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Abstract: - There are neither longitudinal nor transverse (globally) waves, because the wave front can change its 
direction and what was longitudinal will become transverse after turning. Therefore, we pass from a globally 
transverse EM field to fields equally polarized in four directions: longitudinal, two transverse and "temporal". 
What is significantly new in the model: there is no scalar potential; instead of a light cone, there is an ellipsoid, 
which at v ≥ c turns into a two-cavity hyperboloid (as with the trajectories of celestial bodies in classical 
mechanics: closed elliptical orbits at the second cosmic velocity ~ 11.2 km/s turned into open hyperbolic ones). 
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1 Statement of the Problem 
 
1.1 Introduction to the problem 
Feynman in his Nobel lecture gives interesting 
considerations regarding the four polarization states 
of light [1]. It has recently been shown [2] that a 
metamaterial supports longitudinal waves over an 
extremely wide frequency range from very low 
frequencies to the Bragg resonances of the structure, 
with waves of unprecedentedly short lengths, 
comparable to the period of the material. The 
observed effects emphasize the spatial-dispersive 
response of a twisted wire medium and provide a way 
to generate electromagnetic fields with strong spatial 
variations. 

From Maxwell's equations [3] in their modern 
form, proposed by O. Heaviside and G. Hertz [4], this 
should not have happened. Maxwell himself, who 
predicted the possibility of electromagnetic waves, in 
theoretical discussions denied the possibility of a 
unidirectional vector field generated by the pulsation 
of the "density" of electrostatic fields, similar to the 
pressure pulsations in sound waves. Such pulsations 
would imply the presence of a variable concentration 
of electrostatic field lines propagating along the 
electrostatic field lines. Therefore, Maxwell's 
original equations did not contain solutions 
corresponding to these waves, and subsequent efforts 

of experimenters were directed mainly to the 
detection of transverse electromagnetic waves, i.e. 
waves in which the directions of the electric and 
magnetic fields are perpendicular to the direction of 
their propagation. G. Hertz first reported the 
experimental detection of such waves in 1887 [5]. 

However, as N. Tesla showed two years later, the 
effects observed by Hertz could also be caused by 
longitudinal waves [6]. Such waves probably 
consisted of a sequence of unidirectional shock 
waves caused by the rupture of the electrostatic field, 
and were able to affect charges in the direction of 
their propagation. Some of them have been known 
for a long time, for example, Langmuir waves 
generated by collective oscillatory processes of 
volume charge in plasma. 
 
1.2 The goal of the paper 

Researchers have discovered other types of 
longitudinal electromagnetic waves in waveguides, 
resonators, piezoelectrics, semiconductors, liquid 
crystals, single-wire power transmission lines, as 
well as a special class of receiving and transmitting 
antennas (the so-called EN - antennas that emit 
longitudinal waves and provide communication 
through the water column and rocks [7], etc.). 

LW generators, transverse wave converters into 
longitudinal waves, detectors, mixers and power 
meters have been created [8]. Such waves are 
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recorded by Schottky diodes, photo materials 
protected by a light-tight foil screen, liquid crystal 
indicators, phase-contrast microscopy of high-purity 
water, etc. 

Along with the existence of longitudinal magnetic 
waves, experiments often also reveal the appearance 
of forces acting along a conductor with current. The 
presence of such forces acting on electrons moving 
along the axis of the toroid and the copper conductor 
was discovered in the experiments of A. Solunin and 
confirmed in the experiments of S. Grano and G. 
Nikolaev [9].  

Taking into account all of the above, we move 
from a globally transverse electromagnetic field to 
fields equally polarized in four directions: 
longitudinal, two transverse, and “temporal” in 
contrast to our previous papers [11,12], where only 
transverse polarization was considered. 
 
2 Basic Equations of the 

Electromagnetic Field 
 
2.1 Two different values of the “speed of light” 

Since the wave front can change, the division of 
waves into transversely polarized and longitudinally 
polarized can only be performed locally. In this 
regard, let us consider – starting from equations [10] 
– the following original basic equations 
𝑑

𝑑𝑡
𝐵0 + 𝑐2𝛁 ∙ 𝑩 − 𝒗 ∙ [𝛁 × 𝑬] = 0, 

𝑑

𝑑𝑡
𝑩 + [[𝒗 × 𝛁] × 𝑩] + 𝑐2𝛁𝐵0 + 𝑐1[𝛁 × 𝑬] − [𝒗 ×

𝛁]𝐸0 = 0, 
𝑑

𝑑𝑡
𝐸0 + 𝑐2𝛁 ∙ 𝑬 + 𝒗 ∙ [𝛁 × 𝑩] = 0,  (1) 

𝑑

𝑑𝑡
𝑬 + [[𝒗 × 𝛁] × 𝑬] + 𝑐2𝛁𝐸0 − 𝑐1[𝛁 × 𝑩] + [𝒗 ×

𝛁]𝐵0 = −𝑱, 
where 𝐵0, 𝐸0 are the “scalar” components of the 
electromagnetic field, 𝒗 is the velocity vector for the 
“source” of the field. Here the time derivatives are 
complete, so 𝑑

𝑑𝑡
≡

𝜕

𝜕𝑡
+ 𝒗 ∙ 𝛁. 

