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    Abstract: The size measurement technique is of great significance to large equipment manufacturing in industries such as 
automobile,  aerospace, shipbuilding etc. Vision measurement for a large-size has become a very promising method where 
calibration of the cameras is the key and the base to obtain satisfactory accuracy. Because of contact in the conventional 
metrological method which is not robust and precise for large-size measurement, a new non-contact large-size precision 
measurement method is proposed in this paper based on the splicing of small-field calibrations which realizes the entire field-
of-view (FOV) calibration of the measured component using one binocular stereo vision system. According to the FOV of the 
binocular stereo-vision system, the size of the measured component was divided into sub-FOVs, and each FOV was calibrated 
by a planar template using Zhang’s method. After matching and combing all the sub-sections, the total size of the component 
could be obtained. A series of experiments were also conducted to verify the precision and effectiveness of the proposed 
calibration. 
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   1. Introduction  

In industries, such as automobile, aerospace, and 
shipbuilding, size measurement technique is of great 
importance to large-size equipment manufacturing and 
assembling to guarantee the automatic assembly of the 
manufactured components and dimensions as designed to be 
accurately measured [1-3]. However, in large-size 
component production, the great size of the component 
makes the measurement range too big to completely measure 
the entire structure using a single instrument on-site [4]. In 
aerospace and aviation industries for example which require 
high-precision components, measuring points are not 
allowed to be marked on the surface of the components 
hence making this method unsuitable [5]. Furthermore, for 
deformation prevention before assembly, large-scale 
components such as wind turbine blades, upper and lower 
fuselage skins and wings of aeroplanes are clamped onto a 
bracket thereby partially obstructing the angle of view and 
region of interest of the metrological devices for taking a 
surface measurement of these components [6, 7]. Therefore, 
in large size production and assembly, research on non-
contact measurement techniques for surface measurement is 
important for precision and efficiency [8]. With recent 
technological advances in computer, CMOS/CCD sensors, 
image processing, and object-recognition technologies, the 

application of machine vision measurement in the industry 
has been broadly adopted due to its advantage as a non-
contact, high-precision, efficient and real-time measurement 
technology [9-11]. Empirical research works based on 
machine vision have been done lately on large-size 
component measurement methods [12-15]. The camera 
parameters, also known as camera calibration, are necessary 
for this non-contact vision technology [16]. A pinhole 
camera model can be used to simulate a camera in the actual 
world [17]. By using a perspective projection, this model 
projects points in 3D. There are intrinsic and extrinsic 
parameters for the camera that need to be recovered [18]. 
The intrinsic parameters establish the image geometry of the 
camera, whereas the extrinsic parameters relate the world 
coordinates to the camera orientation and location [19]. Five 
terms in the pinhole camera model represent the camera's 
fundamental parameters. (An additional radial distortion 
term can represent most non-linearities in cameras.) Both 
photogrammetry and computer vision have put a lot of effort 
into calibrating cameras [20]. These works can be grouped 
into two classifications; one uses a calibration object and the 
other does not. The first classification was to apply large-
size calibration targets or targets with known space 
relationships, such as planar patterns based on 2 and 3-
dimensional planes [21-25]. The second classification is 
known as the self-calibration method which does not use a 
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calibration object [15, 26]. With this method, the movement 
of the camera was in a stationary scene [27]. Based on these 
Xu et al. [28] presented a technique for camera calibration 
using a planar mirror to realize the global calibration of the 
camera clusters with non-overlapping views. Yu et al. [29] 
suggested a calibration technique that produced a sizable 
target that encompassed the whole field of view (FOV) of 
the camera using the junction points of lines. The method, 
however, disregards camera distortion while creating 
calibration points, and the resulting calibration points are not 
properly distributed in the field of view, which affects 
calibration precision. Carlos Ricolfe-Viala et al. [30] 
calibrated a trinocular sensor with three wide-angle-lens 
cameras using a 5 m × 5 m checkerboard template on the 
floor of the room. Zhang, et al. [31] proposed a calibration 
method for cameras with wide FOV by combining small 
objects into a large target based on planar homography [32]. 
Li et al. [33] merged two tiny objectives into a single large 
target using a polynomial projective model with a different 
solution. The smaller targets' design is significantly limited 
in both situations. 

