
Generalization of the classical result of Codd-Lacroix-Pіrotte

IRYNA GLUSHKO
Applied Mathematics, Informatics and Educational Measurement Department

Nizhyn Mykola Gogol State University
16600, Nizhyn, Kropyvyanskoho str, 2

UKRAINE
iryna.glushko@ndu.edu.ua

Abstract: - The paper is focused on some theoretical questions of the Database Theory. The result which
concerns equivalence of table algebra for infinite tables and corresponding relational calculi is presented. This
result generalizes the classical result about the equivalence of Codd’s relational algebra and tuple (domain)
relation calculus. Concept of table (relation) is considered in terms of nominal sets. Under relation is
understood any set of tuples (with common scheme), in particular infinite. Furthermore only one universal
domain is considered. The classical relational calculi are filled up by functional and predicate signatures on the
universal domain (while usually consider only binary predicates and functional signature is generally empty).

Key-Words: - Relation databases, tuple relation calculus, domain relation calculus, table algebra, nominal sets.

1 Introduction
Today, Database Management Systems or DBMS
are used in almost all spheres of human activities
that related to the preservation and processing of
information. The development of database
technology is largely based on the relational model
of data proposed by E. F. Codd in 1970. The
Relational Algebra was introduced by E. F. Codd as
a set of operators on the relations [1]. The scientist
also defined a tuple relation calculus and presented
an algorithm for reducing an arbitrary relation-
defining expression (based on the calculus) into a
semantically equivalent expression of the relational
algebra [2].

A little later M. Lacroix and A. Pirotte (1977)
suggested an alternative version of tuple relational
calculus – domain relational calculus [3]. In this
version variables represent single domain values
rather than entire tuples.

A set of relational algebra operations proposed
by E.F. Codd, in course of time was expanded to
meet the needs of query languages. A. Klug (1982)
extended relational algebra and relational calculus to
include aggregate functions and showed equivalence
thus obtained two formal languages [4].

Three principal approaches to the design of
query languages are discussed by J.D. Ullman
(1982) in [5]: relational algebra, tuple relational
calculus and domain relational calculus. Author
restricted the relational calculi for use only finite
relations, i.e. infinite relations are not considered.
The restricted relational calculi expressions are
called "safe". In this case, the equivalence of

relational algebra and corresponding relational
calculi in which consideration is restricted to only
safe expressions is proved.

The issue of the equivalence of relational algebra
and relational calculi is also considered by D. Мaier
(1983) [6]. Author discussed three query systems:
tuple relational calculus, domain relational calculus
and tableau queries. It was shown that both tuple
relational calculus and domain relational calculus
are equivalent in expressive power to relation
algebra. D. Мaier introduced two interpretations for
formulas of both tuple relational calculus and
domain relational calculus which called unlimited
and limited interpretations. A class of safe
expressions for which both interpretations always
yield the same value is introduced too. However,
D. Мaier offers the readers to prove items of some
theorems. It is not good, because the readers are
unable to verify their proofs.

Specifying of table (relation) in terms of nominal
sets is carried out by V. Redko, J. Brona, D. Buy, S.
Poliakov [7]. Traditionally the finite set of tuple is
understood under the table and the authors take it
into account. However, as a rule, mathematical
statements about standard properties of specification
of relation operations remain true for infinite
relations. Further under relation we will understand
any set of tuples (with common scheme), in
particular infinite. This raises the problem of the
equivalence of table (relational) algebra and tuple
(domain) calculus. In this paper the solution of this
problem is proposed.

I. Glushko
International Journal of Computers

http://www.iaras.org/iaras/journals/ijc

ISSN: 2367-8895 112 Volume 1, 2016

2 Table Algebras of Infinite Tables
and Generalized Relational Calculi
Among the two sets that are considered, A is the set
of attributes and D is the universal domain.

Definition 1. An arbitrary (finite) set of attributes
A⊆R is called the scheme.

Definition 2. A tuple of the scheme R is a
nominal set on pair R , D . The projection of this
nominal set for the first component is equal to R .

In other words, a tuple of the scheme R is a
function D→Rs : .

Definition 3. A table of scheme R (A⊆R) is
pair Rt, , where t is a set (in particular infinite) of
tuples of fixed scheme R .