The array of partial differential equations (1) 
contains two different values of the “speed of light”: 
c1 and c2 for the “longitudinal” and “transverse” 
waves, respectively. Next, we turn to the Fourier 
amplitudes of the fields according to the formula 

𝐴𝑗(𝑡, 𝒙) = ∫
𝑑𝜔𝑑𝒌

(2𝜋)4

+∞

−∞
𝑒𝑖(−𝜔𝑡+𝒌∙𝒙)𝑎𝑗(𝜔, 𝒌), (2) 

we obtain the following array of linear algebraic 
equations 

𝑠𝑏0 + 𝑐2𝒌 ∙ 𝒃 − 𝒗 ∙ [𝒌 × 𝒆] = 0,  

𝑠𝒃 + [[𝒗 × 𝒌] × 𝒃] + 𝑐2𝒌𝑏0 + 𝑐1[𝒌 × 𝒆] − 

−[𝒗 × 𝒌]𝑒0 = 0, 

𝑠𝑒0 + 𝑐2𝒌 ∙ 𝒆 + 𝒗 ∙ [𝒌 × 𝒃] = 0,   (3) 

𝑠𝒆 + [[𝒗 × 𝒌] × 𝒆] + 𝑐2𝒌𝑒0 − 𝑐1[𝒌 × 𝒃] + 
+[𝒗 × 𝒌]𝑏0 = 𝑖𝒋. 

The determinant of this system is equal to 

𝑑𝑒𝑡 = ((s − 𝑐1𝑘)(s + 𝑐2𝑘) + [𝒗 × 𝒌]2)
2

∙ 

∙ ((s + 𝑐1𝑘)(s − 𝑐2𝑘) + [𝒗 × 𝒌]2)
2 (4) 

where 𝑠 ≡ −𝜔 + 𝒗 ∙ 𝒌. 
 
2.2 Two waves propagating at different 

speeds 

It is obvious that the determinant of the system is 
equal to the square of the value, thus, system (3) is a 
“dual set” of equations describing the physics of the 
same wave process. In the case of a stationary source 
𝒗 = 0, the wave front splits into two waves 
propagating with different velocities 

𝑑𝑒𝑡 = (𝑠2 − 𝑐1
2𝑘2)2(𝑠2 − 𝑐2

2𝑘2)2. 

The system of eight linear equations (3) can be 
broken down into two independent systems of four 
equations each using linear substitution of variables: 

𝑠𝜉0 + 𝒑2 ∙ 𝝃 = 0, 𝑠𝝃 + 𝒑2𝜉0 + 𝑖𝒑1 × 𝝃 = 𝑖𝑱; (5) 

𝑠𝜁0 + 𝒒2 ∙ 𝜻 = 0, 𝑠𝜻 + 𝒒2𝜁0 − 𝑖𝒒1 × 𝜻 = 𝑖𝑱 (6) 

where 𝜉𝑙 ≡ 𝐸𝑙 + 𝑖𝐵𝑙, 𝜁𝑙 ≡ 𝐸𝑙 − 𝑖𝐵𝑙, 𝑙 = 0,1,2,3 

𝒑1 ≡ 𝑐1𝐤 − 𝑖[𝒗 × 𝐤], 𝒑2 ≡ 𝑐2𝐤 − 𝑖[𝒗 × 𝐤]; (7) 

𝒒1 ≡ 𝑐1𝐤 + 𝑖[𝒗 × 𝐤], 𝒒2 ≡ 𝑐2𝐤 + 𝑖[𝒗 × 𝐤]. 

The determinant of each of the systems (5), (6) is 
equal to 

𝑑𝑒𝑡 = ((𝑠 − 𝑐1𝑘)(𝑠 + 𝑐2𝑘) + [𝒗 × 𝒌]2) ∙ 

∙ ((𝑠 + 𝑐1𝑘)(𝑠 − 𝑐2𝑘) + [𝒗 × 𝒌]2). (8) 

The last expression can be written as 

𝑑𝑒𝑡 = (𝑠2 − (√𝑐1𝑐2𝑘)
2

+ [𝒗 × 𝒌]2)
2

− 

−(𝑐2 − 𝑐1)2𝑠2𝑘2. 

 

2.3 The case of an isotropic system Let us further consider the case of an isotropic 
medium in which 𝑐1 = 𝑐2 = 𝑐. In this case, the 
determinant (8) is the square of the number 
𝑑𝑒𝑡 = (𝑠2 − 𝑐2𝑘2 + [𝒗 × 𝒌]2)2   
or 
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𝑑𝑒𝑡 = (s2 − 𝑐2𝜅2)2, 

where 𝜿 ≡ 𝒌 +
𝑖

𝑐
𝒗 × 𝒌   (9) 

are the «new» momentums. 