There are other means applied to calibrate the extrinsic 
parameters up to a scale, such as wide-angle lenses [30], 
moving of cameras [34], and optical mirrors [35], instead of 
any special calibration template. However, since a large 
number of parameters need to be estimated, this method is 
very susceptible to noise and is often unstable. Furthermore, 
there are still many problems to get a good combination of 
accuracy, robustness and online calibration [36]. For 
example, serious distortion is unavoidable to the wide-angle 
lens, the coordinate conversion will lead to the loss of 
accuracy as well as an increase in complexity [37]. 
Therefore, the primary motivation proposed in this paper is 
based on the splicing of sub-FOV calibrations, which 
realizes the entire field-of-view (FOV) calibration of the 
measured large-size component using a binocular stereo 
vision system.  

 

2. Principle of sub-fov calibration spicing 
The calibration of the vision system is to be developed in a 

mathematical model of the transformation between world 
points and observed image points resulting from the image 
formation process. The parameters of the model can be divided 
into three categories: (1) extrinsic parameters, which describe 
the relationship between the camera frame and the world frame, 
including two position parameters and three orientation 
parameters; (2) intrinsic parameters, which describe the 
characteristics of the camera including the lens focal length, 
pixel scale factors, and location of the image centre; and (3) 
distortion parameters, which describe the geometric non-

linearities of the camera. Among all these parameters, the first 
category is the most important one for large-size vision 
measurement. Due to the limitation of the FOV of the cameras, 
the calibration of the extrinsic parameters should not only be 
between the camera frame and the world frame in each FOV 
but also be a relationship model between all the sub-FOVs 
through calibration. The vision system based on sub-FOV 
calibration splicing comprises two CCDs (charge-couple 
device), a moving platform, and some planar templates as 
shown in Figure 1. 

 

Fig. 1 Principle diagram of the large-field calibration based on 
the sub-FOV calibration splicing 

Cameras C1 and C2 were composed of a binocular vision 
system with a set field of view. The intrinsic and extrinsic 
parameters, as well as the distortion parameters, can be 
calibrated in this field. The entire FOV of the measured large-
size component was divided into sub-FOVs according to the 
FOV of the binocular vision system with an overlapping view 
between every two adjacent sub-FOVs. In each sub-FOV, 
there is a planar template to imitate the pose of the relevant 
area of the measured workpiece. All the sub-FOVs are moved 
by the moving platform one after the other into the field of 
view of the binocular system and are calibrated by applying 
Zhang’s calibration method based on several poses of the 
planar template [38]. The measured field was divided into 
several sub-FOVs, the size of each sub-FOV was decided by 
the field-of-view of the cameras used, the whole large field of 
view was moved by using a moving platform so that each sub-
FOV could go through the camera field-of-view by the order 
one by one. Beginning from the first sub-FOV, the extrinsic 
parameters of cameras C1 and C2 are calibrated successively 
in each sub-FOV through two to three different poses of the 
template at the same time, and the intrinsic and the distortion 
parameters are corrected gradually in all the sub-FOVs. The 
calibration diagram is shown in Fig.2. To get as high 
calibration accuracy as possible, the following two factors 
must be noticed: 1) In each sub-FOV, one of the template 
poses should be similar to that of the relevant position in the 
measured component, and we choose the first poses here; (2) 
The changes of the depth of field (DOF) cannot be too much, 
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as when the focal length is determined the image will blur 
with the change of DOF to reduce the calibration accuracy.  
 

 

Fig. 2 Calibration diagram of the large-field calibration based on 
the sub-FOV calibration splicing 

3. Experiments and analyses 
3.1 Calibration experiment 

The experiment setup is composed of two CCDs (charge-
coupled device) camera sensors with 1600 pixels ×1200 pixels, 
with a pixel size of 4.65ߤ m × 4.65 ߤm. Two lenses with focal 
lengths of 12 to 36 mm were selected. A chessboard planar 
template with an accuracy of 0.02 mm, a precise optic 
isolation platform and a high-accuracy motor-driven moving 
platform. The calibration experiment steps are as follows:  

(1) the number of sub-FOV according to the field of view 
of the binocular vision system and the size of the measured 
component is calculated. In this case, the total field of view of 
the component is divided into 5 sub-FOVs.  

(2) the chessboard is put on the planar template on the 
first sub-FOV (referred to as calibration position here) and 
changed with four different poses. An image of each pose by 
cameras C1 and C2 is taken simultaneously. The extrinsic 
parameters on the first calibration position are calculated using 
Zhang’s method [38]. The initial intrinsic parameters and 
distortion parameters of each camera are calculated at the 
same time.  
The physical focal length of the lens can be determined using 

the camera model [39]; 

݂ ൌ 	
1
2
	൬ ௫݂

݉௫
൰  ቆ ௬݂

݉௬
ቇ																																														ሺ1ሻ 

(3) two images are taken from the second to the fifth 
calibration position respectively and the extrinsic parameters 
on each calibration position are calculated. The calculated 
intrinsic and distortion parameters are gradually corrected by 
adjustment according to the images on each calibration 
position. After the above three steps, the extrinsic parameters 
of each sub-FOV are obtained, and after all these corrections, 
the accuracy of the intrinsic parameters and distortion 
parameters are improved. Figure 3 shows the positional 
relationship between the camera and the template in each sub-
FOV. Figure 4 shows a positional relationship between the 
binocular vision system and the calibration template in each 
sub-FOV. 