Thus, a certain scheme is ascribed to every table.
The set of all tuples (tables) on scheme R is

designated as)(RS ()(RT respectively) and the set
of all tuples (tables) is designated as S (T
respectively). Hence,))(()(RSPR =T ,

A⊆

=
R

RSS)(,

A

TT
⊆

=
R

R)(, where)(AP is a power

set of the set A .
Definition 4. The table algebra of infinite tables

is the algebra ,, ,ΞΩPT where T is the set of all

tables, ,,,,,,\,,{ ,,,,,
1
2

21
R

R
RRRRXRpRRRP Rtξπσ ÷⊗=Ω Ξ

}~ R is the signature, Ξ∈∈ ξ,Pp ,
A⊆21,,, RRRX , Ξ,P are the sets of parameters.

The operations of signature ΞΩ ,P are defined in [8].
Lemma 1. Any expression over table algebra of

infinite tables can be replaced by equivalent to him
expression which uses only operations of selection,
join, projection, union, difference and renaming.

Proof. To prove the first statement we will show
that operations of intersection, division, active
complement can be expressed through the
operations noted in formulation of lemma. Indeed,
the following equalities hold:

1) ();,\,\,,, 21121 RtRtRtRtRt RRR =
2) () '11',2211 \,,,

1
1
2 RRR

R
R RtRtRt π=÷

'\ R (,(1,',' 11
tRRRR ππ)

2,'1 RR
R ⊗),,\, 1122 1

RtRt R where

,12 RR ⊆ ;\' 21 RRR =
3) () ,,\,,~ RtRtCRt RR = where

() (),,...,),(,}{},,...,{}{},{,
1121

1
RtRtRtC RAAAAAARA n

nn
ππ

−
⊗⊗=

 and },...,{ 1 nAAR = is a scheme of the table Rt,
(see, for example, [6], [7]).

3 Generalized Relational Calculi
Relational calculus is the basis of most relational

query languages because unlike relational (table)
algebra, calculus expresses only what must be the
result, and does not determine how to get it.
Relational calculus is based on first-order predicate
calculus. There are two forms of relational calculus:
tuple calculus and domain calculus. These forms
have been proposed by E. Codd [2] and M. Lacroix
and A. Pirotte [3] respectively.

3.1 Generalized tuple relational calculus
Consider generalized tuple relational calculus.

In the classical tuple relational calculus and domain
relational calculus only binary predicates usually
consider and functional signature is generally
empty. In this paper tuple relational calculus is
extended by arbitrary predicate and functional
signatures on the universal domain D .

As known, tuple relational calculus builds its
expressions from tuples. A tuple relational calculus
expression looks like as { })(|)(xPRx , where P is a
predicate over tuple variable x , and R is а scheme.
This expression indicates table Rt, ,)(RTt∈ that
contains tuples on which predicate P is true.

The set of legal tuple relational calculus
formulas will be defined relative to:

• a set of attributes A and universal domain
;D

• a set of object variables (tuple variables)
,..., 21 xx ;

• a set of object constants ,..., 21 dd ;
• a set of function symbols ,..., 21

21
nn ff , 1≥in ;

• a set of predicate symbols ,..., 21
21
mm pp , 1≥im ;

• a set of constant tables symbols along with
their schemes; constant tables are denoted as

Rt, ;
• a set of variable tables symbols along with

their schemes; variable tables are denoted as
RX , .

The universal domain D is the domain of
interpretation of object constants, and the set of all
tuples over D is the domain of interpretation of
object variables. We use x as syntactic variable, the
domain of change of which is the set of variables;
f as syntactic variable, the domain of change of

which is the set of function symbols; p as syntactic
variable, the domain of change of which is the set of
predicate symbols; d as syntactic variable, the

I. Glushko
International Journal of Computers

http://www.iaras.org/iaras/journals/ijc

ISSN: 2367-8895 113 Volume 1, 2016

domain of change of which is the set of constants; A
as syntactic variable, the domain of change of which
is the set of attributes.

Definition 5. The following expressions are
terms (induction on length of terms):

a) d is a term;
b) х(A) is a term;
c) if nuu ...,1 are terms, f is a function symbol

of arity n then)...,(1 nuuf)...,(1 nuuf is a term;
d) an expression is a term if and only if it can be

shown to be a term on the basis of conditions а), b)
and с).