Using a linear combination of equations, each of 
the systems (5), (6) can be transformed into a pair of 
independent systems with two unknowns. For 
example, the system of four coupled equations (6) 

𝑠𝜁0 + 𝑐𝜅1𝜁1 + 𝑐𝜅2𝜁2 + 𝑐𝜅3𝜁3 = 0, 

𝑐𝜅1𝜁0 + 𝑠𝜁1 + 𝑖𝑐𝜅3𝜁2 − 𝑖𝑐𝜅2𝜁3 = 𝑖𝑗1,             (10) 

𝑐𝜅2𝜁0 − 𝑖𝑐𝜅3𝜁1 + 𝑠𝜁2 + 𝑖𝑐𝜅1𝜁3 = 𝑖𝑗2, 

𝑐𝜅3𝜁0 + 𝑖𝑐𝜅2𝜁1 − 𝑖𝑐𝜅1𝜁2 + 𝑠𝜁3 = 𝑖𝑗3, 

with 

𝑑𝑒𝑡 =  (s2 − 𝑐2𝜅2)2,               (11) 

from which we can write the following two 
independent systems: 

(𝑠 − 𝑐𝜅3)(𝜁0 − 𝜁3) + 𝑐(𝜅1 − 𝑖𝜅2)(𝜁1 + 𝑖𝜁2) = 

= −𝑖𝑗3, 

с(𝜅1 + 𝑖𝜅2)(𝜁0 − 𝜁3) + (𝑠 + 𝑐𝜅3)(𝜁1 + 𝑖𝜁2) = 
= 𝑖(𝑗1 + 𝑖𝑗2) 

and 
(𝑠 + 𝑐𝜅3)(𝜁0 + 𝜁3) + с(𝜅1 + 𝑖𝜅2)(𝜁1 − 𝑖𝜁2) = 𝑖𝑗3, 

с(𝜅1 − 𝑖𝜅2)(𝜁0 + 𝜁3) + (𝑠 − 𝑐𝜅3)(𝜁1 − 𝑖𝜁2) = 

= 𝑖(𝑗1 − 𝑖𝑗2) 

with 𝑑𝑒𝑡 =  s2 − 𝑐2𝜅2               (12) 
for each of the systems. 
 
3 Solution of the Equations 
 
3.1 Elongation of Derivatives and Coordinate 

Transformation 
Let us calculate, based on formula (9) – the 

transformation of coordinate gradients – the formula 
for the transformation of the coordinates themselves. 

Multiplying equation (9) by 𝒗 scalarly, we obtain 
that 𝒗 ∙ 𝜿 = 𝒗 ∙ 𝒌. Multiplying (9) on the left by 𝒗 
vectorly, we obtain 

𝒗 × 𝜿 = 𝒗 × 𝒌 +
𝑖

𝑐
𝒗 × [𝒗 × 𝒌], 

or 
𝑖

𝑐
𝒗 × 𝜿 +

1

𝑐2 𝒗(𝒗 ∙ 𝜿) =
𝑖

𝑐
𝒗 × 𝒌 +

1

𝑐2 𝑣2𝒌, 
where 
𝑖

𝑐
𝒗 × 𝒌 = 𝜿 − 𝒌 according to (9), so that 

(1 −
𝒗2

𝒄2) 𝒌 = 𝜿 −
1

𝑐2 𝒗(𝒗 ∙ 𝜿) −
𝑖

𝑐
𝒗 × 𝜿.             (13) 

Finally, the expression of the "old" impulses in terms 
of the "new" ones is as follows: 

𝒌 =
𝜿−

1

𝑐2𝒗(𝒗∙𝜿)−
𝑖

𝑐
𝒗×𝜿

(1−
𝑣2

𝑐2)
,               (14) 

and the "old" coordinates are expressed in terms of 
the "new" coordinates by the formula 

𝒙 = 𝒚 +
𝑖

𝑐
𝒗 × 𝒚.               (15) 

Solution of the algebraic equation array (3) under 
condition 𝑐1 = 𝑐2 = 𝑐 is as follows: 

𝑏0 = −𝑖 [
𝒗

с
× 𝒌] ∙ 𝐚, 𝒃 = 𝑖[𝒌 × 𝒂],             (16) 

𝑒0 = 𝑖𝒌 ∙ 𝒂,  𝒆 = −𝑖
𝑠

𝑐
𝒂 + 𝑖 [

𝒗

с
× 𝒌] × 𝐚, 

where the Fourier amplitude of the vector potential is 
equal to 
𝒂 = −

𝒋

𝑠2−𝑐2𝑘2+[𝒗×𝒌]2.               (17) 
 
3.2 Solution of the Problem in Coordinates Time-

Space 

To write the solution in coordinates 𝑡, 𝒙, it is 
necessary to perform integration for the vector 
potential according to formula (2), then the solution 
of system (1) can be written in the form 

𝐵0 = − [
𝒗

с
× 𝛁] ∙ 𝑨, 𝑩 = [𝛁 × 𝑨],             (18) 

𝐸0 = 𝛁 ∙ 𝑨, 𝑬 = −
1

𝑐

d

dt
𝑨 + [

𝒗

с
× 𝛁] × 𝐀,      (19) 

where 

𝐴(𝑡, 𝒙) =

− ∫
𝑑𝜔𝑑3𝒌

(2𝜋)4

+∞

−∞
𝑒−𝑖(𝜔𝑡−𝒌∙𝒙) 𝑱(𝜔,𝒌)

(𝜔−𝒗∙𝒌)2−𝑐2𝑘2+[𝒗×𝒌]2, 
because of 
 𝑱(𝜔, 𝒌) = ∫ 𝑑𝜏𝑑3𝒙

+∞

−∞
𝑒+𝑖(𝜔𝜏−𝒌∙𝒚)𝑱(𝜏, 𝒚). 

