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Mathematical Modelling for Electromagnetic Fields
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Abstract: - There are neither longitudinal nor transverse (globally) waves, because the wave front can change its
direction and what was longitudinal will become transverse after turning. Therefore, we pass from a globally
transverse EM field to fields equally polarized in four directions: longitudinal, two transverse and "temporal".
What is significantly new in the model: there is no scalar potential; instead of a light cone, there is an ellipsoid,
which at v > c turns into a two-cavity hyperboloid (as with the trajectories of celestial bodies in classical
mechanics: closed elliptical orbits at the second cosmic velocity ~ 11.2 km/s turned into open hyperbolic ones).
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1 Statement of the Problem

1.1 Introduction to the problem

Feynman in his Nobel lecture gives interesting
considerations regarding the four polarization states
of light [1]. It has recently been shown [2] that a
metamaterial supports longitudinal waves over an
extremely wide frequency range from very low
frequencies to the Bragg resonances of the structure,
with waves of unprecedentedly short Ilengths,
comparable to the period of the material. The
observed effects emphasize the spatial-dispersive
response of a twisted wire medium and provide a way
to generate electromagnetic fields with strong spatial
variations.

From Maxwell's equations [3] in their modern
form, proposed by O. Heaviside and G. Hertz [4], this
should not have happened. Maxwell himself, who
predicted the possibility of electromagnetic waves, in
theoretical discussions denied the possibility of a
unidirectional vector field generated by the pulsation
of the "density" of electrostatic fields, similar to the
pressure pulsations in sound waves. Such pulsations
would imply the presence of a variable concentration
of electrostatic field lines propagating along the
electrostatic field lines. Therefore, Maxwell's
original equations did not contain solutions
corresponding to these waves, and subsequent efforts
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of experimenters were directed mainly to the
detection of transverse electromagnetic waves, i.e.
waves in which the directions of the electric and
magnetic fields are perpendicular to the direction of
their propagation. G. Hertz first reported the
experimental detection of such waves in 1887 [5].

However, as N. Tesla showed two years later, the
effects observed by Hertz could also be caused by
longitudinal waves [6]. Such waves probably
consisted of a sequence of unidirectional shock
waves caused by the rupture of the electrostatic field,
and were able to affect charges in the direction of
their propagation. Some of them have been known
for a long time, for example, Langmuir waves
generated by collective oscillatory processes of
volume charge in plasma.

1.2 The goal of the paper

Researchers have discovered other types of
longitudinal electromagnetic waves in waveguides,
resonators, piezoelectrics, semiconductors, liquid
crystals, single-wire power transmission lines, as
well as a special class of receiving and transmitting
antennas (the so-called EN - antennas that emit
longitudinal waves and provide communication
through the water column and rocks [7], etc.).

LW generators, transverse wave converters into
longitudinal waves, detectors, mixers and power
meters have been created [8]. Such waves are
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recorded by Schottky diodes, photo materials
protected by a light-tight foil screen, liquid crystal
indicators, phase-contrast microscopy of high-purity
water, etc.

Along with the existence of longitudinal magnetic
waves, experiments often also reveal the appearance
of forces acting along a conductor with current. The
presence of such forces acting on electrons moving
along the axis of the toroid and the copper conductor
was discovered in the experiments of A. Solunin and
confirmed in the experiments of S. Grano and G.
Nikolaev [9].

Taking into account all of the above, we move
from a globally transverse electromagnetic field to
fields equally polarized in four directions:
longitudinal, two transverse, and “temporal” in
contrast to our previous papers [11,12], where only
transverse polarization was considered.

2 Basic Equations of  the

Electromagnetic Field

2.1 Two different values of the “speed of light”

Since the wave front can change, the division of
waves into transversely polarized and longitudinally
polarized can only be performed locally. In this
regard, let us consider — starting from equations [10]
— the following original basic equations

%Bo+c2V-B—v-[VxE] =0,

%B+[[va] X B| + c,VBy + ¢, [V X E] — [v X
V]E, =0,

(1)

LE +[[v x V] X E] + ¢,VE, — c,[V x B] + [v X
V]BO = _]7

where By, E, are the “scalar” components of the
electromagnetic field, v is the velocity vector for the
“source” of the field. Here the time derivatives are

