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Abstract - This paper studies the synchronization of SA and AV Node Oscillators using PSO optimized 
RBF-based controllers systems. High levels of control activities may excite unmodeled dynamics of a 
system. The objective is to reach a trade-off between tracking performance and parametric uncertainty. 
Two methods are proposed to synchronize general forms of Van Der Pol (VDP) Model and their 
performance. These methods use the radial basis function (RBF)- based neural  controllers for this 
purpose. The first method uses a standard RBF neural controller. Particle swarm optimization (PSO) 
algorithm is used to derive and optimize RBF controller parameters. In the second method, an error 
integral term is added to the equations of RBF neural network. The coefficients of error integral 
component and parameters of RBF neural network are also derived and optimized via PSO algorithm. 
Simulation results show the effectiveness and superiority of proposed methods in both performances in 
comparison with adaptive controller. 

Key-Words- Synchronization, Van der Pol Model, SA and AV Node Oscillators, RBF, PSO Algorithm, 
Adaptive Conrol, Optimization Algorithm, system Dynamics, Simulation Results, Controller Parameters, 
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1 Introduction 

The present paper examines synchronizations of Van 
der Pol oscillatory systems. Synchronization problem 
has found many applications in laser, chemical 
reactors, secure communications, and biology. This 
paper deals with one such application in cardiac 
synchronization. This seems to be particularly 
important as cardiovascular diseases are among the 
major causes of death worldwide. Disruption in the 
heart electrical function is a type of such diseases 
generally referred to as “cardiac arrhythmia”[1],[2]. 
Thus, electrical conduction system of the heart can be 
modeled and used in preventing serious heart diseases. 
One practical way to investigate how a member of an 
organism works is to develop a model which 
accurately reflects the function of this part. Such a 
model may serve as a hypothesis for some 
physiological observation. For simulating how 

stimulation propagates over the heart tissue, it seems 
necessary to develop an accurate model of action 
potential of cells[3]. For this purpose, Van der Pol 
model was used in the present study to examine 
synchronization of heart oscillators. The main goal of 
this study is to synchronize atrio-ventricular (AV) 
oscillator with sino-atrial oscillator based on a 
particular model by the use of different methods. We 
will also discuss how pacemakers including SA node 
and AV node can be resynchronized in cases where 
one is out of synch with the other (which is a major 
cause of arrhythmia)[4].  

 

1.1 An Overview of Cardiovascular Physiology 

The heart will not be able to pump unless it receives an 
electrical excitation which originates from pumping. 
Generation and transmission of electrical impulses 
depend on automaticity, excitability, conductivity, and 
contractibility of cardiac cells. Transmission of cardiac 
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impulses creates depolarization-repolarization cycles 
in cardiac cells. When at rest, the cardiac cells are 
polarized, i.e. they show no sign of electrical 
activity[5]. The cell membranes separate different 
concentrations of such ions as K+ and Na+, and create 
larger negative charges inside the cell. The 
phenomenon is known as resting membrane potential. 
As soon as an electrical excitation arrives, the ions are 
transported at either side of the cell membrane leading 
to action potential or depolarization. Once a cell is 
completely depolarized, it tries to return to its initial 
conditions or resting state. This process is referred to 
as repolarization[6],[7]. The electrical charges are 
reversed and return to the normal state. A typical 
depolarization-repolarization cycle consists of five 
phases (0 to 4) (Fig. 1 presents action potential curve 
and voltage variations in these five phases):  

Phase 0: A cell receives an impulse from its adjacent 
cell and becomes depolarized.  

Phase 1: An initial immediate repolarization takes 
place.  

Phase 2: This slow repolarization step is also known 
as plateau phase. In Phase 1, Phase 2, and early in 
Phase 3, cardiac cells are at total inexcitability state. In 
this phase, not every stimulus with any intensity can 
result in cellular response[8],[9].  

Phase 3: This phase is known as rapid repolarization. 
At this point of time, the cell returns to its initial state. 
At the last one-third of this phase, when the cell enters 
the relative excitability state, very strong excitations 
can depolarize it.  

Phase 4: This step is the resting state for action 
potential. By the end of the fourth phase, the cell is 
ready for next excitations. All these activities can be 
recorded on electrocardiogram (ECG)[10]. 

