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Abstract: In this paper, we focus on the autonomy issue in the perturbation expansions of eigenfunctions. We con-

sider the zero interval limit perturbation expansion of a Hilbert-Schmidt Integral Operator here and the autonomy

means that the eigenfunction depends on the perturbation parameter not only through the independent variable

argument but via an additional argument which just the perturbation parameter. Our purpose is to show that the

autonomy puts an important restriction on the kernel of the operator and the resulting perturbation series fails to

exist unless a specific and appropriate kernel is used. The proof is also supported by the given illustrative imple-

mentations.
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1 Introduction

Integral equations and integral operators are one of the

fundamental study areas in science and engineering.

They can be encountered in chemical and physical

applications[1, 2, 3] as well as in multivariate func-

tion approximation problems such as Enhanced Mul-

tivariance Products Representation (EMPR)[4, 5]. In

EMPR, an analytic multivariate (bivariate case is con-

sidered in [4]) function under consideration is exerted

to be approximated with the help of the univariate sup-

port functions[4]. Through the optimization process

of these support functions, an eigenvalue problem of

an integral operator involving symmetric, thus self-

adjoint, and bivariate kernel is constructed. If this

eigenvalue problem is solved, the eigenfunction ac-

companied by eigenvalue with the greatest absolute

value can be utilized as the optimized univariate sup-

port function. The other support function can be eval-

uated using the same process by solving another in-

tegral operator’s eigenvalue problem having, again, a

symmetric kernel. By the utilization of these support

functions, an efficient approximation to the bivariate

function under consideration is obtained.

The content of the present paper is as follows.

First, a brief information about integral operators is

revived in the second section. Then, the details of

the zero integral limit perturbation expansion for the

eigenpairs of the considered operator are explained in

the third section while the error analysis of this ex-

pansion is given in the fourth one. The efficiency of

the developed method in order to calculate the eigen-

function which is related to the greatest eigenvalue is

shown via numerical implementations in the fifth sec-

tion. The paper is finalized with the concluding re-

marks and discussions in the last section. The third

section contains the proof of the failure of the auton-

omy imposition on the eigenfunction whereas the fifth

section implementations confirms the proof.

2 Integral Operators and Their Spec-

tral Properties

Consider the following operator

I g(x) ≡

∫ b

a

dξK (x, ξ) g (ξ) (1)

where K(x, ξ) is an analytic and bounded bivariate

function whose domain is [ a, b ]2 and named “the ker-

nel of the operator in (1)”. On the other hand g is

any analytic univariate function defined on the interval

[ a, b ]. It is obvious that the operator I in (1) is a linear

mathematical object and, in particular, is called “an

integral operator” whose kernel is K(x, ξ)[6, 7, 8].

If an integral operator having its kernel asK(x, ξ)
satisfies the the below equation

∫ b

a

dξK (x, ξ)ψ (ξ) = λψ (x) ; x, ξ ∈ [ a, b ] (2)
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where ψ is an unknown univariate function while

scalar λ is again an unknown, then the problem in

(2) is called “the eigenvalue or the spectral problem

of the corresponding integral operator”[6, 7, 8]. Thus,

the scalar λ is named “the eigenvalue” and ψ is called

“the relevant eigenfunction” of the integral operator

under consideration. If the kernel of the integral op-

erator is symmetric, that is, K(x, ξ) = K(ξ, x) for

all x’s and ξ’s lying in the domain of the integral

operator, then the corresponding integral operator is

stated as a self-adjoint operator[6]. As an analogy

to the classical linear algebra, all eigenvalues of a

self-adjoint integral operator are real by implying that

the spectrum of the relevant operator is located on

the real axis[6]. Moreover, in many methods based

on the spectral properties of the linear operators such

as Spectral Decomposition[9] and Principal Compo-

nent Analysis[10], the most dominant and therefore

the most important component of the spectrum is the

greatest eigenvalue and thus its accompanying eigen-

function (or eigenvector). For this reason, obtaining

these entities even using analytical or numerical meth-

ods becomes an important issue to this end.

3 Perturbation Scheme at the Zero-

Interval-Limit

Consider the following equation

1

b− a

∫ b

a

dξK (x, ξ)ψ (ξ) = λψ (x) ; x, ξ ∈ [ a, b ] .