%EO+CZV-E+17-[V><B]=O,

complete, so % = % +v-V.
The array of partial differential equations (1)
contains two different values of the “speed of light™:
ci and c; for the “longitudinal” and “transverse”
waves, respectively. Next, we turn to the Fourier
amplitudes of the fields according to the formula

+oo dwdk
A;(t,x) = awak

etk eltoreng (o, ),

2)

we obtain the following array of linear algebraic
equations

Sb0+C2k'b_v'[kXe]:0,
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sb+ [[v X k] x b] + c;kby + ¢, [k % €] —
_[vxk]e():(),
seg +c,k-e+v-[kxb]=0, 3)

se + [[vx k] x e| + c;key — c1[k x b] +

The determinant of this system is equal to
det = ((s — c1k)(s + c2k) + [v % k]z)2 .

((s+ c1k)(s — c2k) + [v x k]z)2

where s=—-w+v-k.

(4)

2.2 Two waves propagating at different
speeds

It is obvious that the determinant of the system is
equal to the square of the value, thus, system (3) is a
“dual set” of equations describing the physics of the
same wave process. In the case of a stationary source
v = 0, the wave front splits into two waves
propagating with different velocities

det = (s? — c2k?)?(s? — c2k?)2.

The system of eight linear equations (3) can be
broken down into two independent systems of four
equations each using linear substitution of variables:

€0+ P2 8§ =0,58+p$o +ip1 xE=1i;  (5)
S0+ q2 ¢ =0,5¢+q50—iqy X{=1] (0)
where & =E, +iB, {=E —iB, l=0123
p1=ck—ilvxKk]|, p,=ck—-ilvxKk], (7)

q, = k+i[vxK], gq,=ck+i[vxK].

The determinant of each of the systems (5), (6) is

equal to

det = ((s —c1k)(s + k) + [v X k]z) .
“((s + c1k)(s — c2k) + [v x k]?). (8)

The last expression can be written as

2 2
det = (sz — (Jerczk) + [v x k]z) -

—(cy — ¢1)?s%k2.

2.3 The case of an isotropic system

Let us further consider the case of an isotropic
medium in which ¢; = c¢; = c. In this case, the
determinant (8) is the square of the number

det = (s? — c?k? + [v x k]?)?

or
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det = (s? — c?k?)?,

where KEk+£v><k 9)
are the «new» momentums.

Using a linear combination of equations, each of
the systems (5), (6) can be transformed into a pair of
independent systems with two unknowns. For
example, the system of four coupled equations (6)

§Co + cry$y + cka{y + ck3(3 = 0,

ckyo + Gy +ickz{y — icka{3 = iy, (10)
Ck2Go — icK3(y + 5C + icky {3 = i,

ck3{o + icKy(y — icK1{p + 503 = i3,

with

det = (s? — c?k?)?, (11)

from which we can write the following two
independent systems:

(s —ck3)({o — {3) +c(ry — iKkx) (G +idp) =
= _ij39

c(rey +ir3)(Go — G3) + (s + ck3)({y +iy) =

=iy +is2)
and
(s + ck3)({o + {3) + c(icy + inx)({y — i) = ijs,
c(rey — ik3)(Go + §3) + (s — ck3)({1 — ify) =

=i(1 — )

with  det = s? — ¢?k? (12)
for each of the systems.

3 Solution of the Equations

3.1 Elongation of Derivatives and Coordinate
Transformation
Let us calculate, based on formula (9) — the
transformation of coordinate gradients — the formula
for the transformation of the coordinates themselves.
Multiplying equation (9) by v scalarly, we obtain
that v - k = v - k. Multiplying (9) on the left by v
vectorly, we obtain

vxrc=v><k+£v><[v><k],

or

i 1 i 1,
-vXK+=v(w k) =-vXxXk+5v°k,
Cc Cc Cc c
where

évx k = Kk — k according to (9), so that

(1—:—j)k:x—cl—2v(v-lc)—£v><k. (13)
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Finally, the expression of the "old" impulses in terms
of the "new" ones is as follows:

k_w (14)
(rz)

-z

and the "old" coordinates are expressed in terms of
the "new" coordinates by the formula

x=y+£v><y. (15)
Solution of the algebraic equation array (3) under
condition ¢; = ¢, = c is as follows:

boz—i[ka]-a, b =i[k x a], (16)

ep = ik - a, e=—i§a+i[1—:xk]xa,
where the Fourier amplitude of the vector potential is
equal to

J (17)

a=- s2—c2k2+[vxk]?’

