to build equivalent to it expression H  of 
generalized domain relational  calculus.  

So, theorem 2 proves that generalized domain 
relational  calculus is as expressive as generalized 
tuple relational  calculus (in terms of [6]).  

Let's prove that table algebra of infinite tables is 
as expressive as generalized domain relational  
calculus.  

Theorem 3. If H  is an expression of generalized 
domain relational  calculus, then it is possible 
effectively to build equivalent to it expression F  of 
table algebra of infinite tables. 

Proof. Let )},...,(|,...,{ 11
11

nn A
n

AA
n

AH xxPxx=  be 
expression of generalized domain relational  
calculus, where },...,{ 1 nAAR =  is a scheme of the 
table, that is the value of expression H . For each 
subexpression G  of P  we will find an algebraic 
expression GF . 

We will prove by induction on the number of 
operators in a subformula G  of P  that if G  has 
free domain variables mA

m
A yy ,...,1

1  then 
)},...,(|,...,{ 11

11
mm A

m
AA

m
A yyGyy  has an equivalent 

expression in table algebra of infinite tables GF .  
Then, as a special case, when G  is P  itself, we 

have an algebraic expression for 
)},...,(|,...,{ 11

11
nn A

n
AA

n
A xxPxx . It is assumed that 

mA
m

A yy ,...,1
1  are the only tuple variables that occurs 

free in G  and the table of scheme },...,{ 1 mG AAR =  
is a value of expression )},...,(|,...,{ 11

11
mm A

m
AA

m
A yyGyy . 

Replace domain variables in P  so that no 
variable is bound in two places or occurs both free 
and bound in P . Note that every variable is 
associated with an attribute, either by a quantifier 

x∀ (A) or x∃ (A) if a variable is bound in P  or by 
appearing to the left of the bar in the expression H , 
if a variable is free in P .  

For any attribute A  we will map algebraic 
expression. A single-attribute table }{, At  is a 
value of this algebraic expression. This table 
contains all tuples of kind { }dAs ,= , D∈d . We 
will designate this algebraic expression through 

А][D . Consider all possible cases.  
Basis (no operators). Subformula G  is an atom 

of the form ),...,( 1 muup  or ),...,( 1
1

Am
m

A
Rt aa  or 

),,( 1
1

mA
m

A
RX zz  . 
1. Let G  be ),...,( 1 muup , where iu  are the 

terms of generalized domain relational  
calculus, kA

k
A yy ,...,1

1  are the all variables of 
this terms and kAA ,,1   are the attributes 

associated with these variables. Then GF  is 
),][...]([

,...,},,{,~
1121

11 k
kk

k ARRRRRAAAp DD
−

⊗⊗




σ  where 

}{ ii AR = , ki ,,1= . Assume that predicate-
parameter of select is defined as 

,))(),...,(()(~
1

trueAsAstruesp
mkk =⇔= p  

),(RSs∈  where p  is signature predicate 
symbol of arity m .  

2. Let G  be ),...,( 1
1

mA
m

At aa , where iA
ia  is either a 

constant or a variable over the universal 
domain D . Let },...,{ 1 mAAR =  be a scheme 
of table Rt, . The algebraic expression GF  
is )),(( ,~, RtRpRY σπ , where p~  is predicate-
parameter of select which is a conjunction of 
comparisons iA

iiA a=  for each iA
ia  that is a 

constant; Y = jA
jjA a|{  is a variable}. 

3. Let G  be ),...,( 1
1

mA
m

AX aa , where iA
ia  is either 

a constant or a variable over the universal 
domain D . Let },...,{ 1 mAAR =  be a scheme 
of table RX , . The algebraic expression 

GF  is )),(( ,~, RXRpRY σπ , where p~  is 
predicate-parameter of select which is a 
conjunction of comparisons iA

iiA a=  for each 
iA

ia  that is a constant; Y = jA
jjA a|{  is a 

variable}. 
Induction. Assume G  has at least one operator 

and that the inductive hypothesis is true for all 
subformulas of P  having fewer operators than G . 

Case 1. QG ¬= . Let QF  be the algebraic 
expression for Q  and the table of scheme QR  is a 
value of expression QF . Then QRG FF

Q
~= .  

Case 2. QQG ′∨= . Let Q  has free variables 
pk C

p
CB

k
B vvzz ,...,,,..., 11

11  and let Q′  has free variables 
qk K

q
KB

k
B wwzz ,...,,,..., 11

11 , where pC
p

C vv ,...,1
1  and 

qK
q

K ww ,...,1
1  are distinct. QF  and QF ′  are the 

algebraic expressions for Q  and Q'  respectively. 
Let iC , pi ,...,1=  be the attributes associated with 
variables pC

p
C vv ,...,1
1  and let jK , qj ,...,1=  be the 

attributes associated with variables qK
q

K ww ,...,1
1 . Let 

q
qqQQQ

KKKKRKKRKKRQ DDFF ][...][
}{},,...,{}{},{}{,1

1121
1

1 −
⊗⊗⊗=



 and 

let 
,][...][

}{},,...,{}{},{}{,2
1121

1
1

p
ppQQQ

CCCCRCCRCCRQ DDFF
−′′′

⊗⊗⊗= ′
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where QR and 'QR  are the schemes of the tables that 
are the values of those algebraic expressions 
respectively.  

Let 
1FR  and 

2FR  be the schemes of the tables that 
are the values of algebraic expressions 1F  and 2F  
respectively. Note that 

1FR =
2FR . Then 

21 1
FFF

FRG = .  

Case 3. QQG ′∧= . This generalized domain 
calculus expression can be replaced by 

)( QQG ′¬∨¬¬=  (De Morgan's law). 
Case 4. QxG )(AA∃= . Let QF  be the algebraic 

expression for Q . Then GF  is { } )(,\ QXAX Fπ , where 
X  is the scheme of the table that is the value of 

algebraic expression QF .  

Case 5. QxG )(AA∀= . This generalized domain 
calculus expression can be replaced by 

)))((()( QxQx ¬∃¬=∀ AA АА .  
Theorem 3 proves that table algebra of infinite 

tables is as expressive as generalized domain 
relational  calculus (in terms of [6]).  

Taking into account the theorems 1, 2, 3 we are 
getting a basic result. This situation is shown in 
Fig. 1. 

Theorem 4. Table algebra of infinite tables, 
generalized tuple relational calculus and generalized 
domain relational calculus are equivalent.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.1 Equivalence of Table Algebra of Infinite 
Tables and Corresponding Relational Calculi 
 

4 Conclusion 
In article table algebras of infinite tables are 
considered. The classical relational al calculi are 
extended by functional and predicate signatures on 

the universal domain (while usually consider only 
binary predicates and functional signature is 
generally empty). It is proved the equivalence of 
table algebra of infinite tables and corresponding 
relational calculi. These results generalize the 
classical result about the equivalence of Codd’s 
relational algebra and tuple (domain) relational 
calculus. 
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