Then we are calculating the Green's function 

𝐺(𝑡 − 𝜏, 𝒙 − 𝒚) =

− ∫
𝑑𝜔𝑑3𝒌

(2𝜋)4

𝑒−𝑖(𝜔(𝑡−𝜏)−𝒌∙(𝒙−𝒚))

(𝜔−𝒗∙𝒌)2−𝑐2𝑘2+[𝒗×𝒌]2

+∞

−∞
.             (20) 

According to formula (13), there are two 
fundamentally different cases: 
1. 𝑣2 ≠ 𝑐2 the source moves at a speed different from 
the speed of light; 
2. 𝑣2 = 𝑐2 the source moves at the speed of light. 

To clearly imagine the picture of wave front 
propagation according to the characteristic equation 
(12), let us introduce the phase velocity of the wave 
front in the cylindrical coordinate system ω=ϑk, then 
(𝜗𝑘 − 𝑣𝑘𝑐𝑜𝑠(𝜃))

2
− 𝑐2𝑘2 + 𝑣2𝑘2𝑠𝑖𝑛(𝜃)2 =0.(21) 

Yevgen V. Chesnokov, Ivan V. Kazachkov
Journal of Electromagnetics 

http://www.iaras.org/iaras/journals/je

ISSN: 2534-8833 23 Volume 8, 2025



Dividing equation (21) by k≠0 and c≠0, we obtain 
the equation of a circle of unit radius, the centre of 
which is shifted from the origin, following the 
source: 

(
𝜗

𝑐
−

𝑣

𝑐
𝑐𝑜𝑠(𝜃))

2

+
𝑣2

𝑐2 𝑠𝑖𝑛(𝜃)2 = 1.             (22) 

It is obvious that the wave front has no features at 
𝑣2

𝑐2 = 1, so no "light barrier" is observed in this model 
(see Fig. 1). 

 

end view 

Fig. 1 Wave front diagram 

 
3.3 Calculation of the Green's Function for 𝒗2 ≠

𝑐2 

According to the formula (9): 

𝑠2 − 𝑐2𝑘2 + [𝒗 × 𝒌]2 = 𝑠2 − 𝑐2𝜅2, 
1

𝑠2−𝑐2𝑘2+[𝒗×𝒌]2 =
1

𝑠2−𝑐2𝜅2 =
1

2𝑐𝜅
(

1

𝑠−𝑐𝜅
−

1

𝑠+𝑐𝜅
) =

1

2𝑐𝜅
(

1

𝜔−𝒗∙𝒌−𝑐𝜅
−

1

𝜔−𝒗∙𝒌+𝑐𝜅
). 

The integral over ω in formula (20) can be calculated 
using the residue theorem: 

∫
𝑒−𝑖𝜔𝑡

𝑠2−𝑐2𝜅2 𝑑𝜔
+∞

−∞
=

1

2𝑐𝜅
(∫

𝑒−𝑖𝜔𝑡

𝜔−𝒗∙𝒌−𝑐𝜅
𝑑𝜔

+∞

−∞
−

∫
𝑒−𝑖𝜔𝑡

𝜔−𝒗∙𝒌+𝑐𝜅
𝑑𝜔

+∞

−∞
) = −2𝜋𝑒−𝑖𝒗∙𝒌𝑡 𝑠𝑖𝑛(𝑐𝜅𝑡)

𝑐𝜅
. 

Thus, the following integral must be calculated 

∫
𝑑3𝒌

(2𝜋)3 𝑒𝑖𝒌∙((𝒙−𝒚)−𝒗(𝑡−𝜏)) 𝑠𝑖𝑛(𝑐𝜅(𝑡−𝜏))

𝑐𝜅

+∞

−∞
  

in the space of «new» impulses κ. 
According to (14), we have a linear dependence 

(the notation 𝒖 ≡
𝒗

𝑐
 is introduced) 

𝑘𝑙 =
𝜅𝑙−𝑢𝑙(𝑢𝑚𝜅𝑚)−𝑖𝜖𝑙𝑚𝑛𝑢𝑚𝜅𝑛

(1−𝑢2)
, 

or in matrix form 

(

𝑘1

𝑘2

𝑘3

) =
1

(1 − 𝑢2)
∙ 

∙ (

1 − 𝑢1
2 −𝑢1𝑢2 + 𝑖𝑢3 −𝑢1𝑢3 − 𝑖𝑢2

−𝑢2𝑢1 − 𝑖𝑢3 1 − 𝑢2
2 −𝑢2𝑢3 + 𝑖𝑢1

−𝑢3𝑢1 + 𝑖𝑢2 −𝑢3𝑢2 − 𝑖𝑢1 1 − 𝑢3
2

) (

𝜅1

𝜅2

𝜅3

) 

with determinant 𝑑𝑒𝑡 = (1 − 𝑢2), so that 
𝑑3𝒌 = (1 − 𝑢2)𝑑3𝜿 

and 

∫
𝑑3𝒌

(2𝜋)3 𝑒𝑖𝒌∙((𝒙−𝒚)−𝒗(𝑡−𝜏)) 𝑠𝑖𝑛(𝑐𝜅(𝑡−𝜏))