 

 

Fig. 1- Action Potential Curve 

1.2 Electromechanical Conduction Mechanism of 
the Heart  

Immediately after depolarization and repolarization, 
electrical impulses are propagated along a pathway 
known as conduction system (Fig. 2). These impulses 
start traveling out of the SA node, through the atrium 
and Bachmann's bundle and into the AV node[11]. 
The impulses, then travel through the bundle of His, 
left and right branches, and eventually into the 
Purkinje fibers. This conduction system is an 
electromechanical one. The electrical section orders 
the contraction of all cells, and the mechanical section 
( muscles) implements these orders. Some diseases are 
caused by failure in these mechanical functions while 
most diseases are the result of the malfunction of 
electrical system. Electrical conduction system of the 
heart can be thought of as a self-exciting pacemaker. 
This system is responsible for proper and 
synchronized contraction of cardiac muscles[12].  

 

 

Fig. 2. Pacemakers and Impulses Routes 

 

 

1.3 Introduction to Synchronization  

The word “synchronous” has its origin in a Greek 
word meaning “sharing the same time period”, and 
since its origin, the word has been used in everyday 
applications to denote agreement or dependency of the 
different processes in terms of time. Historically, 
analysis of synchronization of dynamic systems has 
received considerable attention as a very important 
subject in physics. The phenomenon dates back to the 
17th century when Hyugens patented two synchronized 
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pendulum clocks with very weakly coupled 
oscillations[13],[14].  

In synchronization of oscillatory systems, two 
identical systems oscillate simultaneously. If one 
system is designated as the master and another 
identical system is assigned as the slave when a proper 
control input is applied to the slave, the dynamic 
behavior or the two systems will become identical 
after a period of time. The slave which often has to 
become synchronized with the master is usually 
referred to as the response system or received while 
the master is sometimes called the drive or 
sender[15],[16],[17].As mentioned earlier, the 
objective here is to synchronize the slave with the 
master. For this purpose, a nonlinear control system 
must be designed to receive the control signals from 
the master and control the slave. Here, behavior of the 
slave is clearly controlled by the master. In addition, 
the slave may have conditions different from those of 
the master[18],[19].  

2 Materials And Methods  

2.1 Van Der Pol (VDP) Model  

The first attempts to explain the heart cells oscillatory 
behavior was made in 1926 by Van der Pol [20]. 
Balthasar van der Pol was a German physicist and an 
electronic engineer. He achieved discovering stable 
oscillations, now called 'limit cycle' . Van der Pol was 
the first person who examined relaxation oscillations 
by studying an electrical circuit which had self-
entertained oscillations with the amplitude 
independent of initial conditions. The schematic of this 
circuit is shown in Figure 3.  

 

Fig. 3- Van der Pol’s Circuit 

 

  

The equations of the voltages and currents in this 
circuit are 
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By substitution x, t, and c from (2) into the current-
voltage equations in (1), the following differential 

equation, known as Van 
der Pol’s equation is 
obtained[21] : 

 

This circuit serves as an essential model for self-
entertained oscillations in physics, electronic 
engineering, biology, neurology and many other 
sciences. Since c is the control parameter in this 
equation, different periodic responses can be initiated 
by changing the value of c with large values of c 
resulting in relaxation oscillations[22]. 

For some important properties, Van der Pol nonlinear 
equations are used to model the oscillations of the 
heart. First, Van der Pol oscillator adjusts its natural 
frequency to the frequency of the input signal without 
changing the oscillation amplitude. This is critically 
important as the low-frequency slave oscillator has to 
adjust itself to the dominant high-frequency 
pacemaker of the heart[23].  

Therefore, Van der Pol model was used in this project 
to model the oscillators at SA and AV nodes. Each 
oscillator at SA node and AV node is modeled using 
Van der Pol differential equations. The interaction 
between the oscillators of the heart is modeled by the 
following Van der Pol equations[24],[25]. The 
coupling between these interacting oscillators is 
modeled as follows: 
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The first equation which models SA oscillations is the 
drive in the present problem while the second equation 
for modeling AV oscillations represents the response 
system[38].  

2.2 Generating Action Potential by the Model  

Heart rhythm is determined by a series of electric 
impulses (action potential) which travels throughout 
the heart. Action potentials for SA and AV cells 
obtained through are confirmed[25]. The validity of 
the Van der Pol model used here in terms of how these 
waveforms match the actual forms generated in the 
heart is clarified[26],[27].  

