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Abstract: - We present a particular class of solutions in Cartesian, cylindrical and spherical coordinates of 

the non-dispersive travelling wave variety that propagate an envelope of varying vorticity some of which 

include topological waves with parallel electric and magnetic components. The significance of these solutions 

is examined in the recently proposed Axion-Maxwell field theory with potential applications in material science 

and topological insulators. 
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1 Introduction 

By the end of the previous century, Maxwell theory 

got some important influences from other related 

fields like hydrodynamics and plasma physics which 

enriched the existing framework. This has already 

had a precedent in the work of Maxwell himself [1], 

[2] who borrowed ideas from ideal Euler 

hydrodynamics and similar fields since at that time, 

the conception of the field abstraction was that of a 

material entity or a “fluid” structure tied up with the 

aether concept. 

Even after the collapse of the aether model by 

relativistic theories, the many similarities of 

Maxwell theory with hydrodynamic models were 

often revived as in Marmanis [3], Holland [4], and 

Kambe [5]. More recent applications of Maxwell 

theory in complex phenomena like plasma 

dynamics, heliodynamics and magneto-

hydrodynamics are reviewed in a monography by 

Marsh [6] where the role of the so called “force-

free” fields is raised in association with the work of 

Eugenio Beltrami [7] in ideal hydrodynamics. 

Beltrami flows are of a characteristic topology akin 

to that of tornado flows and correspond to the 

“eigenfields” of the curl operator. 

These ideas found later use by Lakhtakia [8] in the 

form of the now known as the Beltrami-Maxwell 

Postulates where all cases of the electromagnetic 

field are reducible into generalized, complex 

Beltrami flows. These also naturally allow non-

abelian generalizations with magnetic monopole 

currents. A restricted version of the general 

transform has been also introduced previously in 

certain versions of covariant electrodynamics with 

the so called Riemann-Silberstein vector [9], [10] as 

a complex combination of the E and B components 

of free space solutions which can be traced back to 

the symmetrization of the electromagnetic tensor. 

The notion has become again popular in recent 

reformulations of electromagnetism based on 

geometric algebra [11].  

One of the strangest varieties of self-dual fields 

strongly associated with Beltrami flows has been 

brought to light in the original work by Yabe and 

Mushiake [12] as well as Chu and Ohkawa [13], 

raising some controversy due to their parallel 
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electric and magnetic components. Later, these were 

suggested by Gray [14] as special solutions of 

Maxwell equations while Shimoda, Kawai and 

Uehara proceeded in a partial recovery of both 

stationary and travelling waves with similar 

characteristics [15]. The controversy was only 

recently settled with a complete proof and 

classification from Nishiyama [16] based on 

previous work by Ko and Jang [17] as well as Low 

[18] on the complete solutions of Beltrami equation 

revealing both plane and spherical travelling waves 

with parallel electric and magnetic components.  

While such waves may carry energy but no 

momentum, they can be understood as topological 

excitations propagating geometric information of 

the field structure, similar to certain magnetic 

recombination processes in plasma physics or 

certain varieties of topological solitons [19]. In 

some controlled environments with appropriate 

materials they could even serve as extreme 

computational elements as in bounded domains 

where tweaking the information contained in 

appropriately specified boundaries would demand a 

rearrangement of the internal energy and the field 

structure. 

Axion theory on the other hand has being born out 

of an attempt to resolve symmetry problems of 

quantum chromodynamics (QCD) and the 

prediction of CP violations that were never 

observed. A possible resolution was given in the 

context of Perccei-Quinn theory [20] which adds a 

symmetry breaking θ-term in the QCD Lagrangian 

leading to a new, hypothetical elementary particle 

via its promotion to a quantized pseudoscalar field, 

first proposed by Weinberg [21] and Wilczek [22]. 

As of now, any strong violations have been 

excluded from measurements of the neutron electron 

dipole moment leaving only the possibility for an 

extremely small value of the θ parameter and a mass 

less than 10
-11

 of that of the electron [23]. Due to 

this, the interest in the theory spiked recently out of 

the possibility of axions being the true components 

of cold dark matter via a boson condensation 

mechanism [24] since there should be fairly stable, 

with even lower states of mass-energy being 

extremely improbable. 