We use u as syntactic variable, the domain of
change of which is the set of terms. We will
formulate the rules of formulas construction.

Definition 6. There are three kinds of atomic
formulas (atoms):

а1. For any constant table Rt, and for any tuple
variable x ,)(xRt is an atom.)(xRt stands
for Rt,∈x .

а2. For any variable table RX , and for any
tuple variable x ,)(xRX is an atom.)(xRX
stands for RX ,∈x .

а3. For any terms muu ...,1 , and for any predicate
p of arity m on the universal domain D ,

)...,(1 muup is an atom.
We use the connectives ¬ , ∧ , ∨ , quantifiers
∀∃, and brackets () to build formulas from atoms.

We use P , Q and G as syntactic variables, the
domain of change of which is the set of formulas.

Definition 7. The following expressions are
formulas (induction on length of formulas):

f1. Every atom is a formula.
f2. If P is a formula, then ¬ P is a formula.
f3. If P і Q are formulas, then)(QP ∧ ,

)(QP ∨ are formulas.
f4. If x is a tuple variable, P is a formula,

A⊆R is a scheme, then Px)(R∃ is a
formula.

f5. If x is a tuple variable, P is a formula,
A⊆R is a scheme, then Px)(R∀ is a

formula.
f6. If P is a formula, then ()P is a formula.
f7. There are no other formulas.
In general case tuple variables can be free or

bound in a formula. Sense of these concepts is the
same as well as in the predicate calculus: an
occurrence of a variable x is said to be bound in a
formula if either it is the occurrence of x in a

quantifier (x∀ or x∃) in a formula or it lies within
the scope of a quantifier (x∀ or x∃) in a formula.
Otherwise, the occurrence is said to be free in a
formula. A variable is said to be free (bound) in a
formula if it has a free (bound) occurrence in a
formula (see, for example, [9]).

A scheme (a finite set of attribute)),(Pxscheme
and a set of attributes with which tuple variable x
occurs in a formula P ,),(Pxattr , are defined for
every tuple variable x . The expressions

),(Pxscheme and),(Pxattr are defined only when
x has a free occurrence in formula P , and takes
place including),(),(PxPx schemeattr ⊆ (that
follow from subsequent determinations, on
condition of determination of expressions).

We use the concepts of free and bound variables,
the scheme, and the set of attributes with which
tuple variable occurs in a formula to define the class
of legal formulas.

Definition 8. We will define expression attr for
terms first:

1. if du = , then ∅=),(uxattr ;
2. if xu = (A), then =),(uxattr {A}, аnd

(,(yxattr A)) ∅= , where yx ≠ ;
3. if)...,(1 nuufu = , where iu are terms then

),(),(
1

i

n

i
attrattr uxux

=
= .

Definition 9. Consider the cases where P is an
atomic formula, then

а1. if)(xP Rt= , then x is free in P and
Rattrscheme ==),(),(PxPx ;

а2. if)(xP RX= , then x is free in P and
Rattrscheme ==),(),(PxPx ;

а3. if)...,(1 muupP = , where iu are terms, and

kxx ,...,1 are all variables of these terms, then
this tuple variables are free in formula P ,

),(Pxischeme is undefined, and

),(),(
1

ji

m

j
i attrattr uxPx

=
= , ki ,...,1= .

Atomic formulas are all legal.
Definition 10. The construction of all legal

formulas proceeds by induction on the length of
formulas. Assume G and Q are both legal
formulas.

f2. If GP ¬= , then P is legal, and all
occurrences of variables in P free or bound
as they are in G . For every variable x that
occurs free in G ,

I. Glushko
International Journal of Computers

http://www.iaras.org/iaras/journals/ijc

ISSN: 2367-8895 114 Volume 1, 2016

),(~),(GxPx schemescheme − and
),(),(GxPx attrattr = .

f3. If QGP ∧= or QGP ∨= , then all
occurrences of variables in P are free or
bound as their corresponding occurrences are
in G and Q . Assume variable x occurs
free in subformulas G and/or Q . Define the
scheme, and the set of attributes with which
tuple variable x occurs in a formula for
formula P . Next cases take place.

a. The schemes of formulas
),(Gxscheme and),(Qxscheme are

both defined. Formula P is legal if
equality),(),(QxGx schemescheme =
holds. After determination

),(),(GxPx schemescheme = .
b. The scheme is defined for only one

subformula. Assume),(Gxscheme is
defined, and),(Qxscheme is
undefined. Then

),(),(GxQx schemeattr ⊆ must hold
for P to be legal. After determination

),(),(GxPx schemescheme = .
c. The scheme is undefined for both

subformulas, then),(Pxscheme is
undefined.