3.2 Solution of the Problem in Coordinates Time-
Space

To write the solution in coordinates t,x, it is

necessary to perform integration for the vector

potential according to formula (2), then the solution

of system (1) can be written in the form

Bo=—[*xv|-4, B=[vxa4], (18)

1d v
Eo=V-A, E=—-2A+[2xV|xA (19)
where
A(t,x) =
_ [t dwd3ke_i(wt_k.x) J(w,k)
-  (2m)* (w-v-k)2—c2k2+[vxk]?’
because of

J(w, k) = [7 drd®x e (@t kN (7, y).
Then we are calculating the Green's function
Gt—1,x—y) =

+00 dwd3k e—i(w(t—r)—k-(x—y))
T oo 2m)t (w-vk)2—c2kZ+H[vxk]?

(20)

According to formula (13), there are two

fundamentally different cases:

1. v2 # ¢? the source moves at a speed different from

the speed of light;

2. v% = ¢? the source moves at the speed of light.
To clearly imagine the picture of wave front

propagation according to the characteristic equation

(12), let us introduce the phase velocity of the wave

front in the cylindrical coordinate system w=39K, then

(9k — vkcos(8))” — c2k? + v2k?sin(6)? =0.(21)
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Dividing equation (21) by k#0 and c#0, we obtain
the equation of a circle of unit radius, the centre of
which is shifted from the origin, following the
source:

9 2 v
(;—5005(9)) +z—25in(9)2 =1 (22)

It is obvious that the wave front has no features at
2
Z—Z = 1, so no "light barrier" is observed in this model

(see Fig. 1).

4 ~ -
2
,ni‘
T
3
242
i
[ 1 4
4 2 N 1 ) 2 1
o
t2
H end view

Fig. 1 Wave front diagram

3.3 Calculation of the Green's Function for v? #
2
c
According to the formula (9):

s?2—c%k? + [v x k]? = 5% — c?k?,

1 11 ( 1 1 )_
s2—c2k2+[vxk]2 ~ s2-c2k2  2ck \s—ck  s+cx)

1 ( 1 1 )
2ck \w—vk—-cx w-vk+ck/)’

The integral over ® in formula (20) can be calculated
using the residue theorem:

+o0 e—iwt 1 +o0 e—iwt

—00 s2—c2x2 2ck \'—© w—v-k—-ck

+oo  eTiwt —ip-kt Sin(ckt)
—da)) = —21e iv-kt —

- w-vk+ck cK

Thus, the following integral must be calculated
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f+oo d3k ok ((—=y)-v(t-1)) sin(ck(t—1))
(27T)3 cK

in the space of «new» impulses K.
According to (14), we have a linear dependence

(the notation u = g is introduced)

k, = K1~ (UmKm) —l€mnUmKn
l (1_u2) >
or in matrix form

k )
K
<k§) a-ud)

1—u? —UgUy + iUz —UU3 — U\ /Ky
—Uyuy — iUz 1—u3 —Uyuz + Uy (’Q)
—Usly + iUy  —UU — (U 1—u3 K3

with determinant det = (1 — u?), so that
d3k = (1 —u®)d3k
and

f+oo d3k oik ((x=y)—v(t-1)) sin(ck(t-1)) —a-

(27T)3 cK
U2 pikL sin(cx(t-1))
)f(ZTt)S cK > (23)

where

L=6—u(u-6)+ifuxél, (24)

6=x—y—uc(t—r1).

Recalling the expression for the Pauli function:
A%k e sin(ex(t-1))

D(z) =] ik — (25)

we obtain the final expression of the Green's function
for u? # 1:

Gt—1,x—y)=0—-u?)/cD(2).

The retarded and advanced Green's functions are
equal, respectively:

ret(z) 4_ |L| 6(|L| - C(t - T)) (26)

5(|L| +c(t— T))

The Pauli function D(z) = Dyt (2) — Dggyp(2) is
used to construct a solution to the Cauchy problem of
the free d'Alembert equation (wave equation in the
absence of sources). Note that
L2 =1 -u?)(6%—- (u-6)?). (27)
If we denote the angle between the vector u and § by
the letter 6, then
L?=6%(1-u?)(1 —u?
This expression is positive for u? < 1 for any values
of 0, and is also positive for u? > 1 for some 0 such
that cos(8)? > % Thus, there always exists L > 0,
which plays the role of the effective distance to the

Dgav(2) = o |L|

- cos(0)?).
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source in classical electrodynamics. Below in Fig. 2
is a graph of the dependence of L on the angle 8 in
the range 0 < u? < 2:

Fig. 2 Dependence of the effective distance to the
source L on the angle @ for different 0 < u? < 2

It is evident that for u? > 1, the effective distance L
across the source velocity vector increases with the
growth of the velocity u. Since L is included in the
denominator of formulas (26), the amplitude of the
vector potential will decrease in the direction across
the source movement: the field is as if “pressed” to
the axis of movement, which is observed in the
Cherenkov Effect.