𝑐𝜅

+∞

−∞
= (1 −

𝑢2) ∫
𝑑3𝜿

(2𝜋)3 𝑒𝑖𝜿∙𝑳 𝑠𝑖𝑛(𝑐𝜅(𝑡−𝜏))

𝑐𝜅
,              (23) 

where 

𝑳 ≡ 𝜹 − 𝒖(𝒖 ∙ 𝜹) + 𝑖[𝒖 × 𝜹],              (24) 

𝜹 ≡ 𝒙 − 𝒚 − 𝒖𝑐(𝑡 − 𝜏). 

Recalling the expression for the Pauli function: 

𝐷(𝑧) = ∫
𝑑3𝜿

(2𝜋)3 𝑒𝑖𝜿∙𝑳 𝑠𝑖𝑛(𝑐𝜅(𝑡−𝜏))

𝜅
,              (25) 

we obtain the final expression of the Green's function 
for 𝑢2 ≠ 1: 
𝐺(𝑡 − 𝜏, 𝒙 − 𝒚) = (1 − 𝑢2) с⁄ 𝐷(𝑧). 
The retarded and advanced Green's functions are 
equal, respectively: 

𝐷𝑟𝑒𝑡(𝑧) =
1

4𝜋

1

|𝑳|
𝛿(|𝑳| − 𝑐(𝑡 − 𝜏)),             (26) 

𝐷𝑎𝑑𝑣(𝑧) =
1

4𝜋

1

|𝑳|
𝛿(|𝑳| + 𝑐(𝑡 − 𝜏)). 

The Pauli function 𝐷(𝑧) = 𝐷𝑟𝑒𝑡(𝑧) − 𝐷𝑎𝑑𝑣(𝑧) is 
used to construct a solution to the Cauchy problem of 
the free d'Alembert equation (wave equation in the 
absence of sources). Note that  

𝐿2 = (1 − 𝑢2)(𝛿2 − (𝒖 ∙ 𝜹)2).              (27) 

If we denote the angle between the vector 𝒖 and 𝜹 by 
the letter θ, then 

𝐿2 = 𝛿2(1 − 𝑢2)(1 − 𝑢2 ∙ 𝑐𝑜𝑠(θ)2). 

This expression is positive for 𝑢2 < 1 for any values 
of θ, and is also positive for 𝑢2 > 1 for some θ such 
that 𝑐𝑜𝑠(θ)2 >

1

𝑢2. Thus, there always exists 𝐿 > 0, 
which plays the role of the effective distance to the 
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source in classical electrodynamics. Below in Fig. 2 
is a graph of the dependence of L on the angle θ in 
the range 0 < 𝑢2 < 2: 

 
Fig. 2 Dependence of the effective distance to the 
source L on the angle 𝜃 for different 0 < 𝑢2 < 2 

It is evident that for 𝑢2 > 1, the effective distance L 
across the source velocity vector increases with the 
growth of the velocity u. Since L is included in the 
denominator of formulas (26), the amplitude of the 
vector potential will decrease in the direction across 
the source movement: the field is as if “pressed” to 
the axis of movement, which is observed in the 
Cherenkov Effect. 
 
4 Light cone and its appearance 
Using formulas (26) we can give the expressions for 
Green's functions a 4-dimensional form: 

𝐷𝑟𝑒𝑡(𝑧) =
𝜗(𝑡 − 𝜏)

4𝜋

𝛿(|𝑳| − 𝑐(𝑡 − 𝜏))

|𝑳|
= 

=
𝜗(𝑡−𝜏)

4𝜋

2𝛿(|𝑳|−𝑐(𝑡−𝜏))

(|𝑳|+𝑐(𝑡−𝜏))
=

𝜗(𝑡−𝜏)

2𝜋
𝛿(𝐿2 − 𝑐2(𝑡 − 𝜏)2), 

𝐷𝑎𝑑𝑣(𝑧) =
𝜗(𝜏 − 𝑡)

4𝜋

𝛿(|𝑳| + 𝑐(𝑡 − 𝜏))

|𝑳|
= 

=
𝜗(𝜏−𝑡)

4𝜋

2𝛿(|𝑳|+𝑐(𝑡−𝜏))

(|𝑳|−𝑐(𝑡−𝜏))
=

𝜗(𝜏−𝑡)

2𝜋
𝛿(𝐿2 − 𝑐2(𝑡 − 𝜏)2), 

𝐷(𝑧) =
𝑠𝑖𝑔𝑛(𝑡−𝜏)

2𝜋
 𝛿(𝐿2 − 𝑐2(𝑡 − 𝜏)2). 

