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Abstract: In this paper, different results concerning (pseudo)-atomicity are obtained from the quantum measure
theory perspective and several applications are provided.
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1 Introduction

Measure theory concerns with assigning a notion of
size to sets. In the last years, non-additive mea-
sures theory was given an increasing interest due to
its various applications in a wide range of areas (such
as, economics, social sciences, biology, philosophy
etc.). It is used to describe situations concerning con-
flicts or cooperations among intelligent rational play-
ers, giving an appropriate mathematical framework to
predict the outcome of the process. Precisely, the-
ories dealing with (pseudo)atoms and monotonicity
are used in statistics, game theory, probabilities, ar-
tificial intelligence. The notion of non-atomicity for
set (multi)functions plays a key role in measure the-
ory and its applications and extensions. For classi-
cal measures taking values in finite dimensional Ba-
nach spaces, it guarantees the connectedness of range.
Even just replacingσ-additivity with finite additiv-
ity for measures requires some stronger nonatomicity
property for the same conclusion to hold. Because of
their multiple applications, in game theory or math-
ematical economics, the study concerning atoms and
non-atomicity for additive, respectively, non-additive
set functions has developed. Particularly, (non)atomic
measures and purely atomic measures have been in-
vestigated (in different variants) due to their spe-
cial form and their special properties (see Chiţescu
[1,2], Cavaliere and Ventriglia [5], Gavriluţ and Agop
[4], Gavriluţ and Croitoru [6,8,10,11], Gavriluţ [7,9],
Gavriluţ, Iosif and Croitoru [12], Khare and Singh
[18], Li et al. [19,20], Pap [22-24], Papet al. [25],
Rao and Rao [26], Suzuki [32], Wu and Bo [33] etc.).

Thus, one important application of measure the-
ory is in probability, where a measurable set is in-
terpreted as an event and its measure as the proba-
bility that the event will occur. Since probability is

an important notion in quantum mechanics, measure
theory’s techniques could be used to study quantum
phenomena. Unfortunately, one of the foundational
axioms of measure theory do not remain valid in its
intuitive application to quantum mechanics. Although
classical measure theory imposes strict additivity con-
ditions, a rich theory of non-additive measures de-
veloped. Precisely, modifications of traditional mea-
sure theory [23,24] led to quantum measure theory
(Gudder [13-17], Salgado [27], Schmitz [28], Sorkin
[29,30]). Practically, an extended notion of a measure
has been introduced and its applications to the study
of interference, probability, and spacetime histories in
quantum mechanics have been discussed.

Introduced by Sorkin in [29,30], quantum mea-
sures help us to describe quantum mechanics and
its applications to quantum gravity and cosmology.
Quantum measure theory indicates a wide variety of
applications, its mathematical structure being used in
the standard quantum formalism.

The present paper is organized as follows. Af-
ter Introduction, in Sections 2 and 3, different results
concerning (pseudo)-atomicity and decoherent func-
tions are provided from the quantum measure theory
perspective.

2 Atomicity and pseudo-atomicity
from quantum measure theory
perspective

Let T be an abstract nonvoid set,C a ring of subsets
of T and suppose(V,+, ·) is a real linear space with
the origin0.

Definition 2.1. Letm : C → V be a set function,
with m(∅) = 0.

I) m is said to be:
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i) finitely additive (or, grade-1-additive) if

m(
n
∪
i=1

Ai) =
n∑

i=1

m(Ai), for any arbitrary pairwise dis-

joint sets(Ai)i∈{1,2,...,n} ⊂ C, n ∈ N
∗;

ii) a grade-2-measureif

m(A ∪B ∪ C) +m(A) +m(B) +m(C)

= m(A ∪B) +m(B ∪ C) +m(A ∪ C)(∗∗)

for any pairwise disjoint setsA,B,C ∈ C;

II) Two setsA,B ∈ C are calledm-compatible
(denoted byAmB) if

m(A ∪B) +m(A ∩B) = m(A) +m(B)(∗).

