
Enzyme Production Modeling Simulation Using Neural Techniques 
 

M. CARAMIHAI, IRINA SEVERIN 
University POLITEHNICA Bucharest  

Spl. Independentei, 313, sector VI, Bucharest  
ROMANIA 

m.caramihai@ieee.org, irina.severin@upb.ro, 
www.pub.ro       

 
 
Abstract: - In the present work, growth and cellulase production by the cellulolytic fungus Aspergillus niger in 
fed-batch culture using an agricultural residue as the substrate have been investigated. The Windows application 
of Artificial Neural Network (ANN) to the estimation of bioprocess variables is presented. A neural network 
methodology is discussed, which uses environmental and physiological information available from on-line 
sensors, to estimate the cellulase production in a fed-batch bioprocess. An efficient optimization algorithm that 
reduces the number of iterations required for convergence is proposed. Results are presented for different training 
sets and different training methodologies. 
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1 Introduction 

Development of fermentation models is quite 
important for the improvement of understanding of 
the processes taking place in the bioreactor, and more 
specifically in the microorganisms growing in the 
bioreactor. Quantitative description of the microbial 
growth kinetics started with the pioneering work of 
Monod [1]. He related the specific microbial growth 
rate and the extracellular concentration (S) of the 
growth-limiting substrate with the well-known 
hyperbolic expression. Most mathematical models of 
microbial growth kinetics have been developed on 
Monod model, which was considered to describe 
satisfactory, a large range of fermentation processes.  

The biological processes are characterized by a 
large degree of complexity and for a better 
understanding of the fundamental processes in a 
fermentation, various approaches including expert 
systems, fuzzy control, and neural network control 
have been applied [2], [3].  

Microorganisms growing on cellulose must 
produce extracellular cellulolytic enzymes capable of 
degrading the polysaccharide to soluble sugars. The 
degradation products, mainly glucose and cellobiose, 
are used as carbon and energy sources by 
microorganism. The cellulose conversion represents 
a very interesting example of fermentation where 
growth, enzyme production, and enzyme reaction are 

closely interdependent. Lignocellulosic biomass, the 
source of cellulose, is the most abundant renewable 
resource on earth. Cellulose is readily available from 
agricultural residues, herbaceous crops, forestry by-
products, and pulp and paper industry waste. 
Extensive research during the past decade has shown 
that the cellulase production is the key of the 
cellulose bioconversion. Fungi, bacteria, and plants 
synthesize cellulases, but research has focused 
primarily on fungal and bacterial cellulases. The 
aerobic mesophilic fungus Trichoderma reesei and its 
mutants have been the most intensely studied sources 
of cellulases; other fungal cellulase producers include 
Penicillium sp., Aspergillus sp., Fusarium sp. 

In the past decades, enzymatic conversion of 
cellulose has received attention for renewable 
production of fuels from cellulosics because of the 
high selectivity of enzymatic hydrolysis compared to 
acid hydrolysis. In the enzymatic conversion of 
cellulose, the cost of producing hydrolytic enzymes 
(cellulases) constitutes a major portion of total 
production cost. To improve the economics of the 
process, research has been focused on several areas 
including improving the strain performance, 
selecting an efficient mode of operation, and 
optimizing the operating conditions. Currently, 
cellulase enzymes are produced by growing 
Trichoderma reesei and its mutants, but it is of 
interest to use other cellulolytic fungi such as, 
Penicillium and Aspergillus.  
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The research has been reported the great potential 
for improving cellulase production using a fed batch 
mode of fermentation [4]. An entirely fed-batch 
operation serves the purpose of controlling the 
specific growth rate on a value bellow the critical 
growth rate  

In the present work, growth and cellulase 
production by the cellulolytic fungus Aspergillus 
niger in fed-batch culture using an agricultural 
residue as the substrate have been investigated. The 
estimation of bioprocess variables has been realized 
using Artificial Neural network (ANN). 
 
 
2 Problem Formulation 
 
2.1. The micro-organism 

The cellulolytic fungus Aspergillus niger from the 
microbial collection of ICECHIM (Institute for 
Chemical Research) was used in all experiments. 
 
2.2. Fermentation 

Fermentations were carried out in a 5L bioreactor 
using wheat straw as carbon source. The process 
started as a conventional batch culture with 50g/L 
substrate. After 48-72 h, when the growth was 
observed to slow down, specified amounts of 
substrate (20g/L daily) were added. The nutrient salts 
were added according to Mandels' medium [5]. The 
growth temperature was maintained at 28 oC, and the 
pH was held to 4.5 by adding NH4OH (3M) and 
H3PO4 (3M). Dissolved oxygen was kept above 20% 
of the saturation volume for the medium. The 
bioreactor was inoculated with preinoculum obtained 
from agitated flask cultures. Antifoam emulsion was 
used. 
 
2.3. Analysis 

Cellulase activity was measured as 
carboxymethylcellulase (CMC) using 1% 
carboxymethylcellulose [6]. The activity was 
expressed as international units (IU), defined as the 
amount of enzyme required to produce one 
micromole of glucose per minute in the standard 
conditions. Soluble sugar content was determined 
with dinitrosalicylic reagent [7]. Soluble protein was 
measured by Lowry method [8]. Aliquots of the 
culture broth were taken out at definite intervals from 
the fermentor and biomass concentration was 
determined gravimetrically. The residual substrate 
was calculated from the difference of total dry weight 

and mycelium dry weight. The mycelium dry weight 
was determined by repeated extraction with NaOH 
and protein analysis according to Lowry. 
 