In all cases),(),(),(QxGxPx attrattrattr = .
f4. If GxP)(R∃= then x must occur free in

G for P to be legal. Furthermore, if
),(Gxscheme is defined, then equality

Rscheme =),(Gx must hold if including
Rattr ⊆),(Gx is held.),(Pxscheme and

),(Pxattr are not defined, since x does not
occur free in P . Any occurrence of a
variable xy ≠ is free or bound in P as it
was in G . If y occur free in P , then

),(~),(Gschemescheme yPy − and
),(),(GyPy attrattr = .

f5. If GxP)(R∀= , then all restrictions and
definitions are the same as in f4.

f6. If)(GP = , then P is legal, and freedom,
boundness, scheme and attr are the same as
for G .

After introducing the set of legal formulas we
can give a finally determination of expression of
tuple calculus.

Definition 11. Generalized tuple relation calculus
expression has the form)}(|)({ xPx R , where

1) formula P is legal;

2) x is the only tuple variable that occurs free
in P ;

3) if),(Pxscheme is defined, then
Rscheme =),(Px , otherwise,

Rattr ⊆),(Px , where),(Pxscheme is the
scheme of tuple x in the formula P ,

),(Pxattr is the set of attributes with which
tuple variable x occurs in the formula P .

3.1 Generalized domain relational calculus
Domain relational calculus is quite similar to

tuple relational calculus. But there are essential
differences. There are no tuple variables in the
domain relational calculus, but there are variables to
represent components of tuples, instead. Domain
relational calculus are also supported by the
membership condition: () RdAdAt ,,...,,, 2211 ,
where R is scheme, iA is attribute of table t and id
is variable of domain or literal (object constant).
This condition is true iff in the set t there is a tuple
having specified values over universal domain D
for specified attributes.

The set of legal domain relational calculus
formulas will be defined relative to:

• a set of attributes A and universal domain
;D

• a set of object variables (tuple variables)
,..., 21 xx ;

• a set of object constants ,..., 21 dd ;
• a set of function symbols ,..., 21

21
nn ff , 1≥in ;

• a set of predicate symbols ,..., 21
21
mm pp , 1≥im ;

• a set of constant tables symbols along with
their schemes; constant tables are denoted as

Rt, ;
• a set of variable tables symbols along with

their schemes; variable tables are denoted as
RX , .

The universal domain D is the domain of
interpretation of object constants and object
variables. We use x as syntactic variable, the
domain of change of which is the set of variables;
f (p) as syntactic variable, the domain of change

of which is the set of function (predicate) symbols;
d as syntactic variable, the domain of change of
which is the set of constants; A as syntactic variable,
the domain of change of which is the set of
attributes.

Definition 12. The following expressions are
terms (induction on length of terms):

I. Glushko
International Journal of Computers

http://www.iaras.org/iaras/journals/ijc

ISSN: 2367-8895 115 Volume 1, 2016

a. any object constant Ad is a term, where A is
an attribute associated with this constant;

b. any object variable Ax is a term, where A is
an attribute associated with this variable;

c. if nuu ...,1 are terms, f is a function symbol
of arity n then)...,(1 nuuf)...,(1 nuuf is a
term;

d. an expression is a term if and only if it can be
shown to be a term on the basis of conditions
а), b) and с).

We use u as syntactic variable, the domain of
change of which is the set of terms.

Definition 13. There are three kinds of atomic
formulas (atoms):

а1. For any constant table Rt, , where
A⊆= },...,{ 1 nAAR ,),...,(1

1
nA

n
A

Rt aa is an
atom, iA

ia is a constant or variable which
associated with attribute iA .