(i.e., m-compatible sets are those two sets for
which the set functionm behaves like a grade-1-
measure);

III) An arbitrary fixed setA ∈ C that is m-
compatible with any setB ∈ C is said to be amacro-
scopic set.

Remark 2.2. (Schmitz [28]) i) Since some quan-
tum objects interfere with each other, but others do
not, one can justify the name of a ”macroscopic set”
by the fact that it does not interfere with any set
and thus it behaves like a non-quantum object in the
macroscopic world.

ii) One can immediately verify that the relation
given bym-compatibility is reflexive, symmetric but
it is not transitive.

iii) Evidently, if m is grade-1-additive, then it is
also a grade-2-measure, but the converse is not valid.

iv) If A ∈ C is arbitrary, thenA and ∅ arem-
compatible.

v) If V = R, one obtains the notions from [28].

vi) Supposeti, wherei ∈ {1, 2, ..., n}, n ∈ N
∗

represent quantum objects or quantum events and let
be their collectionT = {t1, t2, ..., tn}. One can need
an interpretation of a ”measure” onT , in situations
when the additivity condition(∗∗) is not fulfilled:

Examples 2.3. (Schmitz [28]) Suppose(T =
{t1, t2, ..., tn},m : P(T ) → R+) is a finite mea-
sure space, where for everyi ∈ {1, 2, ..., n}, ti rep-
resents the particle, andm the mass. The real val-
ued set function associated to the mass is additive in
the macroscopic world. On the quantum scale, these
statements do not remain valid due to the annihilation
and binding energy effects. For instance, ift1 and
t2 represent an electron and a positron respectively,

thenm({t1}) = m({t2}) = 9, 11× 10−31 kg, but
m({t1, t2}) = m({t1} ∪ {t2}) = 0.

These are some reasons for in what follows we
introduce several notions, weaker than classical addi-
tivity and also than those from Definition 2.1-i), ii):

Definition 2.4. A set functionm : C → V , with
m(∅) = 0, is said to be:

i) null-additive1 if m(A ∪B) = m(A), for every
disjointA,B ∈ C, with m(B) = 0;

ii) null-additive2 if m(A∪B) = m(A), for every
A,B ∈ C, with m(B) = 0;

iii) null-null-additive if m(A∪B) = 0, for every
A,B ∈ C, with m(A) = m(B) = 0;

iv) null-equalif m(A) = m(B), for everyA,B ∈
C, with m(A ∪B) = 0;

v) a quantum measure(q-measure, for short) if it
is a null-additive1 and null-equal grade-2-measure;

vi) diffusedif m({t}) = 0, whenever{t} ∈ C.

Definition 2.5. (Gavriluţ, Iosif and Croitoru [12])
If V is, moreover, a Banach lattice, a set functionm :
C → V , with m(∅) = 0, is said to be:

i) null-monotoneif for everyA,B ∈ C, with A ⊆
B, if m(B) = 0, thenm(A) = 0;

ii) monotone (or, fuzzy) if m(A) ≤ m(B), for
everyA,B ∈ C, with A ⊆ B;

iii) a submeasureif m is monotone andsubad-
ditive, i.e., m(A ∪ B) ≤ m(A) + ν(B), for every
(disjoint)A,B ∈ C;

iv) σ-additive (or, a (vector) measure)if

m(
∞
∪

n=1
An) = lim

n→∞

n∑
k=1

m(Ak), for every pairwise dis-

joint sets (An)n∈N∗ ⊂ C, with
∞
∪

n=1
An ∈ C.

The notion of an algebra of sets is significant in
measure theory since it contains conditions on which
sets are measurable:

Definition 2.6. If A is an arbitraryσ-algebra ofT
and ifm : A → R+ is a measure onA, with m(T ) =
1, then:

i) The space(T,A,m) is said to be asample
spaceandm is said to be aprobability measure;

ii) The elements ofT are calledsample pointsor
outcomesand the elements ofA are calledevents.