 
Fig. 3 Positional relationships between the camera and the 
template (a)Positions of the template in the left camera C1; 

(b)positions of the template in the right camera C2; (c)diagram 
of the extrinsic parameters of the left camera C1; (d)diagram of 

the extrinsic parameters of the right camera C2 

 
Fig. 4 Positional relation between the binocular vision system and 

the calibration template 

To evaluate the calibration accuracy, the reprojection errors in 
each sub-FOV are calculated and shown in Figure 5. 
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Fig. 5 Reprojection errors（unit：pixel）(a) Reprojection errors of 

the left camera C1; (b) reprojection errors of the right camera C2 

3.2 Analysis 
It can be seen from Figure 6 that most of the reprojection 

errors of cameras C1 and C2 were less than 0.4 pixels which 
shows that the camera models after calibration by the method 
based on Sub-FOV Calibration Splicing can describe the 
imaging relationship of the vision system effectively, that is to 
say, the calibration accuracy is satisfactory to large-size 
precision measurement. Nevertheless, there are still some 
points whose reprojection errors are higher than 0.4 pixels, 
especially in the pink pose. From Figure 3 and Figure 4, it 
could be seen that one pink pose was different from the others 
and there was a big angle between them, which lead to the 
cause of the calibration error. Furthermore, the printing error 
of the calibration template, the unstable of the light source etc. 
may also be a factor causing the calibration errors.  
 
3.3 Measurement of large-size cutting tools 

After calibration, the vision system is used to measure the 
cutting tools of a large bending machine with a machining 
length of 1030 mm. Figure 6 shows the picture of the 
measurement system. 

 

Fig. 6 Photo of the measurement system 

Fig.7 shows the images of each sub-part of one cutting tool 
in the left camera C1 and the right camera C2 during one 
measurement process. Here, the letter L means left, that is, the 
image from the left camera C1 and R means the image from 
the right camera C2. The number after the dashed line means 
the number of the subpart, for example, L-2 means the image 
of the second part is in the left camera C1, the sub-division is 
shown in Figure 8. The same cutting tool is measured five 
times, and the results are shown in Table 1.  

Before the experiment, the cutting tool was measured by a 
Coordinate Measuring Machine (CMM) with an accuracy of 
±5μm, and the result was 1030.332 mm, which was taken as 
the true value of the whole length. In Table 1, each measuring 
error was calculated by each measured whole length minus the 

true value of 1030.332 mm. And the relative errors are the 
measuring errors divided by the true value. 

 
Fig. 7 images of the sub-parts in the left camera C1 and right 

camera C2. 

 

Fig. 8 Cutting tool divided into 5 sub-FOVs. 

Table 1 Measurement results of the cutting tool with 1030mm length

（unit: mm） 

 1 2 3 4 5 

Subpart 1 236.354 235.959 236.615 235.777 237.029 

Subpart 2 188.556 188.170 188.492 188.560 188.627 

Subpart 3 187.286 187.275 187.509 187.269 187.481 

Subpart 4 185.210 185.042 185.389 184.962 184.974 

Subpart 5 234.775 234.711 234.708 234.741 234.737 

Whole 
length 

1032.181 1031.157 1032.713 1031.309 1032.848 

Absolute 
error 

1.849 0.825 2.381 0.977 2.516 

Relative 
error 

0.179% 0.080% 0.231% 0.095% 0. 244% 

 
From Table 1 it can be seen that the highest absolute error 

was 2.516 mm and the lowest absolute error was 0.825 mm. 
Again highest relative error was also 0.244% and the lowest 
relative error was 0.080%. The average relative error was 
0.166%. To prove the measurement accuracy of the method 
based on Sub-FOV Calibration Splicing, four other cutting 
tools with machining lengths of 1020 mm, 1040 mm, 1050 
mm, and 1060 mm were measured, and are shown in Table 2. 
Here, the data of the 1030 mm cutting tool are the averages in 
Table 1, and similarly, all the other measured values are also 
the average of the five measuring results. The results showed 
that the highest absolute error value was 2.092 mm at a 
measured length of 1060 mm and the lowest absolute error 
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value was 1.469 mm at a measured length of 1020 mm. the 
highest relative error was 0.197% at a measured value of 1060 
mm and the lowest value was 0.144% at a measured value of 
1020 mm. The true values are all by the same CMM. 

