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Abstract:- In the present paper, hydrodynamic characteristics of the external forced convection in the slip 
regime over an isothermal horizontal plate at a relatively low Mach number is numerically studied. Slip flow 
occurs when the dimensions of the flow system are comparable to the molecular mean free path. Under this 
situation, the no-slip condition is replaced by slip-flow condition. Dimensionless stream function, velocity, slip 
velocity at the wall, wall shear stress and boundary layer thickness are presented for a range of values of the 
parameter characterizing the slip flow. This slip parameter is a function of the local Reynolds number, the local 
Knudsen number, and the tangential momentum accommodation coefficient representing the fraction of the 
molecules reflected diffusively at the surface. As the Knudsen number approaches zero, the slip parameter also 
approaches zero, and the no-slip condition is recovered. As the Knudsen number increases, the slip velocity 
increases. These results are in good agreement with the conclusions reached in other recent studies.     
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List of Symbols 
a1 initial values Eq. (17) 
f   function defined in Eq. (5) 
f1 function defined in Eq. (19) 
Knx Knudsen number, dimensionless 
K slip parameter, defined in Eq (13), dimensionless 
Rex Reynolds number at x, dimensionless 
u velocity component in x, m/s  
u1 free stream velocity in x, m/s  
v  velocity component in y, m/s 
x  coordinate from the leading edge, m 
y  coordinate normal to plate, m 
z1, z2, z3 variables, Eq. (14) 
                                                                                                          
Greek Symbols 
λ molecular  mean free path, m 
σ tangential momentum accommodation    
    coefficient, dimensionless  
δ99  boundary layer thickness, m 
μ     dynamic viscosity, N.s/m2 
   kinematic viscosity, m2/s 
η   similarity variables, Eq. (6) 
τwall   wall shear stress, N/m2 
ψ stream function, m2/s 
 
 

1 Introduction 
Study of flow through micro-/nano-scales has gained 
interest because of potential applications of micro 
devices in engineering, medical, and various 
scientific areas [1-3].  
 

 
 
    The dimensions of micro-/nano-scale devices are 
comparable to the mean free path of gas molecules, 
and high Knudsen number fluid flows. The flow 
behavior through such devices greatly differs from 
the traditional no-slip boundary conditions at the 
solid-fluid interface and belongs to the slip flow 
regimes.  
 
     For slightly rarefied flows, the slip condition at 
the solid-liquid interface, with Knudsen number less 
than 0.1, simplifies to [4] 

u
u

ywall

wall


2 



  

where λ is the mean free path, and σ is the tangential 
momentum accommodation coefficient. It represents 
the portion of total wall-colliding molecules that are 
diffusively reflected back by the wall and have bulk 
velocity equal to the wall velocity after collision. 

Rest molecules are reflected back specularly. 



u

y
wall  is 

the velocity gradient normal to the wall 
 
     In the present numerical investigation, a simple 
accurate numerical simulation of laminar free-
convection flow over an isothermal horizontal plate 
under slightly rarefied flow condition is developed.  
 
     The paper is organized as follows: Mathematical 
model of the problem, its solution procedure, 
development of code in Matlab, interpretation of the 
results. 
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2 Mathematical Model 
We consider the flow of a fluid of velocity u1 (of low 
Mach number) over an isothermal horizontal plate. 
The low Mach number implies that compressibility 
effects and heating by viscous dissipation effects are 
negligible. We assume the natural convection flow to 
be steady, laminar, two-dimensional, and the fluid to 
be Newtonian with constant properties, including 
density, with one exception: the density difference 
    is to be considered since it is this density 
difference between the inside and the outside of the 
boundary layer that gives rise to buoyancy force and 
sustains flow, known in the literature as Boussinesq 
approximation. We take the direction along the plate 
to be x, and the direction normal to surface to be y, as 
shown in Fig. 1. 
 