In this case, for everyA ∈ A,m(A) is interpreted
as the probability of the eventA to occur.
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Remark 2.7. i) The notion of a null-equal-
measure has the following physical interpretation
[28]: in the situation involving destructive interfer-
ence, in order for two waves to produce complete de-
structive interference, thereby ”cancelling out” each
other, their original amplitudes must have been equal.

ii) Any positive real valued finitely additive set
functionm : C → R+ is a q-measure.

iii) If m(T ) > 0, then one can immediately gener-
ate a probability measure by means of a normalization
process.

Remark 2.8. I) i) One observes that a set function
m : C → V is diffused if the measure of any singleton
of the space is null. This means in the construction of
a physical theory, the vacuum condition of the matter
should be considered as its complement.

ii) If V is a Banach lattice, T =
{t1, t2, ..., tn}, n ∈ N

∗ is an arbitrary finite met-
ric space andm : P(T ) → V (or, more general, if
T is aT1-separated topological space,B is the Borel
σ-algebra ofT generated by the lattice of all compact
subsets ofT and m : B → V ) is null-additive
and diffused, thenm(T ) = 0 (i.e., the spaceT is
composed of particles which annihilate one each
other).

II) If m : C → V is null-additive1 , then any
two disjoint setsA,B ∈ C, with m(B) = 0, arem-
compatible.

III) If m : C → V is null-monotone, then:
i) m is null-additive1 if and only if it is null-

additive2. In this case,m will be simply callednull-
additive.

ii) If m is null-null-additive, then it is null-equal.

Definition 2.9. (Gavriluţ and Croitoru
[6,8,10,11]) Letm : C → R+ be a set function,
with m(∅) = 0.

i) A set A ∈ C is said to be anatom of ν if
m(A) > 0 and for everyB ∈ C, with B ⊆ A, we
havem(B) = 0 orm(A\B) = 0;

ii) m is said to benon-atomic(NA, for short) if
it has no atoms (i.e., for everyA ∈ C with m(A) > 0,
there existsB ∈ C, B ⊆ A, such thatm(B) > 0 and
m(A\B) > 0);

iii) finitely purely atomicif there is a finite family
(Ai)i∈{1,2,...,n} of pairwise disjoint atoms ofm so that

T =
n
∪
i=1

Ai.

Definition 2.10. (Gavriluţ and Croitoru
[6,8,10,11]) Letm : C → R+ be a set function,
with m(∅) = 0.

i) A set A ∈ C is called apseudo-atomof ν if
m(A) > 0 andB ∈ C, B ⊆ A impliesm(B) = 0 or
m(B) = m(A);

ii) m is said to benon-pseudo-atomic(NPA, for
short) if it has no pseudo-atoms (i.e., for everyA ∈ C
with m(A) > 0, there existsB ∈ C, B ⊆ A, such that
m(B) > 0 andm(A) 6= m(B).

We now recall the following properties involving
operations with atoms/pseudo-atoms:

Remark 2.11. (Gavriluţ and Croitoru
[6,8,10,11]) Let bem : C → R+, with m(∅) = 0.

i) If m is null-monotone,A ∈ C is an atom ofm
andB ∈ C, B ⊆ A is such thatm(B) > 0, thenB is
an atom ofm andm(A\B) = 0.

ii) If A ∈ C is a pseudo-atom of andB ∈ C,
B ⊆ A is such thatm(B) > 0, thenB is a pseudo-
atom of andm(B) = m(A).

iii) If A,B ∈ C are pseudo-atoms of andm(A ∩
B) > 0, thenA∩B is a pseudo-atom ofm andm(A∩
B) = m(A) = m(B).

iv) Let m : C → R+ be null-additive and let
A,B ∈ C be pseudo-atoms ofm.