The light cone equation is 𝐿2 − 𝑐2(𝑡 − 𝜏)2 = 0, 
where 𝐿2 is calculated using formula (27).  
Let us introduce the notation  
𝑅 = |𝑥 − 𝑦|,  𝑈 =

𝑅

𝑐(𝑡−𝜏)
, 

𝑈𝑧 = 𝑈𝑐𝑜𝑠(𝜃),  𝑈𝜌 = 𝑈𝑠𝑖𝑛(𝜃),  
then the equation of the light cone will have the form 
𝑈𝜌

2 + (1 − 𝑢2)(𝑈𝑧 − 𝑢)2 =
1

(1−𝑢2)
, which is the 

equation of an ellipsoid for 𝑢2 < 1, and for 𝑢2 > 1 – 
the equation of a two-sheet hyperboloid as shown in 
Fig. 3: 

 
Fig. 3 The light cone for u2<1 and for u2>1 

 
4.1 Calculation of the Green's Function for 

𝒗2 = 𝑐2 
In this case – when the source moves at the speed of 
light – according to formula (9)  

𝑠2 − 𝑐2𝑘2 + [𝒗 × 𝒌]2 = 

= 𝑠2 − 𝑐2𝑘2 + 𝑣2𝑘2 − (𝒗 ∙ 𝒌)2 = 𝑠2 − (𝒗 ∙ 𝒌)2, 

1

𝑠2 − 𝑐2𝑘2 + [𝒗 × 𝒌]2
=

1

𝑠2 − (𝒗 ∙ 𝒌)2
= 

=
1

2𝒗 ∙ 𝒌
(

1

𝑠 − 𝒗 ∙ 𝒌
−

1

𝑠 + 𝒗 ∙ 𝒌
) = 

=
1

2𝒗 ∙ 𝒌
(

1

𝜔
−

1

𝜔 − 2𝒗 ∙ 𝒌
) 

− ∫
𝑒−𝑖𝜔𝑡

𝑠2−(𝒗∙𝒌)2 𝑑𝜔
+∞

−∞
=

2𝜋

𝒗∙𝒌
𝑒−𝑖𝒗∙𝒌𝑡𝑠𝑖𝑛(𝒗 ∙ 𝒌𝑡). 

Thus, we need to calculate the integral 

∫
𝑑3𝒌

(2𝜋)3 𝑒𝑖𝒌∙((𝒙−𝒚)−𝒗(𝑡−𝜏)) 𝑠𝑖𝑛(𝒗∙𝒌(𝑡−𝜏))

𝒗∙𝒌

+∞

−∞
  

over the entire space 𝒌 or, using the notation 𝒏 ≡
𝒗

𝑐
: 
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𝐺 = −
𝑖

2с
(∫

𝑑3𝒌

(2𝜋)3

𝑒𝑖𝒌∙(𝒙−𝒚)−𝑒𝑖𝒌∙((𝒙−𝒚)−𝟐𝒏𝑐(𝑡−𝜏))

𝒏∙𝒌

+∞

−∞
), 

where 𝑛2 = 1, thus, 𝒏 is a unit vector directed along 
the velocity vector 𝒗. 

An arbitrary vector 𝒒 can be decomposed into 
components parallel to the unit vector n and 
perpendicular to it, using the formula 
𝒒 = 𝒏(𝒏 ∙ 𝒒) + [𝒏 × [𝒒 × 𝒏]], 
or 
𝒒 = 𝒏(𝒏 ∙ 𝒒) + 𝒒 − 𝒏(𝒏 ∙ 𝒒). 

The length of the longitudinal projection of the vector 
𝑞|| = (𝒏 ∙ 𝒒), the transverse – 𝑞⊥ = √𝑞2 − (𝒏 ∙ 𝒒)2, 
or 𝑞|| = 𝑞𝑐𝑜𝑠(𝜃), 𝑞⊥ = 𝑞𝑠𝑖𝑛(𝜃), where θ – angle 
between vectors. 

The scalar product of vectors – via a unit vector – 
can be represented as 
(𝒌 ∙ 𝒒) = (𝒌 ∙ 𝒏)(𝒏 ∙ 𝒒) − [𝒌 × 𝒏] ∙ [𝒏 × 𝒒]. 
Thus, the problem is reduced to calculating the 
integral 

I=∫
𝑑3𝒌

(2𝜋)3

𝑒𝑖𝒌∙𝒙−𝑒𝑖𝒌∙(𝒙−𝟐𝒏𝑐𝑡)

𝒏∙𝒌

+∞

−∞
,              (28) 

which we will calculate in a spherical coordinate 
system, with the z-axis directed along n: 
 𝑘1 = 𝐾𝑐𝑜𝑠𝜑𝑠𝑖𝑛𝜃 𝑘2 = 𝐾𝑠𝑖𝑛𝜑𝑠𝑖𝑛𝜃
 𝑘3 = 𝐾𝑐𝑜𝑠𝜃; 
 𝑛1 = 0  𝑛2 = 0  
 𝑛3 = 1; 
 𝑥1 = 𝑅𝑐𝑜𝑠𝛽𝑠𝑖𝑛𝛼 𝑥2 = 𝑅𝑠𝑖𝑛𝛽𝑠𝑖𝑛𝛼
 𝑥3 = 𝑅𝑐𝑜𝑠𝛼. 
 