(3)

By the brief knowledge given in the previous section,

it is possible to say that the equation in (3) defines

an eigenvalue problem of an integral operator whose

kernel is K(x, ξ). Then, λ and ψ(x) can be named

“the eigenvalue and its corresponding eigenfunction”

of the relevant integral operator respectively from this

point of view. In order to develop a general numerical

solution method for the eigenproblem in (3), a univer-

sal interval should be used instead of the existing one

for the problem under consideration. For this purpose,

the following affine transformations can be brought

forward

x ≡
a+ b

2
+
b− a

2
y, ξ ≡

a+ b

2
+
b− a

2
η. (4)

It is obvious that the transformations in (4) take any

closed and bounded [ a, b ] interval to [−1, 1 ]. By

making the following shorthand notations

xmp ≡
a+ b

2
, ε ≡

b− a

2
(5)

and applying the transformations in (4) to the integral

equation in (3)

1

2

∫ 1

−1
dηK (xmp + εy, xmp + εη)ψ (xmp + εη)

= λ(ε)ψ (xmp + εy) (6)

is obtained. In the above equation, if ε is thought as

a small positive value which is close to zero, then it

becomes convenient to consider it as a perturbation

parameter[11, 12, 13]. Beyond that, xmp is the mid-

point of the interval to be worked on and is an impor-

tant issue which will be discussed a bit later. Thus,

by assuming that the unknowns λ and ψ are analytic

in the vicinity of xmp, a perturbation equation can be

achieved with the help of two relevant power series.

On the other hand, by assuming that the bivariate ker-

nel in (6) is analytic in the vicinity of (xmp, xmp),
it can be expanded to a series in terms of the non-

negative powers of the small parameter ε as follows

K (xmp + εy, xmp + εη) =

∞∑

j=0

j∑

k=0

Kk,j−ky
kηj−kεj

(7)

and the corresponding linear combination coefficients

can be calculated as

Kk,j−k ≡
1

k!(j − k)!

∂j K

∂xk ∂ξj−k
(xmp, xmp) (8)

In other respects, the eigenvalue λ and the relevant

eigenfunction ψ can be expanded into nonnegative

power series of the perturbation parameter ǫ as fol-

lows

λ(ε) =
∞∑

j=0

λjε
j (9)

ψ (xmp + εη) =
∞∑

j=0

ψjη
jεj ,

ψ (xmp + εy) =
∞∑

j=0

ψjy
jεj , (10)

If the infinite series in (7), (9) and (10) are embedded

into their places in the transformed equation (6) then

we can get

1

2

∫ 1

−1
dη




∞∑

j=0

j∑

k=0

Kk,j−ky
kηj−kεj






∞∑

j=0

ψjη
jεj




=




∞∑

j=0

λjε
j






∞∑

j=0

ψjy
jεj


 (11)
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from which the following equality can be obtained by

using Cauchy product and rearranging the terms

1

2

∫ 1

−1
dη

∞∑

m=0

m∑

n=0

n∑

k=0

Kk,n−ky
kηn−kψm−nη

m−nεm

=
∞∑

m=0

m∑

n=0

λnψm−ny
m−nεm. (12)

The above entity can be considered as the perturbation

equation of the problem in (3). To solve this equation

at zero interval limit by taking ε as the perturbation

parameter, one should take the definite integral of the

both side along the interval of the integral operator

with respect to η first. To this end, the following equa-

tion can be obtained

∞∑

m=0

m∑

n=0

n∑

k=0

Kk,n−kψm−n

Îm−k

2
ykεm

=
∞∑

m=0

m∑

n=0

λnψm−ny
m−nεm (13)

where

În ≡
1 + (−1)n

n+ 1
, n = 0, 1, ... (14)

Thus, the equation in (13) can be identified as the final

form of the relevant perturbation recursion amongst

the eigenpair components for the eigenvalue problem

in (3). By employing this equation, unknown ψj and

λj (j = 0, 1, ...) coefficients are expected to be de-

termined uniquely in order to obtain a unique approx-

imation to the eigenfunction ψ(x) corresponding to

the greatest eigenvalue which is also expected to be

determined uniquely. Due to this aim, if ε is taken to

zero limit in both sides of the equation in (13) then

λ0 = K0,0 (15)

is obtained. This result denotes that the zeroth co-

efficient of the expansion for the eigenvalue λ is

equal to the value of the relevant kernel at the point

(xmp, xmp).