а2. For any variable table RX , , where
A⊆= },...,{ 1 nAAR ,),...,(1

1
nA

n
A

RХ aa is an
atom, iA

ia is a constant or variable which
associated with attribute iA .

а3. For any terms muu ...,1 , and for any predicate
p of arity m on the universal domain D ,

)...,(1 muup is an atom.
We use the connectives ¬ , ∧ , ∨ , quantifiers
∀∃, and brackets () to build formulas from atoms.

We use P , Q and G as syntactic variables, the
domain of change of which is the set of formulas.

Definition 14. The following expressions are
formulas (induction on length of formulas):

f1. Every atom is a formula.
f2. If P is a formula, then ¬ P is a formula.
f3. If P і Q are formulas, then)(QP ∧ ,

)(QP ∨ are formulas.
f4. If Ax is a tuple variable, P is a formula,

A∈A is a scheme, then Ax∃ (A) P is a
formula.

f5. If Ax is a tuple variable, P is a formula,
A∈A is a scheme, then Ax∀ (A) P is a

formula.
f6. If P is a formula, then ()P is a formula.
f7. There are no other formulas.
Definition 15. Generalized domain relational

calculus expression has the form
)},...,(|,...,{ 11

11
nn A

n
AA

n
A xxPxx , where
1) formula P is a legal domain calculus

formula with exactly the free variables

nA
n

A xx ,...,1
1 ; every variable ix is associated

with the attribute iA
ix , ni ,,1= , where

ji AA ≠ for ji ≠ ;
2) },...,{ 1 nAAR = is a scheme of expression.

3 Equivalence of Table Algebra of
Infinite Tables and Corresponding
Relational Calculi
Theorem 1. If F is the expression of table algebra
of infinite tables, then it is possible effectively to
build equivalent to it expression E of generalized
tuple relational calculus.

Proof. For proof of the theorem we consider
expressions of table algebra which contain the
operations of union, intersection, difference,
selection, projection, join and rename only because
the operations of division and active complement it
is possible to express through these operations (see
Lemma 1).

The proof proceeds by induction on the number
of operators in F .

Basis (No operators). There are two cases.
Firstly, RtF ,= is the constant table, where t is a
infinite set of the scheme R , then

)}(|)({ xx RtRЕ = . Secondly, RXF ,= is the
variable table, then)}(|)({ xx RXRЕ = .

Induction. Assume the theorem holds for any
table algebra expression with fewer than k
operators. Let F have k operators.

Case 1 (union). 21 FFF R= . 1F and 2F each
have less than k operators, and by the inductive
hypothesis we can find tuple relational calculus
expressions)}(|)({ xx PR and)}(|)({ xx QR
equivalent to 1F and 2F respectively. Then E is
{ })()(|)(xxx QPR ∨ .

Case 2 (difference). 21 \ FFF R= . Then tuple
relational calculus expressions)}(|)({ xx PR and
{ })(|)(xx QR equivalent to 1F and 2F respectively
exist as in Case 1. Then E is
{ })()(|)(xxx QPR ¬∧ .

Case 3 (selection). ()1,~ FF Rpσ= . Let
)}(|)({ xx PR be tuple relational calculus

expression equivalent to 1F . Then E is
{ }))(),...,(()(|)(1 mAAPR xxpxx ∧ , where

},...,{ 1 mAAR = is scheme of table that is the value
of expression 1F . Assume that predicate-parameter
of select is defined as

I. Glushko
International Journal of Computers

http://www.iaras.org/iaras/journals/ijc

ISSN: 2367-8895 116 Volume 1, 2016

trueAsAstruesp m =⇔=))(),...,(()(~
1p ,)(RSs∈ ,

where p is a signature predicate symbol of arity m .
Case 4 (projection).)(1, FF RXπ= . Let

)}(|)({ xx PR be tuple relational calculus
expression equivalent to 1F . Then E is

))}()()()((|)({ AAPRRX
RXA

xyxxy =∧∧∃
∈

.

Special case: if ∅=RX then
)}()(|)({ xxy PRE ∃∅= .