4 Light cone and its appearance
Using formulas (26) we can give the expressions for
Green's functions a 4-dimensional form:

I(t —1) 6(|L| —c(t— ‘L')) _

Dret (Z) = 47_[ |L|

_ 9(t-1) 26(|L|—C(t—‘l’)) _ 9(t-1) 2 _ .2 _ 2

T oam (IL+c(t-v) T 2nm §(L7 = c*(t = D)%,
I(t—1t) 6(|L| +c(t — T))

Dadv (Z) = 47_[ |L| =

_ 9(—t) 28(|L|+c(t-1)) _ 9(z—t) 2 204 _ N2

T oam (L-ct-v) 2@ §(L7 = c*(t = D)%,

D(z) = 285D 512 — 2(t — 1)?),
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The light cone equation is L? —c?(t —1)? =0,
where L? is calculated using formula (27).
Let us introduce the notation

U=—=2

c(t-1Y
U, = Ucos(8), U, = Usin(0),
then the equation of the light cone will have the form

2 2 2 _ 1 . .
U+ (A —u*)(U, —u)* = ey which is the
equation of an ellipsoid for u? < 1, and for u? > 1 —
the equation of a two-sheet hyperboloid as shown in

Fig. 3:

R=|x-yl

u=11

N e @ @

& Cd - LN

Fig. 3 The light cone for ©2<7 and for u2>1

4.1 Calculation of the Green's Function for
2

In this case — when the source moves at the speed of

light — according to formula (9)

s2—c?k? +[vxk)? =

=52 —c%k? +v?k? — (v-k)? =s* — (v- k)?,

1 1
s2—c2k2+[vx k]2 s2—(v-k)?
_ 1 ( 1 1 )_
22v-k\s—v'k s+v-kl

1 (1 1 )
T2 k\w w-2v-k
0 —iwt .
- f_+oo Szi(v_k)z dw = 1%T(e’_“"ktsin(v - kt).

Thus, we need to calculate the integral
12 L ie((e-y)=v(e-D) Sn(zk(ED)
—® (2m)3 vk
4

over the entire space k or, using the notation n = =
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C = _L( +oo0 d3k eik-(x—y)_eik-((x—y)—ch(t—‘r)))

2c \/—o (2m)3 nk >
where n? = 1, thus, n is a unit vector directed along
the velocity vector v.

An arbitrary vector q can be decomposed into
components parallel to the unit vector n and
perpendicular to it, using the formula
q=nn-q)+[nx[qxn]],
or
q=nn-q)+q—nn-q).

The length of the longitudinal projection of the vector

q) = (n- q), the transverse — q, = /q*> — (n- q)?,
or q; = qcos(0), q, = qsin(@), where 0 — angle
between vectors.

The scalar product of vectors — via a unit vector —
can be represented as
(k-q)=(k-n)(n-q)—[kxn] [nxq].

Thus, the problem is reduced to calculating the
integral

=,

which we will calculate in a spherical coordinate
system, with the z-axis directed along n:
ki = Kcosgpsind  k, = Ksingsinf

+oo d3k elkx_elk(x 2nct)
o (2m)3 nk ’

(28)

k; = Kcos®;

n,=0 n,=0

nz =1;

x; = Rcosfsina  x, = Rsinfsina
x3 = Rcosa.

Let us denote P = Rsin(a), Z = Rcos(a).
Taking into account that

k- x = Ksin(8)Pcos(¢p — B) + Kcos(6)Z,
fOZHeiKsin(B)Pcos(fp—B)d(p — 27T]0(PKSiTl(9)),

we have

B 7 sin(8) iKcos(0)Z _
= G Jy KAk ] 255540 (e

piKcos(8)(Z- 2ct))]0(PKsin(9)) :

or, to show that there is no singularity when

cos(60) =0:
_ 4mi T sm(Kcos(B)ct)
= (2m)3 70 f Kak f Kcos(6)

giKcos(0)(z~ Ct)]o(PKsin(H))Ksin(O)dB.