2.3 Synchronization Using Adaptive Control  

Adaptive control is used to design a controller which 
can create a desirable response in the face of smooth 
changes in the system and modeling errors. The 
difference between adaptive control and robust control 
is that in adaptive control, no information is required 
about the range within which the system operates or 
the error is involved in the system parameters. In other 
words, a design based on robust approach results in a 
controller which leads to stability within a certain 
range without any requirements for changing the 
control laws while in adaptive control, control laws 
may be changed depending on the conditions in order 
to make the system stable[28],[29].  

 

 

2.3.1 Designing a Synchronizer Using Adaptive 
Control  

Many techniques rely on complete knowledge of the 
system structure and parameters. However, some 
parameters may not be available for designing a 
synchronization mechanism. In such cases, adaptive 
synchronization can be helpful in solving the problem. 
In many cases, the parameters of the master and slave 
systems are unknown[30]. Therefore, adaptive 
techniques should be used to synchronize two systems 
with unknown parameters. In adaptive control, 
parameter estimation forms a basis for designing the 
controller. Using the Lyapunov method for estimating 
the parameters, these parameters approach the values 
of the corresponding parameters in the actual system. 
These estimated values are employed in the controller 
while closed-loop stability of the system is maintained 
by utilizing Lyapunov's theorem for stability[31]. 

In cases where the parameters of the drive system 
and/or the response system are unknown, adaptive 
control is a useful and simple technique for 
synchronizing the two systems[32]. The objective here 
is to find a controller and a rule to update the 
parameters so that the states of the drive and the 
response systems become globally and asymptotically 
synchronized[33]. In this technique, control inputs 
with the same number as the states of the system are 
applied to the slave or response system, and the 
controller is selected such that the nonlinear portion of 
the drive-response error dynamic is eliminated[34].  

Lyapunov's theorem for stability is utilized to obtain a 
rule for updating the estimated parameters used in the 
controller and to demonstrate closed-loop stability of 
the system. More details are provided in the following 
section on adaptive synchronization of the heart 
oscillators[9].  

In this section, adaptive control is used to synchronize 
non-identical SA and AV oscillators with one totally 
unknown parameter. In both cases, the initial 
conditions of the master are different from those of the 
slave[35].  

The descriptive equations for the two nodes are:  
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Up to this point, we assumed that all parameters are 
known. Now, we assume that one parameter (c2) is 
unknown. The parameter error is defined as:  
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Lyapunov method is used to obtain the rules for 

updating 2ĉ . Consider the following Lyapunov 
candidate function:  

3
2
1

2
224

2
322

2
11421 )(ˆ)ˆ( xwwkexxcxxcxccu 

                                                                     (9) 

By differentiating both sides of (10) and substituting 
the error dynamic from (8), we have: 

 2/)~()~,( 2
2

2
222 ceceV                                                                                                                  

(10) 

Now, (5-69) can be used to obtain the updating rule: 
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The parameter 2ĉ is determined by the signals of the 
system; the nonlinear nature of the adaptive control 
system can be easily seen here. 

 24
2
342 )(ˆ exxxc 
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By selecting Rck  1 , V is obtained as:  

 02
2

2
1  eeV                                                                                                                                   

(13) 

Now, Lyapunov's theorem for stability and Barbalat's 
Lemma can be used to show that the control function 
(9) and the parameter adjustment rules (12) 
asymptotically synchronize the systems described by 
(5) and (6) with one unknown parameter. It can be 
seen that, even with one unknown parameter, 
synchronization error asymptotically converges to 
zero[36]. 

 

3 Discussions And Results  

3.1 Simulation Results 

The initial value for the estimated parameter is 

selected as 3)0(ˆ2 c  . Based on the states of the two 
systems synchronized using adaptive control [37],[38], 
it can be seen that, even with one unknown parameter, 
synchronization error vanishes symptotically.  

 

Fig. 4.  Error 

 

Figure 4 Shows how the estimated values for the 
unknown parameter converge to the actual values.  

 

3.2 PSO Algorithm 

 PSO is a population-based stochastic optimization 
technique which does not use the gradient of the 
problem which was optimized, so it does not require to 
be differentiable for the optimization problem as is 
necessary in classic optimization algorithms. 
Therefore, it can also be used in optimization problems 
that are partially irregular, time variable, and noisy. In 
PSO algorithm, each bird referred to as a 'particle' 
represents a possible solution for the problem.[39] 
Each particle moves through the D-dimensional 
problem space by updating its velocities with the best 
solution found by itself (cognitive behavior) and the 
best solution found by any particle in its neighborhood 
(social behavior). Particles move in a 
multidimensional search space, and each particle has a 
velocity and a position as follows: 
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simulations, the following equation is used for 
velocity: 

    )16(])([])([)()()1( 2211 kxGkxPkvkkv iiiiiiii  
in which ϕ is inertia function and β1, β2 are 
acceleration constants[40],[41]. 