 
 
 
Fig. 1. Physical Model and its coordinate system  
 
The equations governing the flow are  
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The boundary conditions on the solution are: 

at y o u
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vwall

wall

 


, ,
2

0




          

For large y: u→u1                                                                          (3)                                        

 
The continuity Eq. (1) is automatically satisfied 
through introduction of the stream function:  
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x

  
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
                                            (4) 

A similarity solution is possible if  

   u
x

u
f1

1

( )
                                                     (5) 

where, η is the similarity variable 
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From Eqs. (4) through (6), we get  
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By differentiating the velocity components, it may 
also be shown that 
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Substituting these expressions into Eq. (2), we then 
obtain (with a prime denoting differentiation with 
respect to η)  
 

2 0   f ff
                                           (12) 

Hence the velocity boundary layer problem is 
reduced to an ordinary differential equation. The 
appropriate boundary conditions are:   
 
at y u i e at f Kn f Kfx x    


  0 0 0 0

2
0 0

1
2, , . ., , ( ) Re ( ) ( ) 

  
at y = 0: v = 0 i.e., at η = 0: f = 0                 

for large y: u→ u1 i.e., for large η:  f 1            (13) 
   
where Knx and Rex are the Knudsen and Reynolds 

numbers based on x, and 
K Knx x

2 1
2




Re
 is a non-

dimensional parameter that describes the behaviour at 
the surface.  The slip coefficient, k is a dimensionless 
parameter of the amount of slip, ranging from zero 
(no-slip) to infinity (full slip). 
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3 Solution Procedure 
Eqs. (12) is nonlinear ordinary differential equations 

for the velocity function f . No analytic solution is 
known, so numerical integration is necessary [5]. 
There is one unknown initial value at the wall. One 

must find the proper value of f ( )0 which cause the 
velocity to its free stream values for large η.  
 
3.1 Reduction of Equations to First-order System 
This is done easily by defining new variables: 
z f1   
z z f2 1     
z z z f3 2 1      

          z z z f ff z z3 2 1 1 3

1

2

1

2               (14) 
Therefore from Eqs (12), we get the following set of 
differential Eqs. (15) 

  z f1  
   z z f2 1  

          z z z f ff z z3 2 1 1 2

1

2

1

2                      (15) 
with the following boundary conditions: 
 
z f1 0 0 0( ) ( )   
z z f Kf Kz2 1 30 0 0 0 0( ) ( ) ( ) ( ) ( )        
z z f2 1 1( ) ( ) ( )                                     (16)   
Eq (12) is third-order and is replaced by three first-
order Eqs. (15). 
 
3.2 Solution to Initial Value Problems 
To solve Eqs (15), we denote the unknown initial 

value f ( )0 by a1, the set of initial conditions is 
then: 
 
z f1 0 0 0( ) ( )   
z z z f a3 2 1 10 0 0 0( ) ( ) ( ) ( )        
z z f Ka2 1 10 0 0( ) ( ) ( )                                   (17)        
If Eqs (15) are solved with adaptive Runge-Kutta 
method using the initial conditions in (17), the 

computed boundary values at     depend on the 
choice of a1. We express this dependence as  
z z f f a2 1 1 1( ) ( ) ( ) ( )                                (18) 
The correct choice of a1 yields the given boundary 

conditions at    ; that is, it satisfies the equations 
f a1 1 1( )                                                               (19) 

This nonlinear equation can be solved by the 
Newton-Raphson method. A value of 10 is fine for 

infinity, even if we integrate further nothing will 
change.  
 
3.3 Program Details 
This section describes a set of Matlab routines for the 
solution of Eqs. (15) along with the boundary 
conditions (17). They are listed in Table 1. 
     
     Table 1. A set of  Matlab routines used 
sequentially to solve Equations (15). 
 

Matlab code Brief Description 
 

deqs.m Defines the differential Eqs. 
(15). 

incond.m Describes initial values for 
integration, a1 is guessed 
value. Eq (17) 

runKut5.m Integrates as initial value 
problem using adaptive 
Runge-Kutta method.  
 

residual.m Provides boundary residuals 
and approximate solutions. 

newtonraphso
n.m 

Provides correct values a1 and 
a2 using approximate 
solutions from  residual.m  

runKut5.m Again integrates Eqs. (15) 
using correct values of a1 and 
a2.  
 

 
The final output of the code runKut5.m gives the 

tabulated values of f , f , f as function of  η for 
velocity profile as function of  η. K is a parameter.  
 