If we switch to a cylindrical coordinate system:
K, = Kcos(09) , K, = Ksin(8),
then the double integral is factorized:

_ Ami f+cx>dKz_
T (@em3 Yoo K,
sin(K,ct)e™ ==t [ " K, dK, Jo(PK,),
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I =
4mi f+00 dKz

T sm(K ct) eiKz(Z- Ct)f Jo(xX)xdx.

Taking into account f Jo(x)xdx = 1, we have

2 +0oo dK, i
arz (eleZ —e

iK,(Z-2ct) )
(21r)3P2 - K, ’

The sine remains from the exponent because it is
the integral of an odd function,

f+oocos(KzZ) dK -0

o K,
_ 2= +oo dK, Sln(KzZ) -
— @mPpzi-o K \ —sin(K,(Z — 2ct)) )’

4.2 Three different solution areas

The integral from the above is tabular, the result is
I = # (sign(Z) —sign(Z — ZCt)).

Fig. 4 shows the regions on the Z, ct plane where the
function sign(Z) — sign(Z — 2ct) takes on
different values:

- the region where the function is +2 (absolute
future), marked in red;

- the region where the function is —2 (absolute past),
marked in pink;

- the regions where the function is zero (unreachable

region), marked in green.
ct

-10 5 0 5 10

10+

-10

Fig. 4 Different values of function
sign(Z)-sign(Z-2ct) on plane Z, ct

43 The Energy—-Momentum  tensor

conservation law
For the sake of simplicity, we introduce new

field variables according to
Bp=B+uxE

e=E—-uXxB.

In this variables the system (3) looks like

(29)
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SBo+k-B=0
sB+ c(k+ux[uxk])B,+

t+ckx (e—u(u-g)) =—iuxj
SEp+k-£=0
se+c(k+ux[uxk])E, —

—ckx (B—u(u-p)) =ij
Using the vector analysis formula
V-l[axbl=b-[Vxa]l—a-[VXxbhb],
we can obtain from system (29) the conservation
law for the energy and momentum density tensor

11((1 —u?)(B2 + EZ + B% + &%) +> N
2dt +[u x B? + [u x £]?

+ cV-((l —u)(Bof + Eoe) + [e x Bl + u
X [u % [sxﬁ]]) =
=—(e—uxB-um-¢)-j; (3l)
(1~ ) (BoB + Eof) +[£ X Bl +
X [ux[exBl]), -
—(1—u?H)cv; ((ﬂiﬁj + &;¢))
+ € ((sl —w(u-€))B,

- (B —w(u- B))Eo)) +
+(1 = u?)e(V; + u;(uv)) -
(—(1 —u?)(BZ + E — % — €?) +>
+[u x B1? + [u x £]?
2
= (1 —u?)(EoJ + [BXJ] — Bou xJ + [ x
[uxJ]]) —u((B—uxe) [uxjl).(32)
Note, that the energy density
E=2((1—u?)(B} +E} + p2 + &%) + [u X
B1% + [u x €]?) (33)
can became negative by u? > 1. The result is

quite unexpected and requires further study and
discussion.

(30)

5 Conclusion

In the mathematical model for electromagnetic field
considered in this paper, we have obtained solution
for the wave front, which can change its direction, so
that what was longitudinal will become transverse
after turning. Therefore, we pass from a globally
transverse EM field to fields equally polarized in four
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directions: two transverse and
"temporal".

The Mathematical modelling and computer
simulations showed the peculiarities of the EM
waves’ spreading depending on the speed of
movement of the source. The three specific areas
were revealed in computer simulation, so-called: the
area of absolute future, the area of absolute past, and
the unreachable area.

The following is significantly new in our model:
- There is no scalar potential and static electric field
as such.

- The light cone is no longer a cone, but a more
complex surface of the 2nd order ellipsoid, which at
|v| = c turns into a two-cavity hyperboloid (a similar
situation was with the trajectories of celestial bodies
in classical mechanics: closed elliptical orbits at the
second cosmic velocity ~ 11.2 km/s turned into open
hyperbolic ones).

- The wave energy can become negative at a velocity
of u? > 1, which requires further understanding and

a deeper explanation.

longitudinal,
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