 

3.3 Proposed Synchronization Schemes 

As mentioned before, the synchronization scheme 
consists of two systems: the master and the slave. In 
this scheme, an RBF- or “RBF + error integral”-based 
controller is used to make the states of the slave 
system follow the states of the master system, in the 
presence of uncertainties and external 
disturbances[42]. It should be noted that h(·) can be 
considered as any continuous function. In this section, 
two proposed methods of system synchronization are 
described: (14) RBF-based nonlinear controller, (15) 
“RBF + error integral” model in which an integral 
term is added to RBF model to improve the robustness 
of the proposed controller. To optimize the parameters 
of these controllers, PSO is also used as a continuous 
evolutionary algorithm[43],[44]. The mathematical 
formulation: 

 

 

Fig 5. Flowchart of PSO Algorithm 

 

The proposed methods are stated in the following 
subsections: 

 

3.4 Control by RBF Model 

Consider the control system in (15), for this system the 
following RBF-based controller is proposed: 
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Where 
.

is the Euclidean norm of a vector. To find 

the optimized parameters 
** , ccWW  and 

*  , 
the PSO algorithm is used[47],[48]. 

3.5  “RBF + error Integral” Model 

As mentioned before, there may be modeling 
uncertainties and external disturbances in the control 
problem. Therefore, the controller should be robust 
enough such that it can cope with these uncertainties. 
Now, as a modification of the method proposed, the 
integral components are added to the basis function 
vector to increase the robustness of the system. 
Therefore, the following controller is proposed: 
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  ],...,,[ 21 dtedtedteedt n .The goal in this 

scheme is to find the optimized  
** , ccWW  and 

*  such that the cost functional (8) is minimized. 

 

3.6 Simulation and Experimental Results 

As mentioned before, the system consists a master and 

a slave. Considering (.)h  to be any continuous 
function, in system masking scheme, the message 
signal m(t) is added to the output of the master system, 
h(xm). The controller is designed such that the master 
and the slave systems are synchronized [49]. Thus by 
subtracting the output of the slave system, h(xs), from 
the resulted signal, the message signal can be 
thoroughly recovered[50]. It should be noted that the 
controller should be designed such that it can cope 
with uncertainties and external disturbances.  

 

Fig.6. Block Diagram of System Masking Scheme 

 

The descriptive equations for the SA and AV 
oscillators are: 

 


















uxxRxxcxwx

xx
AV

xxcxwx

xx
SA

)()1(
:

)1(
:

424
2
323

2
24

43

2
2
111

2
12

21









 

 

The initial conditions for the master and slave are (1,4) 
and (0.7, 2), respectively. Based on the physiological 
facts, a one-way coupling is considered here. The 
frequency is 60 pulses per minute for the first 
oscillator and 40 pulses per minute for the second 

oscillator. It is assumed that c2 contains uncertainty 

and 222ˆ ccc  where 2c represents 
uncertainty[47].Eventually the system output 
converges to the desirable output. The SA and AV 
oscillators have become synchronized once a time 
period is passed. There is a synchronization error. This 
error vanishes over time indicating that the two 
oscillators have become synchronized.  

 

3.6.1 Two-way Coupling  

If two-way coupling is used for the two oscillators - 
which in its physiological sense it means that AV 
oscillator impacts SA oscillator as well, sometimes in 
a relatively weak manner – the equations become: 
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First, we select a value for R1 which was about one 
tenth of R2. The computation results indicated that 
two-way coupling has no effect on synchronization 
time. The value of R1 was then increased, but no 
impact was observed on synchronization time. This is 
in line with physiology of heart as AV oscillator has 
negligible effect on SA oscillator[18],[28]. 

 

4. Conclusion  

The table below shows the results of the two methods. 
As seen on the table, PSO optimized RBF-based 
controllers outperforms in terms of synchronization 
time and variance of error.  
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                        Table 1. Results of Two Methods 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Control 
Effort 
(min)  

Control 
Effort(max)

Error 
Variance  

Synchronization  

Time(sec)  

SA and AV 
Node 
Oscillators  

149- 149+ 0.001152 0.2 PSO 
optimized 

RBF‐based 
Controllers 

149- 149+ 0.00261864.8 Adaptive 
Control 
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