1. If m(A ∩ B) = 0, then A\B and
B\A are pseudo-atoms ofm and m(A\B) =
m(A),m(B\A) = m(B).

2. If m(A) 6= m(B), then m(A ∩ B) =
0,m(A\B) = m(A) andm(B\A) = m(B).

v) Let m : C → R+ be null-additive and let
A,B ∈ C be pseudo-atoms ofm. If m(A ∩ B) > 0
and m(A\B) = m(B\A) = 0, thenA ∩ B is a
pseudo-atom of andm(A∆B) = 0.

Remark 2.12. Supposem : C → R+ is so that
m(∅) = 0.

i) If m is finitely additive, thenA ∈ C is an atom
of m if and only ifA is a pseudo-atom ofm.

ii) Any {t} ⊆ T , provided{t} ∈ C andm({t}) >
0, is an atom ofm.

ii) If m is null-additive1 , then every atom ofm
is also a pseudo-atom. The converse is not generally
valid.

Examples 2.13.Let T = {t1, t2} be a finite ab-
stract space composed of two elements.

i) We consider the set functionm : P(T ) →
R+ defined for everyA ⊂ T by m(A) =



2, A = T
1, A = {t1}

0, A = {t2} or A = ∅.
.
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ThenT is an atom and it is not a pseudo-atom of
m.

ii) We definem : P(T ) → R+ by m(A) ={
1, A 6= ∅
0, A = ∅

, for every A ⊂ T. Then m is null-

additive andT = {t1, t2} is a pseudo-atom ofm, but
it is not an atom.

Proposition 2.14. If m : C → R+ is null-
monotone and null-additive and ifA ∪ B is an atom
of m, thenA,B arem-compatible.

Proof. 1. If m(A) = 0, thenm(A ∩ B) = 0 and
m(A ∪B) = m(B), so the conclusion follows.

2. If m(A) > 0, then by Remark 2.11-i)A is an
atom, too andm((A∪B)\A) = m(B\A) = 0. Since
B = (B\A)∪ (B ∩A), thenm(B) = m(A∩B) and
sinceA∪B = A∪(B\A), we getm(A∪B) = m(A).

Definition 2.15. If m : C → R+ is so that
m(∅) = 0, we considerthe variation of m, m :
P(T ) → [0,∞], defined for everyA ∈ P(T ) by:

m(A) = sup

{
n∑

i=1

m(Ai);A =
n
∪
i=1

Ai, Ai ∈ C,

∀i = 1, n,Ai ∩ Aj = ∅, i 6= j
}
.

We say thatm is of finite variationif m(T ) < ∞.

In what follows, we give some examples of q-
measures:

Proposition 2.16. If m : C → R+ is a submea-
sure of finite variation, thenm is a q-measure.

Proof. Sincem is a submeasure of finite varia-
tion, then, according to [3],m : C → [0,∞) is finitely
additive, so it is a q-measure.

In what follows, letK be the lattice of all compact
subsets of a locally compact Hausdorff spaceT andB
be the Borelσ-algebra generated byK. The following
definition is then consistent:

Definition 2.17. [22-25] m : B → R+ is said
to be regular if for every A ∈ B and everyε > 0,
there existK ∈ K and an open setD ∈ B such that
K ⊂ A ⊂ D andm(D\K) < ε.

Theorem 2.18. [22-25] Supposem : B → R+

is a monotone null-additive regular set function. If
A ∈ B is an atom ofm, then there exists a unique
point a ∈ A so thatm(A\{a}) = 0 (and so, m(A) =
m({a}).

Theorem 2.19. SupposeT = {t1, ..., tn} is a
Hausdorff topological space and it is also an atom
of a monotone, null-additive regular set functionm :
P(T ) → R+. Thenm is a q-measure.

Proof. Obviously,T is a compact space, so it is
locally compact. Also,B = P(T ).

SinceT is an atom, by the previous theorem there
existst1 ∈ T so thatm({t2, ..., tn}) = m(T\{t1}) =
0, whencem({t2}) = ... = m({tn}) = 0.

In consequence, for everyA ⊂ T , if t1 /∈ A, then
m(A) = 0 and if t1 ∈ A, thenm(A) = m({t1}) =
m(T ).