Case 5 (join). 2,1
21
FFF

RR
⊗= . Let)}(|)({ 1 xx PR

and { })(|)(2 yy QR be tuple relational calculus
expressions equivalent to 1F and 2F respectively.
Then E is ∧∃∃)()(()(|)({ 2121 xyxz PRRRR

))}.()()()()(
21

AAAAQ
RARA

yzxzy =∧∧=∧∧∧
∈∈

Case 7 (rename).)(1, FRtF Rξ= , where
AA→~:ξ is an injective partial function that

renames attributes. Tuple relational calculus
expression)}(|)({ xx PR equivalent to 1F exists.
Then =∧∧∃=

∈
)()()((|)({

\2 CPRRЕ
domRC

yxxy
ξ

)))}(()()(AAC
domRA

ξ
ξ

yxx =∧∧=
∈

, where

][\2 RdomRR ξξ = .
Theorem 1 proves that generalized tuple

relational calculus is as expressive as table algebra
of infinite tables (in terms of [6]).

Now consider how for generalized tuple
relational calculus expression to build generalized
domain relational calculus expression. Consider the

mapping of the form HE
ϕ

 such that to every
expression of generalized tuple relational calculus
E puts in correspondence equivalent expression of
generalized domain relational calculus H . Let

)}(|)({ yPy RE = , where tuple y is the only tuple
variable that occurs free in P and },...,{ 1 nAAR = .

Make the following replacements and obtain the
generalized domain calculus expression

)}.,...,(|,...,{ 11 nnH yyPyy= First apply the mapping
ϕ to the terms of generalized tuple relational
calculus:

1) every object constant d of generalized tuple
relational calculus becomes object constant

Ad of generalized domain relational
calculus, where RA∈ is the attribute
associated with this constant;

2) every term x (iA) of generalized tuple
relational calculus becomes variable iA

ix of
generalized domain relational calculus;

3) every term),...,(1 nvvf of generalized tuple
relational calculus, where iv is the terms of
generalized tuple relational calculus,

,,...,1 ni = becomes term),...,(1 nuuf of
generalized domain relational calculus,
where ju is the terms of generalized domain
relational calculus, nj ,...,1= which derived
from the previous replacements;

Apply the mapping ϕ to the atoms of
generalized tuple relational calculus:

a1) any atom)(' zRt of generalized tuple
relational calculus becomes),,(1

1'
mA

m
A

Rt zz ,
where mA

m
A zz ,,1

1 are the variable of
generalized domain relational calculus,

},...,{' 1 mAAR = is the scheme of constant
table ', Rt ;

a2) any atom)(' zRX of generalized tuple
relational calculus becomes),,(1

1'
mA

m
A

RX zz

, where mA
m

A zz ,,1
1 are the variable of

generalized domain relational calculus,
},...,{' 1 mAAR = is the scheme of variable

table ', RX ;
a3) any atom),...,(1 mvvp of generalized tuple

relational calculus, where iv are the terms,
mi ,...,1= , becomes),...,(1 muup , where ju

are the terms of generalized domain
relational calculus which derived from the
previous replacements, mj ,...,1= .

Any formula P of generalized tuple relational
calculus replaced by P′ , where for each atoms
made substitute a1-a3 and each free occurrence of z
replaced by nA

n
A zz ,...,1

1 , },...,{ 1 nAAR = is the scheme
of z . A quantified subformula Gz)(2R∃ of
generalized tuple relational calculus,

},...,{ 12 mAAR = , becomes Gzz ′∃∃)()...(11
1

m
A
m

A AA m ,
while Gz)(2R∀ becomes Gzz ′∀∀)()...(11

1
m

A
m

A AA m .
After completing these changes, we will get

expression of generalized domain relational
calculus)},...,(|,...,{ 11

11
nn A

n
AA

n
AH yyPyy= . It should

also be clear that the values that may be assumed by
every variables iz of generalized domain calculus
are exactly those that could be assumed by z (A i) in
the original expression. Thus, the expressions E
and H are equivalent. Consequently, the following
theorem takes place.

Theorem 2. If E is an expression of generalized
tuple relational calculus, then it is possible

I. Glushko
International Journal of Computers

http://www.iaras.org/iaras/journals/ijc

ISSN: 2367-8895 117 Volume 1, 2016

effectively to build equivalent to it expression H of
generalized domain relational calculus.