Let us denote 𝛲 = 𝑅𝑠𝑖𝑛(𝛼), 𝑍 = 𝑅𝑐𝑜𝑠(𝛼). 
Taking into account that 

𝒌 ∙ 𝒙 = 𝐾𝑠𝑖𝑛(𝜃)𝛲𝑐𝑜𝑠(𝜑 − 𝛽) + 𝐾𝑐𝑜𝑠(𝜃)𝑍, 

∫ 𝑒𝑖𝐾𝑠𝑖𝑛(𝜃)𝛲𝑐𝑜𝑠(𝜑−𝛽)𝑑𝜑
2𝜋

0
= 2𝜋𝑱0(𝛲𝐾𝑠𝑖𝑛(𝜃)), 

we have 
I =

2𝜋

(2𝜋)3 ∫ 𝐾𝑑𝐾 ∫
𝑠𝑖𝑛(𝜃)

𝑐𝑜𝑠(𝜃)
𝑑𝜃

𝜋

0

∞

0
(𝑒𝑖𝐾𝑐𝑜𝑠(𝜃)𝑍 −

𝑒𝑖𝐾𝑐𝑜𝑠(𝜃)(𝑍−2𝑐𝑡))𝑱0(𝛲𝐾𝑠𝑖𝑛(𝜃)) , 

or, to show that there is no singularity when 
𝑐𝑜𝑠(𝜃) = 0 : 
I =

4𝜋𝑖

(2𝜋)3 ∫ 𝐾𝑑𝐾 ∫
𝑠𝑖𝑛(𝐾𝑐𝑜𝑠(𝜃)𝑐𝑡)

𝐾𝑐𝑜𝑠(𝜃)
∙

𝜋

0

∞

0

𝑒𝑖𝐾𝑐𝑜𝑠(𝜃)(𝑍−𝑐𝑡)𝑱0(𝛲𝐾𝑠𝑖𝑛(𝜃))𝐾𝑠𝑖𝑛(𝜃)𝑑𝜃. 

If we switch to a cylindrical coordinate system: 
𝐾𝑧 = 𝐾𝑐𝑜𝑠(𝜃) ,  𝐾𝜌 = 𝐾𝑠𝑖𝑛(𝜃), 
then the double integral is factorized: 

I =
4𝜋𝑖

(2𝜋)3 ∫
𝑑𝐾𝑧

𝐾𝑧
∙

+∞

−∞

𝑠𝑖𝑛(𝐾𝑧𝑐𝑡)𝑒𝑖𝐾𝑧(𝑍−𝑐𝑡) ∫ 𝐾𝜌𝑑𝐾𝜌
∞

0
𝑱0(𝛲𝐾𝜌), 

I =
4𝜋𝑖

(2𝜋)3𝛲2 ∫
𝑑𝐾𝑧

𝐾𝑧
𝑠𝑖𝑛(𝐾𝑧𝑐𝑡)

+∞

−∞
𝑒𝑖𝐾𝑧(𝑍−𝑐𝑡) ∫ 𝑱0(𝑥)𝑥𝑑𝑥

∞

0
. 

Taking into account ∫ 𝑱0(𝑥)𝑥𝑑𝑥
∞

0
= 1, we have 

I =
2𝜋

(2𝜋)3𝛲2 ∫
𝑑𝐾𝑧

𝐾𝑧
(𝑒𝑖𝐾𝑧𝑍 − 𝑒𝑖𝐾𝑧(𝑍−2𝑐𝑡))

+∞

−∞
. 

The sine remains from the exponent because it is 
the integral of an odd function, 

∫
𝑐𝑜𝑠(𝐾𝑧𝑍)

𝐾𝑧
𝑑𝐾𝑧

+∞

−∞
= 0: 

I =
2𝜋

(2𝜋)3𝛲2 ∫
𝑑𝐾𝑧

𝐾𝑧
(

𝑠𝑖𝑛(𝐾𝑧𝑍) −

−𝑠𝑖𝑛(𝐾𝑧(𝑍 − 2𝑐𝑡))
)

+∞

−∞
. 

 
4.2 Three different solution areas 
The integral from the above is tabular, the result is 
𝐼 =

1

4𝜋2 (𝑠𝑖𝑔𝑛(𝑍) − 𝑠𝑖𝑔𝑛(𝑍 − 2𝑐𝑡)). 
Fig. 4 shows the regions on the Z, ct plane where the 
function 𝑠𝑖𝑔𝑛(𝑍) − 𝑠𝑖𝑔𝑛(𝑍 − 2𝑐𝑡) takes on 
different values: 
- the region where the function is +2 (absolute 
future), marked in red; 
- the region where the function is –2 (absolute past), 
marked in pink; 
- the regions where the function is zero (unreachable 
region), marked in green. 