Now, consider arbitrary pairwise disjoint
A,B,C ∈ P(T ).

If t1 /∈ A ∪B ∪ C, thent1 /∈ A, t1 /∈ B, t1 /∈ C,
so the conclusion follows.

If t1 ∈ A ∪ B ∪ C, suppose without any lack
of generality thatt1 ∈ A, t1 /∈ B, t1 /∈ C. Then
m(B ∪C) = m(B) = m(C) = 0,m(A ∪B ∪C) =
m(T ) = m(A ∪ B) = m(A ∪ C) = m(A) and the
proof finishes.

3 Decoherence functions
In quantum mechanics, when a wavefunction be-
comes coupled to its environment, the objects in-
volved interacting with the surroundings, the deco-
herence phenomenon occurs. It is also known as the
”wavefunction collapse” and it allows the classical
limit to emerge on the macroscopic scale from a set of
quantum events. After decoherence has occurred, the
system’s components can no longer interfere, so one
could assign a well-defined probability to each possi-
ble decoherent outcome.

Using decoherence functions, one could define
the probabilities of all decoherent outcomes for a par-
ticular event by quantifying the amount of interfer-
ence among system’s various components (see Pap,
Gavriluţ and Agop [25] for details). So, interference
has an important role in the mathematical formulation
of quantum mechanics. One can define functions re-
lated to interference, that can be used in order to ob-
tain q-measures:

Definition 3.1. (Schmitz [28]) SupposeT is an
abstract space andA is an algebra of subsets ofT. A
functionD : A×A → C is said to be adecoherence
functionif the following conditions hold:

i) D(A,B) = D(B,A), for everyA,B ∈ A;
ii) D(A,A) ≥ 0, for everyA ∈ A;
iii) |D(A,B)| ≤ D(A,A) · D(B,B), for every

A,B ∈ A;
iv) D(A∪B,C) = D(A,C) +D(B,C), for ev-

ery disjointA,B ∈ A and everyC ∈ A.
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Remark 3.2. (Schmitz [28]) i) SinceD(A,A) ∈
R, the conditions ii) and iii) are justified.

ii) By i), for arbitrary A,B ∈ A representing
quantum objects,Re[D(A,B)] can be interpreted as
the interference betweenA andB, as we shall remark
in what follows:

Proposition 3.3. (Schmitz [28]) IfD : A×A →
C is a decoherence function, thenm : A → C,
m(A) = D(A,A) is a q-measure.

Example 3.4. If V is a pre-Hilbert space and if
m : A → V is finitely additive, thenD : A×A → C,
D(A,B) =< m(A),m(B) >, for everyA,B ∈ A is
a decoherence function.

Particularly, ifm : A → C is finitely additive
(often interpreted as a quantum amplitude), then one
can define the decoherence function defined for every
A,B ∈ A byD(A,B) = m(A) ·m(B).

The corresponding q-measure is̃m : A → C,
m̃(A) = D(A,A) = m(A) · m(A) = |m(A)|2, for
everyA ∈ A.

Remark 3.5. i) (Schmitz [28]) IfA,B ∈ A are
disjoint, thenm̃ is not grade-1-additive. Indeed,

m̃(A ∪B) = |m(A ∪B)|2 = |m(A) +m(B)|2 =

= |m(A)|2 + |m(B)|2 + 2ℜe[m(A)m(B)] =

= m̃(A) + m̃(B) + 2ℜeD(A,B).

Also, m̃(A ∪ B) = m̃(A) + m̃(B) iff
ℜeD(A,B) = 0, i.e., interference is represented by
the real part of a decoherence function.

ii) If m : A → R is a real valued submeasure of
finite variation, thenD : A× A → R, D(A,B) =<
m(A),m(B) > is a decoherence function, wherem
is the variation ofm.

4 Conclusion

In this paper, certain (pseudo)-atomicity and decoher-
ent functions problems are treated from the quantum
measure theory perspective. Several applications are
also provided.
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