2.4. Neural Nets Configuration 

Neural networks with their inherent parallelism 
and their ability to learn, has been seen by many 
authors in the field of system controlling, as an 
exciting possibility to design adaptive controllers, 
when the dynamics of the system is deeply nonlinear, 
complex or unknown. The main advantages of the 
neural networks, which make them an important tool 
in order to enhance the capabilities of conventional 
controllers and to create robust controllers, able to 
better adapt the controller parameters to different 
plants and to environmental changes, are: 

• Neural networks can approximate any linear 
or nonlinear mapping between the input and 
the output of the system. 

• They are able to learn in order to perform this 
approximation. 

• Robustness to partially network destruction, 
noise tolerance, and generalization ability to 
situations not contained in the training data 
set. 

• Computationally fastness once trained. 
 
The problem of capturing the nonlinearity of the 
process to be modeled and controlled is to match the 
nonlinearity of the process with that of the network, 
by learning, neural networks being nonlinear systems 
themselves. It was shown in the literature that neural 
networks can solve complex and difficult control 
tasks, where traditional control methods fail, neural 
networks being also able to work in the presence of 
noise. 
 
In this paper we introduce a class of networks, called 
Jordan-Elman networks, that use context units with 
local feedback to provide memory and store the 
recent past. Since the feedback is usually fixed, they 
can be placed anywhere in an MLP without changing 
the feedforward nature of the learning. They should 
be contrasted with the more general time-lagged 
recurrent nets, which use cascaded context units with 
a single adaptable feedback parameter. 
 
Jordan and Elman networks extend the multilayer 
perceptron with context units, which are processing 
elements (PEs) that remember past activity. Context 
units provide the network with the ability to extract 
temporal information from the data. In the Elman 
network, the activity of the first hidden PEs is copied 
to the context units, while the Jordan network copies 
the output of the network. Networks, which feed the 
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input and the last hidden layer to the context units, 
are also available. 
 
The proposed architecture is one example of a 
Jordan-Elman neural network, where the context 
units are connected to the input layer to provide a 
memory of the recent input data. The neural net 
design was made using NeuroSolutions® software 
package. The memory depth of a context unit is 
adjusted through its feedback gain, or time constant. 
The context unit is represented by the 
IntegratorAxon. NeuroSolutions offers other context 
units, including the sigmoid and tanh context units, 
whose outputs saturate at predefined limits. 
 
The context unit remembers the past of its inputs 
using what has been called a recency gradient, i.e., 
the unit forgets the past with an exponential decay. 
This means that events that just happened are 
stronger than the ones that have occurred further in 
the past. The context unit controls the forgetting 
factor through the Time constant. Useful values are 
between 0 and 1. A value of 1 is useless in the sense 
that all of the past is factored in. On the other 
extreme, a value of zero means that only the present 
time is factored in (i.e., there is no self-recurrent 
connection). The closer the value is to 1, the longer 
the memory depth and the slower the forgetting 
factor. 
 
The setup values for the NN training are the follows: 

 Input: 1, Output: 1, Hidden: 3, Exemplars: 51 
 Context unit: time 0.8, Integrator axon 
 Hidden layer: 1, Transfer: TanhAxon, 

Learning rule: momentum, step size: 0.1, 
momentum: 0.7 

 Output: similar 
 Maximum epochs: 1000, weight update: 

batch, termination: threshold: 0.01 
 
The neural net configuration is presented in Fig. 1. 
 

 
Fig. 1 The Jordan-Elman Neural Network 
configuration 
 

 

3 Problem Solution 
In order to test the performances of the neural 

network, the case study is made on the common 
bioprocess described above, illustrated by the 
following equation [9]: 

 

where S = substrate concentration [g/L], µ = specific 
growth rate [h-1] and k1, k2, k3 = constants  
 
The training data set contains 51 examples, also the 
testing data set. During this simulation, the training 
values were determined based on model (eq. 1) 
simulation, meanwhile the test data were determined 
experimentally. The graphical representation of the 
training curve is shown in Fig. 2. 
 

 
Fig. 2 The training curve for fungal cultivation based 
on eq. 1 
 
The learning process is described below by the 
Active Cost function (Fig. 3). As the figure shows, 
the learning curve has a slow decreasing after a 
“high” peak. During the learning process, the Active 
Cost curve till to zero within a 636 epochs interval. 
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Fig. 3 The graphical representation of the active cost 
during the training process 
 
After the learning process was finished, the neural net 
structure was tested using a set of experimental data. 
The testing data were selected in the same interval 
(S[0, 100 g/L]) as the training data, but with a 
different increment. The comparison between the two 
curves (Fig. 4) shows a quasi-superposition of the 
shapes for a substrate concentration locked in a 
medium interval (35, 75 g/L). 

 
Fig. 4 Comparison between the training and testing 
curves 
 
Taking into account that eq. 1 fits very well this kind 
of data, this difference can be explained by the 
particular structure of the neural network. Despite the 
multiple advantages of the Jordan-Elman neural 
structure, it is supposable that other particular 
configurations could be useful for this type of 
bioprocess. 
 
 

4 Conclusion 
The results show the potential advantages of enzyme 
production and fungal cultivation processes using 

fed-batch cultivation. A relationship between the 
substrate concentration and specific growth rate has 
been obtained using a particular neural network 
structure (i.e. Jordan-Elman). The tests had shown 
that, in defiance of a close training process, the neural 
structure has had a good response only for a well-
defined substrate concentration interval. A 
comparison between different neural net structures 
for this type of bioprocess will be usefully in order to 
obtain a good fit of real data using intelligent 
techniques. 
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