 
 

Table 2 Measurement results of different cutting tools（unit: mm） 

 1 2 3 4 5 

True value 1020.412 1030.332 1040.023 1050.321 1060.056

Measured 
value 

1021.881 1032.042 1041.906 1052.302 1062.148

Absolute 
error 

1.469 1.71 1.883 1.981 2.092 

Relative 
error 

0.144% 0.166% 0.181% 0.187% 0.197% 

Corrected 
error 

-0.023% -0.001% 0.014% 0.021% 0.030% 

 
From Table 2 it can be seen that all the measured values 

were larger than those by the CMM. After analysis, it was 
detected that, because the calibration plane and the 
measurement plane are not the same, the latter is behind the 
former, as the template has a certain thickness. According to 
the projection principle, the measurement plane is bigger than 
the calibration plane, which will lead to a positive error in the 
measured value and should be corrected from the 
measurement results. The correction principle is shown in 
Figure 9 (a), where r is the calibration distance from the 
camera to the calibration plane, d is the thickness of the 
template, as well is the distance from the calibration plane to 
the measuring plane. We can draw the simplified projection 
model, as shown in Figure 9 (b), where, Δ is the absolute error, 
and x is the measured size without error by projection.  

 
Fig. 9 Scheme of correction principle (a) Projection principle; (b) 

simplified projection model 

According to the similar triangle principle, the relationship 
between the parameters is: 

∆
ݔ
ൌ
݀
݈
																																																					ሺ1ሻ 

So, for each measured size, the correction coefficient r is: 

ݎ ൌ
݀
݈
	ൈ 100%																																							ሺ2ሻ 

In our experiments, the distance from the binocular vision 
system measured is 601 mm and the thickness of the 
calibration template is 1 mm, so the correction coefficient is 
0.167% according to a similar triangle principle, all the 
corrected relative errors are shown in Table 2. From Table 2, 
we can also see that there is some accumulative error in this 
method, but it can also be corrected.       

To further validate the effectiveness of the proposed 
calibration, therefore, Figure 10 shows the comparison of the 
experimental results of the binocular vision measurement 
method based on the traditional two-dimensional image 
mosaic technology with our present method [38, 40, 41]. To 
verify the superiority of our method, the measured object is 
the same metal cutting tool. Because the measurement method 
based on the traditional 2D image mosaic relies heavily on the 
accuracy of 2D image mosaic, 2D image mosaic error is very 
large without distortion correction. It can be seen from Figure 
7, in this paper, the measurement results of our proposed 
method are far superior to the method based on the traditional 
2D image mosaic. The resulting error of our method is 
relatively small as well as high reliability.  

 
Fig. 10 Comparison of the experimental results 

4. Conclusion 
In this paper, based on the splicing of sub-FOV 

calibrations, a new large-size precision measurement method 
is proposed to realize the whole field-of-view (FOV) 
calibration of measured large-size workpieces using a 
binocular stereo vision system. The experimental setup was 
composed of two CCDs cameras with a resolution of 
1600×1200, two lenses with a focal length of 12-36 mm and a 
resolution of 1600×1200, a chessboard planar template with an 
accuracy of 0.02mm, a precise optic isolation platform and a 
high-accuracy motor-driven moving platform. After 
calibration, this system is applied to measure the cutting tools 
of a large bending machine. After two images were taken from 
the second to the fifth calibration position respectively and the 
extrinsic parameters on each calibration position are calculated. 
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The calculated intrinsic and distortion parameters were 
gradually corrected by adjustment according to the images on 
each calibration position. After the three steps of the 
calibration experiment, the extrinsic parameters of each sub-
FOV were obtained, and after all these corrections, the 
accuracy of the intrinsic parameters and distortion parameters 
were improved. Again, the analysis indicated that the 
reprojection errors of camera C1 and C2 results were less than 
0.4 pixels which shows that the camera models after 
calibration by the method based on Sub-FOV calibration 
Splicing can describe the imaging relationship of the vision 
system effectively, that is to say, the calibration accuracy is 
satisfactory to large-size precision measurement. The 
measurement results of different cutting tools showed that all 
the measured values were larger than those by the CMM. 
Finally, the experiment results show that the measurement 
accuracy of a workpiece with size 1.02 m -1.06 m is higher 
than 0.03% after error correction, which can satisfy precision 
measurement in the industry. 
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