It is important to remember that the equation in

(13) holds for any ε. Thus, it can be assessable as an

identity with respect to ε, instead of an equation. Due

to this reason, any number of consecutive differentia-

tion of this equation with respect to ε does not annihi-

late its validity. Hence, the r-times (r is a nonnegative

integer) consecutive differentiation with respect to ε
and then division to r! for both sides of the equation

in (13) gives the following equation

∞∑

m=0

m∑

n=0

n∑

k=0

Kk,n−kψm−n

Îm−k

2
yk (εm)(r)

=
∞∑

m=0

m∑

n=0

λnψm−ny
m−n (εm)(r) .

(16)

The following equality can be easily written

{
(εm)(r)

}
ε→0

= δm,r (17)

Now if ε is taken to zero limit in (16) and (17) is used

to get the limit then the following result is achieved

r∑

n=0

n∑

k=0

Kk,n−kψr−n

Îr−k

2
yk =

r∑

n=0

λnψr−ny
r−n

(18)

which can be simplified via summation index trans-

formation. We give just the result by skipping the in-

termediate steps

λkψr−k =
r∑

n=r−k

Kr−k,n−r+k

Îk
2
ψr−n,

r = 0, 1, ..., k = 0, 1, ..., r (19)

This equation implies λ0 = K0,0 for r = k = 0 as

long as ψ0 does not vanish. The vanishing ψ0 can be

considered as another option by leaving λ0 arbitrary.

However, it corresponds to an inconsistency removing

the normalizability of the eigenfunction, and hence,

should be discarded. The case where r = 1 produces

the following results as long as ψ0 does not vanish

λ1 = 0, ψ1 =
K1,0

K0,0
ψ0 (20)

while the case where r = 2 takes us to the following

results

λ2 =
K2,0

3
+
K0,2

3
+
K1,0K0,1

3K0,0
, ψ2 =

K2,0

K0,0
ψ0 (21)

Thus we do not encounter any other inconsistency in

these cases. On the other hand, the case where r = 3
produces the following results through its forms for

k = 3 and k = 0 respectively as long as ψ0 does not

vanish

λ3 = 0, ψ3 =
K3,0

K0,0
(22)

whereas the case where r = 3 and k = 1 gives an

equation which is spontaneously satisfied because of
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the vanishing value of λ1. The remaining subcase for

r = 3 corresponds to k = 2 and produces the follow-

ing requirement on the kernel coefficients
(
K0,2 +

K1,0K0,1

K0,0
−K1,1

)
K1,0

K0,0
−K1,2 = 0 (23)

which does not determine anything unknown but puts

a limitation on the kernel coefficients. This require-

ment is apparently an inconsistency. As we pro-

ceed by ascending the values of r we encounter more

and more requirements on the kernel coefficients and

therefore more and more inconsistencies. These con-

straints bring a denumerable infinite number of struc-

tural limitations on the kernel and makes it possible to

use this perturbation expansion only for very specific

kernels. We do not intend to get the family of ker-

nels which permit the zero integral limit perturbation

expansion in this conference proceedings.

Even though infinite number of constraints are

needed to be satisfied we can prove that the follow-

ing results hold for this approach

ψr =
Kr,0

K0,0
ψ0, r = 1, 2, ... (24)

by assuming that K0,0, which is the value of the cor-

responding kernel at the point (xmp, xmp), does not

vanish. By embedding the general structure for ψr

obtained above into the expansion of the eigenfunc-

tion in (10) and utilizing the inverse of the first affine

transformation in (4)

ψ(x) = ψ0

∞∑

r=0

Kr,0

K0,0
(x− xmp)

r
(25)

is generated as the structure of the corresponding

eigenfunction to be dealt with. In other words, by us-

ing a perturbation method, the univariate eigenfunc-

tion ψ(x) is written as an infinite series. Beside all

these, the zeroth coefficient, that is ψ0, is another im-

portant issue about the structure in (25) and can be

perceived as an arbitrary constant at this moment.

But, as it can be remembered, no assumption has been

made about the normalization condition that nothing

is imposed on the eigenfunction to be calculated as

normalization during the perturbation procedure be-

cause the nonexistence of any requirement to this end.