So, theorem 2 proves that generalized domain
relational calculus is as expressive as generalized
tuple relational calculus (in terms of [6]).

Let's prove that table algebra of infinite tables is
as expressive as generalized domain relational
calculus.

Theorem 3. If H is an expression of generalized
domain relational calculus, then it is possible
effectively to build equivalent to it expression F of
table algebra of infinite tables.

Proof. Let)},...,(|,...,{ 11
11

nn A
n

AA
n

AH xxPxx= be
expression of generalized domain relational
calculus, where },...,{ 1 nAAR = is a scheme of the
table, that is the value of expression H . For each
subexpression G of P we will find an algebraic
expression GF .

We will prove by induction on the number of
operators in a subformula G of P that if G has
free domain variables mA

m
A yy ,...,1

1 then
)},...,(|,...,{ 11

11
mm A

m
AA

m
A yyGyy has an equivalent

expression in table algebra of infinite tables GF .
Then, as a special case, when G is P itself, we

have an algebraic expression for
)},...,(|,...,{ 11

11
nn A

n
AA

n
A xxPxx . It is assumed that

mA
m

A yy ,...,1
1 are the only tuple variables that occurs

free in G and the table of scheme },...,{ 1 mG AAR =
is a value of expression)},...,(|,...,{ 11

11
mm A

m
AA

m
A yyGyy .

Replace domain variables in P so that no
variable is bound in two places or occurs both free
and bound in P . Note that every variable is
associated with an attribute, either by a quantifier

x∀ (A) or x∃ (A) if a variable is bound in P or by
appearing to the left of the bar in the expression H ,
if a variable is free in P .

For any attribute A we will map algebraic
expression. A single-attribute table }{, At is a
value of this algebraic expression. This table
contains all tuples of kind { }dAs ,= , D∈d . We
will designate this algebraic expression through

А][D . Consider all possible cases.
Basis (no operators). Subformula G is an atom

of the form),...,(1 muup or),...,(1
1

Am
m

A
Rt aa or

),,(1
1

mA
m

A
RX zz .
1. Let G be),...,(1 muup , where iu are the

terms of generalized domain relational
calculus, kA

k
A yy ,...,1

1 are the all variables of
this terms and kAA ,,1 are the attributes

associated with these variables. Then GF is
),][...]([

,...,},,{,~
1121

11 k
kk

k ARRRRRAAAp DD
−

⊗⊗

σ where

}{ ii AR = , ki ,,1= . Assume that predicate-
parameter of select is defined as

,))(),...,(()(~
1

trueAsAstruesp
mkk =⇔= p

),(RSs∈ where p is signature predicate
symbol of arity m .

2. Let G be),...,(1
1

mA
m

At aa , where iA
ia is either a

constant or a variable over the universal
domain D . Let },...,{ 1 mAAR = be a scheme
of table Rt, . The algebraic expression GF
is)),((,~, RtRpRY σπ , where p~ is predicate-
parameter of select which is a conjunction of
comparisons iA

iiA a= for each iA
ia that is a

constant; Y = jA
jjA a|{ is a variable}.

3. Let G be),...,(1
1

mA
m

AX aa , where iA
ia is either

a constant or a variable over the universal
domain D . Let },...,{ 1 mAAR = be a scheme
of table RX , . The algebraic expression

GF is)),((,~, RXRpRY σπ , where p~ is
predicate-parameter of select which is a
conjunction of comparisons iA

iiA a= for each
iA

ia that is a constant; Y = jA
jjA a|{ is a

variable}.
Induction. Assume G has at least one operator

and that the inductive hypothesis is true for all
subformulas of P having fewer operators than G .

Case 1. QG ¬= . Let QF be the algebraic
expression for Q and the table of scheme QR is a
value of expression QF . Then QRG FF

Q
~= .