 
Fig. 4 Different values of function  
sign(Z)-sign(Z-2ct) on plane Z, ct 
 

4.3 The Energy–Momentum tensor 

conservation law 

For the sake of simplicity, we introduce new 
field variables according to 
𝜷 = 𝑩 + 𝒖 × 𝑬             (29) 
𝜺 = 𝑬 − 𝒖 × 𝑩. 
In this variables the system (3) looks like 
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𝑠𝐵0 + 𝒌 ∙ 𝜷 = 0             (30) 
𝑠𝜷 + 𝑐(𝒌 + 𝒖 × [𝒖 × 𝒌])𝐵0 + 

+𝑐𝒌 × (𝜺 − 𝒖(𝒖 ∙ 𝜺)) = −𝑖𝒖 × 𝒋 
𝑠𝐸0 + 𝒌 ∙ 𝜺 = 0 
𝑠𝜺 + 𝑐(𝒌 + 𝒖 × [𝒖 × 𝒌])𝐸0 − 

−𝑐𝒌 × (𝜷 − 𝒖(𝒖 ∙ 𝜷)) = 𝑖𝒋 
Using the vector analysis formula 
𝛁 ∙ [𝒂 × 𝒃] = 𝒃 ∙ [𝛁 × 𝐚] − 𝒂 ∙ [𝛁 × 𝒃], 
we can obtain from system (29) the conservation 
law for the energy and momentum density tensor 

1

2

𝑑

𝑑𝑡
(

(1 − 𝑢2)(𝐵0
2 + 𝐸0

2 + 𝛽2 + 𝜀2) +

+[𝒖 × 𝜷]2 + [𝒖 × 𝜺]2 ) + 

+ 𝑐𝛁 ∙ ((1 − 𝑢2)(𝐵0𝜷 + 𝐸0𝜺) + [𝜺 × 𝜷] + 𝒖

× [𝒖 × [𝜺 × 𝜷]]) = 

 = −(𝜺 − 𝒖 × 𝜷 − 𝒖(𝒖 ∙ 𝜺)) ∙ 𝒋;       (31) 
𝑑

𝑑𝑡
(−(1 − 𝑢2)(𝐵0𝜷 + 𝐸0𝜺) + [𝜺 × 𝜷] + 𝒖

× [𝒖 × [𝜺 × 𝜷]])
𝑖

− 

−(1 − 𝑢2)𝑐∇𝑗 ((𝜷𝑖𝛽𝑗 + 𝜺𝑖𝜀𝑗)

+ 𝜖𝑖𝑗𝑙 ((𝜀𝑙 − 𝑢𝑙(𝒖 ∙ 𝜺))𝐵0

− (𝛽𝑙 − 𝑢𝑙(𝒖 ∙ 𝜷))𝐸0)) + 

+(1 − 𝑢2)𝑐(𝛁𝑖 + 𝒖𝑖(𝒖𝛁)) ∙

∙

(
−(1 − 𝑢2)(𝐵0

2 + 𝐸0
2 − 𝛽2 − 𝜀2) +

+[𝒖 × 𝜷]2 + [𝒖 × 𝜺]2 )

2
 

= (1 − 𝑢2)(𝐸0𝑱 + [𝜷 × 𝑱] − 𝐵0𝒖 × 𝑱 + [𝜺 ×

[𝒖 × 𝑱]]) − 𝒖((𝜷 − 𝒖 × 𝜺) ∙ [𝒖 × 𝑱]). (32) 
Note, that the energy density 
𝛦 =

1

2
((1 − 𝑢2)(𝐵0

2 + 𝐸0
2 + 𝛽2 + 𝜀2) + [𝒖 ×

𝜷]2 + [𝒖 × 𝜺]2)             (33) 
can became negative by 𝑢2 > 1. The result is 
quite unexpected and requires further study and 
discussion. 
 
5 Conclusion 
In the mathematical model for electromagnetic field 
considered in this paper, we have obtained solution 
for the wave front, which can change its direction, so 
that what was longitudinal will become transverse 
after turning. Therefore, we pass from a globally 
transverse EM field to fields equally polarized in four 

directions: longitudinal, two transverse and 
"temporal".  

The Mathematical modelling and computer 
simulations showed the peculiarities of the EM 
waves’ spreading depending on the speed of 
movement of the source. The three specific areas 
were revealed in computer simulation, so-called: the 
area of absolute future, the area of absolute past, and 
the unreachable area.  

The following is significantly new in our model: 
- There is no scalar potential and static electric field 
as such. 
- The light cone is no longer a cone, but a more 
complex surface of the 2nd order ellipsoid, which at 
|𝒗| = 𝑐 turns into a two-cavity hyperboloid (a similar 
situation was with the trajectories of celestial bodies 
in classical mechanics: closed elliptical orbits at the 
second cosmic velocity ~ 11.2 km/s turned into open 
hyperbolic ones). 
- The wave energy can become negative at a velocity 
of 𝑢2 > 1, which requires further understanding and 
a deeper explanation. 
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