There is only one common flexibility ψ0 to be deter-

mined in this fashion. This freedom brings a common

arbitrariness on the eigenfunction coefficients. This

undesired status in fact is originated from the auton-

omy imposition on the eigenfunction and can be glob-

ally removed only by normalizing the corresponding

eigenfunction. Thus, ψ0 is computed as the normal-

ization factor after truncating the series (25) at a cer-

tain level. Hereby, the truncated and normalized series

can be used as approximations for the relevant eigen-

function ψ(x).
Before closing the section we need to emphasize

on the limitations or constraints told above. This per-

turbation expansion can be valid only for a very spe-

cific family of kernels for which all constraints are sat-

isfied.

4 Error Analysis

Error estimation is one of the important issues in ap-

proximation problems. Hence the eigenfunction un-

der consideration is determined by utilizing an ap-

proximation procedure through a perturbation expan-

sion in this work, this section is devoted to the concern

on the error bound of the relevant method. Concor-

dantly, one can easily verify that the series which will

be utilized for approximation in (25) is a power series

with the coefficients involving the derivatives of the

relevant kernel. Although the kernel under consider-

ation is bivariate and has differentiation possibilities

with respect to both of its independent variables, the

related coefficients in (24) include only the derivatives

with respect to its first variable, x (but of course this is

valid under the satisfied constraint mentioned above).

This feature reveals the similarity between the approx-

imation series in (25) and the well known Taylor se-

ries. To this end, it is reasonable to make an error

estimation for the developed method by utilizing the

error bound theorem for the Taylor series.

As it is obvious from the univariate Taylor the-

orem, assuming that g(x) has the derivatives up to

(n + 1)th order, which are continous on a closed in-

terval and the last of them, that is, the (n + 1)th one,

is bounded from above such as

∣∣∣g(n+1)
∣∣∣ ≤ G (26)

where G is an n-independent positive constant, then

the remainder function R(x) corresponding to (n +
1)th degree Taylor polynomial for the function g(x)
can be bounded from above[14] as

|R(x) | ≤
G (x− a)n+1

(n+ 1)!
, n = 0, 1, 2, ... (27)

In the light of the brief information given above, we

can assume that the bounds for the bivariate function

K(x, ξ) and its (n+1)th order derivative with respect

to x can be written as follows

m ≤ |K | ≤M,

∣∣∣∣
∂n+1K

∂xn+1

∣∣∣∣ ≤Mn+1,

n = 0, 1, 2, ... (28)
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where m, M are the lower and upper bound of the

kernel K respectively and Mn+1 is the upper bound

for the (n + 1)th derivative of K with respect to its

first independent variable x.

On the other hand, the zeroth coefficient of the ex-

pansion for the kernel in (7) is denoted as K0,0 which

does not vanish by assumption. By using the lower

bound for K in (28)

|K0,0| ≥ m (29)

is arrived at as the lower bound for K0,0. By adapting

the series in (25) and rewrite the kernel coefficients in

accordance with the definition in (8) explicitly,

ψ(x) =
∞∑

r=0

ψ0

K0,0

1

r!

∂rK

∂xr
(xmp, xmp) (x− xmp)

r

(30)

is acquired where xmp = (a+ b)/2. If the remainder

term for the relevant eigenfunction ψ(x) is symbol-

ized by R (x) then the upper and the lower bounds in

(28) and (29) respectively are utilized and combined

with the remainder bound in (27)

|R (x) | ≤
ψ0M

|K0,0| (n+ 1)!
|x− xmp|

n+1

≤
ψ0M

m(n+ 1)!
|x− xmp|

n+1
(31)

is obtained. If it is recalled that x − xmp = εy and

|y| ≤ 1 from (4)

|R (x) | ≤
ψ0M

m(n+ 1)!
εn+1 (32)

can be taken as the remainder bound for the approx-

imation of the the relevant eigenfunction ψ(x) where

ψ0 is a positive constant which normalizes the corre-

sponding eigenfunction.