 
 

4 Computational Results for Fluid 
Flow 
Physical quantities are related to the dimensionless 

stream function f through Eqs. (5), (6) (7) and (8). 
f is now known. Some accurate initial values of 
f ( )0  and f ( )0  from this computation are listed 

in Table 2. 
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Table 2 Computed parameters from Eqs. (15) 
 

K f ( )0  f ( )0  
0 0 0.3321 

0.1 0.033 0.3315 
0.2 0.066 0.3298 
0.3 0.098 0.3272 
0.4 0.130 0.3238 
0.5 0.160 0.3198 
0.6 0.189 0.3152 
0.7 0.217 0.3102 
0.8 0.244 0.3050 
0.9 0.270 0.2995 
1.0 0.294 0.2939 
2.0 0.479 0.2397 
3.0 0.593 0.1976 
4.0 0.667 0.1667 
5.0 0.718 0.1437 
10 0.843 0.0843 
20 0.916 0.0458 
30 0.942 0.0314 
40 0.956 0.0239 
50 0.965 0.0193 

 
    Variations of dimensionless stream function f with 
η for K ranging from 0 (no slip) to 50 obtained from 
the code are shown in Fig. 2. It is evident from this 
figure that for any value of η in the boundary layer, f 
increases as the flow becomes more rarefied, i.e., as 
K increases.  
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Fig. 2. Dimensionless stream function f as a function 
of η    
 
     The variation of dimensionless x component of 
the velocity, f' as a function of η with K as parameter 
is shown in Fig. 3. Figure 3 illustrates the fact that as 
the flow becomes more rarefied (K increases), the 

slip velocity f'(0) increases and so does the x 
component of the velocity for any value of η.  
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Fig. 3. The velocity profile f′ within the boundary 
layer, K parameter    
 
     
 
 
One result that can be seen in Fig. 3 is that even as 
the wall velocity changes drastically, the overall 
boundary layer thickness does not change as rapidly. 
The boundary layer thickness, δ99, is defined as the 
value of y at which u=0.99u1. From Eq. (6), the 
physical thickness of the boundary layer can be 
written as  
 
 

 99 99

1
2 

x xRe                                                (20) 
 
      
For the no-slip boundary layer, the boundary layer 
thickness η99 is a constant with a value of 5.0 [5]. For 
a boundary layer with slip, η99 varies along the plate. 
Figure 4 shows the value of η99, as a function of K. 
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Fig. 4. Boundary layer thickness, η99 as a function of 
K 
 
     Fig. 5 shows the effect of increasing rarefaction 
on the slip velocity. As mentioned earlier, the slip 
velocity increases as the flow becomes more rarefied. 
As the Knudsen number approaches zero, K also 
approaches zero, where the no-slip condition and the 
classical boundary layer solution are recovered. As 
the Knudsen number becomes large, K approaches 
infinity, and the nondimensional slip velocity 
approaches 1, indicating 100% slip at the wall. 
 

0 5 10 15 20 25 30 35 40 45 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

K

f (
0

)

 
Fig. 5. Effect of k on f′(0) 
 
From Eq. (10), wall shear stress may be expressed as  

 



 




wall
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u
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d f

d
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1
1

2

2

0

1
1 0( )

    (21) 

     The nondimensional wall shear stress f ( )0 is 

shown in Fig. 6. f ( )0 returns to the no-slip value as 
K approaches 0 and asymptotically approaches zero 
as K approaches infinity.   
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Fig. 6. Wall stress,  f ( )0  as a function of K 
 
     All the above computational results are in good 
agreement with recent studies [6, 7] 
 
 
 
 
 

5 Conclusion 
Hydrodynamic characteristics of the external forced 
convection in the slip flow regime over an isothermal 
horizontal plate at a relatively low Mach number is 
numerically studied using local similarity approach.      
     
     This approach consists to fix the slip parameter K 
at any x-location along the plate, i.e., K = constant 
and ignoring the variation of the velocity field with 
K. This is equivalent to ignore the upstream history 
of the flow. Consequently, the original partial 
differential boundary layer equations become 
ordinary differential equations.  
      
     Dimensionless stream function, velocity, slip 
velocity at the wall, wall shear stress distributions 
and boundary layer thickness are presented for a 
range of values of the parameter characterizing the 
slip flow. As the Knudsen number approaches zero, 
the slip parameter also approaches zero, and the no-
slip condition is recovered. As the Knudsen number 
increases, the slip velocity increases but the wall 
shear decreases. These results are in good agreement 
with the conclusions reached in other recent studies.     
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