Case 2. QQG ′∨= . Let Q has free variables
pk C

p
CB

k
B vvzz ,...,,,..., 11

11 and let Q′ has free variables
qk K

q
KB

k
B wwzz ,...,,,..., 11

11 , where pC
p

C vv ,...,1
1 and

qK
q

K ww ,...,1
1 are distinct. QF and QF ′ are the

algebraic expressions for Q and Q' respectively.
Let iC , pi ,...,1= be the attributes associated with
variables pC

p
C vv ,...,1
1 and let jK , qj ,...,1= be the

attributes associated with variables qK
q

K ww ,...,1
1 . Let

q
qqQQQ

KKKKRKKRKKRQ DDFF][...][
}{},,...,{}{},{}{,1

1121
1

1 −
⊗⊗⊗=

 and

let
,][...][

}{},,...,{}{},{}{,2
1121

1
1

p
ppQQQ

CCCCRCCRCCRQ DDFF
−′′′

⊗⊗⊗= ′

I. Glushko
International Journal of Computers

http://www.iaras.org/iaras/journals/ijc

ISSN: 2367-8895 118 Volume 1, 2016

where QR and 'QR are the schemes of the tables that
are the values of those algebraic expressions
respectively.

Let
1FR and

2FR be the schemes of the tables that
are the values of algebraic expressions 1F and 2F
respectively. Note that

1FR =
2FR . Then

21 1
FFF

FRG = .

Case 3. QQG ′∧= . This generalized domain
calculus expression can be replaced by

)(QQG ′¬∨¬¬= (De Morgan's law).
Case 4. QxG)(AA∃= . Let QF be the algebraic

expression for Q . Then GF is { })(,\ QXAX Fπ , where
X is the scheme of the table that is the value of

algebraic expression QF .

Case 5. QxG)(AA∀= . This generalized domain
calculus expression can be replaced by

)))((()(QxQx ¬∃¬=∀ AA АА .
Theorem 3 proves that table algebra of infinite

tables is as expressive as generalized domain
relational calculus (in terms of [6]).

Taking into account the theorems 1, 2, 3 we are
getting a basic result. This situation is shown in
Fig. 1.

Theorem 4. Table algebra of infinite tables,
generalized tuple relational calculus and generalized
domain relational calculus are equivalent.

Fig.1 Equivalence of Table Algebra of Infinite
Tables and Corresponding Relational Calculi

4 Conclusion
In article table algebras of infinite tables are
considered. The classical relational al calculi are
extended by functional and predicate signatures on

the universal domain (while usually consider only
binary predicates and functional signature is
generally empty). It is proved the equivalence of
table algebra of infinite tables and corresponding
relational calculi. These results generalize the
classical result about the equivalence of Codd’s
relational algebra and tuple (domain) relational
calculus.

References:
[1] E.F. Codd, A Relational Model of Data for

Large Shared Data Banks, Comm. of ACM,
13(6), 1970, рр. 377-387.

[2] E.F. Codd, Relational Сompleteness of Data
Base Sublanguages, Data Base Systems,
Proceedings of 6th Courant Computer Science
Symposium, 1972, рр. 65-93.

[3] M. Lacroix, A. Pirotte, Domain-oriented
Relational Languages, Proceedings of 3rd Int.
Conf. on Very Large Data Bases, 1977, рр.
370-378.

[4] A. Klug, Equivalence of Relational Algebra
and Relational Calculus Query Languages
Having Aggregate Functions, J. ACM, 29(3),
1982, рр. 699-717.

[5] J.D. Ullman, Principles of database systems,
Rockville, Maryland: Computer Science Press,
1982.

[6] D. Maier, The theory of relational databases,
Rockville, Maryland: Computer Science Press,
1983.

[7] V.N. Redko, Yu.J. Borona, D.B. Buy,
S.A. Poliakov, Reliatsiini bazy danykh:
tablychni alhebry ta SQL-podibni movy, Kyiv,
Vydavnychyi dim «Akademperiodyka», 2001.
(in Ukrainian)

[8] D. Buy, I. Glushko, Generalized Table Algebra,
Generalized Tuple Calculus and Theirs
Equivalence, Proceedings of CSE 2010
International Scientific Conference on
Computer Science and Engineering, 2010,
pp. 231-238.

[9] E. Mendelson, Introduction to mathematical
logic, Chapman & Hall, London, 1997.

Generalized
tuple

relational
calculus

Generalized
domain

relational
calculus

Table
algebra of

infinite
tables

I. Glushko
International Journal of Computers

http://www.iaras.org/iaras/journals/ijc

ISSN: 2367-8895 119 Volume 1, 2016