5 Numerical Implementations

In this section, four numerical implementations are

given in order to show the efficiency of the method de-

scribed in the third section. To this end, the exact solu-

tion of the eigenvalue problem in (25) and its perturba-

tion based numerical solutions at different truncation

levels for various kernels will be compared through

the plots. The kernels which are utilized in the imple-

mentations in this section are as follows

K1(x, ξ) = exp (2x) + exp (2ξ)

K2(x, ξ) = exp (x+ ξ) + exp (−x− ξ)

K3(x, ξ) = cos (π(x+ ξ))

K4(x, ξ) = tanx sin 3ξ + sin 3x tan ξ

where all of them are chosen as Pincherle-Goursat

type of dimension two. The reason why to choose this

type of kernels is to obtain their eigenvalue problem

solutions easily hence the eigenvalue problems of the

integral operators having Pincherle-Goursat type ker-

nels can be reduced into a matrix algebraic eigenvalue

problems without any appearable difficulties.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5
Exact and approximate eigenfunctions

Exact
n=2
n=4
n=6
n=8
n=10

Figure 1: Exact and approximate eigenfunctions for

the kernel K(x, ξ) = exp (2x)+ exp (2ξ) over [0, 1]2

at different truncation orders

On the other hand, each graphic is plotted in

the interval [ 0, 1 ] since the corresponding eigenvalue

problems are designed as having just the integration

domain [ 0, 1 ]. Beside this, it becomes useful to state

that all the eigenfunctions plotted are the ones which

are accompanied by the eigenvalue whose absolute

value is the greatest and all are normalized over the

interval [ 0, 1 ].
In each figure, the curves which are constructed

using red asterisks implies the exact solution of the

eigenvalue problem of the integral operator under con-

sideration while the dashed colorful curves dictates

the truncated approximations to the corresponding ex-

act eigenfunction. The truncation orders start from

n = 2 and go to n = 10 with an increment of 2 except

Figure 4 which includes the truncated approximation

for n = 12 and n = 14. In Figure 1 and Figure 3,

one can easily verify that increment in n values, that is

the truncation order in (25), seems to cause better ap-

proximation for the eigenfunction under consideration

since the difference between the dashed curves and

red asterisk curve in each figure starts to get smaller,

even though the restriction equation in (23) is not sat-

isfied, but the right hand side of the equation becomes

relatively small and close to 0. On the other hand, in

In Figure 2 and Figure 4, the approximation curves

diverge from the related exact eigenfunction curves

S. Tuna, M. Demiralp
International Journal of Applied Physics 

http://www.iaras.org/iaras/journals/ijap

ISSN: 2367-9034 46 Volume 1, 2016



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.4

0.6

0.8

1

1.2

1.4

1.6

1.8
Exact and approximate eigenfunctions

Exact
n=2
n=4
n=6
n=8
n=10

Figure 2: Exact and approximate eigenfunctions for

the kernel K(x, ξ) = exp (x+ ξ) + exp (−x− ξ)
over [0, 1]2 at different truncation orders

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-0.4

-0.2

0
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0.4

0.6

0.8

1

1.2

1.4

1.6
Exact and approximate eigenfunctions

Exact
n=2
n=4
n=6
n=8
n=10

Figure 3: Exact and approximate eigenfunctions for

the kernel K(x, ξ) = cos (π(x+ ξ)) over [0, 1]2 at

different truncation orders

hence the restriction in (23) is not be able to satis-

fied. However, the chosen function need to satisfy the

constraint equations to get an exact match.

6 Conclusion

In this work, a perturbation expansion based approxi-

mation method is proposed in order to approximate to

the greatest eigenvalues’ eigenfunction of an integral

operator having symmetric kernel. Throughout the

development of this method, the halfinterval length of

the domain of the integral operator is considered as the

perturbation parameter and all investigations are real-

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6
Exact and approximate eigenfunctions

Exact
n=2
n=4
n=6
n=8
n=10
n=12
n=14

Figure 4: Exact and approximate eigenfunctions for

the kernel K(x, ξ) = tanx sin 3ξ + sin 3x tan ξ over

[0, 1]2 at different truncation orders

ized by assuming that this parameter is small enough,

which means it approaches to zero. Thus, this process

can be interpreted as a perturbation method at zero-

interval-limit.

With the help of the numerical implementations,

the efficiency of the method is confirmed under the

constraint mentioned in the text. Also the effects of

the values of the lower and upper bounds, ψ0 coeffi-

cient and truncation order to the approximation qual-

ity is observed by the error analysis.

As a final remark, if the restrictions amongst the

kernel coefficients depicted in the third section are

not satisfied, the generated perturbation series in (25)

may not converge to the exact solution for the relevant

eigenfunction. Thus, it becomes wiser to work with

the kernels satisfying these restrictions, or to deal with

the intervals which enables the kernel coefficients sat-

isfy the mentioned relations. Even if the restriction

equations are not exactly satisfied, their closeness to

zero may result effective approximations.
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