It was recently shown by a Chinese group [25] that 

an equivalent Axion field can appear in the form of 

magnetic fluctuations coupled to the 

electromagnetic field in topological insulators 

enabling a nonlinear modulation of the EM field. 

Additionally, in a following work, Vissineli [26] 

examines the consequences of the interaction of an 

Axion field with the classical EM field based on the 

symmetry of the standard electromagnetic duality 

via a coupling mechanism that only affects Gauss 

and Faraday laws. This then results in a new, 

complete set of five equations by adding to the 

modified Maxwell equations an inhomogeneous 

Klein-Gordon equation for the pseudoscalar massive 

term of the additional Axion field. 

In what follows, we utilize a unique class of 

Beltrami flows for the vector potential itself which 

naturally contains a class of free space travelling 

waves with parallel electric and magnetic 

components. We first examine general 

characteristics of the new class in section 2, while in 

section 3, we seek the most general solutions along 

the lines laid in [16]. In section 4, we examine the 

conditions for the previously found types of waves 

to exist in the modified Axionic Maxwell equations 

and propose a hypothesis for the extremely weak 

mass values while, in section 5, we conclude. 

 

2 Problem Formulation 

We start by finding special solutions of the generic 

problem for the vector potential corresponding to a 

Beltrami flow defined by 

ArA ),( tλ=×∇            (1a) 

0=⋅∇=⋅∇ AAλ            (1b) 

Eq. (1a) defines a proper Beltrami flow while the 

first of the lhs in eq, (1b) assures consistency with 

the fundamental vectorial identity ( ) 0=×∇⋅∇ A  

. The problem defined by equations (1)-(3) has been 

originally tackled for special cases of constant λ 

(“Trkal fields”) during the second half of the 

previous century with the work of Chandrasekhar 

and Kendal [27], Woltjer [27], Moses[29] and 

others in the case of astrophysical magnetic fields 

which prefer force-free states for minimizing the 

magnetic part of the Lagrangian due to elimination 

of the magnetic part of the Lorentz force after 

alignment of the current with the magnetic field. 

In our case we are interested in a particular version 

of the general problem applied directly to the vector 

potential in the Coulomb gauge (eq. (2b)). The 

advantage of using (1a) is that it leads to certain 

types of sources that can allow modulating both the 

vorticity of the resulting fields as well as their total 
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angular momentum content. We then use the fact 

that for non-constant λ scalars the same solutions 

will necessarily satisfy the general D’Alambertian 

operator 
222[] tc ∂−∇= −

 with sources as can be 

seen by direct application of a second curl operator 

giving AA
2−∇=×∇×∇ . 

Then the total D’Alambertian becomes 

( ) AAA
22[] tc ∂−×−∇=⋅ −λ   (2) 

From standard vector identities we have then the 

immediate general result  

JAAAA 0

222[] µλλ =∂−×∇−−=⋅ −
tc  (3) 

In (3) J stands for an equivalent source current that 

if present in the standard Maxwell equations with 

linear constitutive relations, than it would 

simultaneously cause the appearance of the standard 

fields defined as 

AABAE λφ =×∇=∂−−∇= ,t  (4) 

Checking the rhs with the combined use of (1b) and 

the vector identity 

( ) ( ) ( )AAA 2/|| 2λλλ ∇=×∇∇=×∇×∇ , 

we find that it is divergence-free and hence this is a 

purely transverse (solenoidal) source. Since such a 

current does not require the presence of any static 

charge we can drop φ entirely. We notice that in this 

case, if a certain discrete symmetry is present, a 

linear superposition of all group members will fall 

again into the special category of electromagnetic 

fields with parallel electric and magnetic 

components. Examples can be given with the aid of 

general solutions discussed in the next section. 

The above source can be written in the form of a 

linear transform of the vector potential utilizing the 

tensorial representation of the cross product through 

the linear operator 

















∂∂−

∂−∂

∂∂−

=×∇=

0

0

0

][ˆ

12

13

23

λλ
λλ
λλ

λR  

In the above i∂  stands for the elements of the 

gradient 3-vector with the appropriate metric 

elements in the chosen coordinate system. Then the 

sources can be expressed in the operator matrix 

representation as 

IRKAAKJ ˆˆˆ,ˆ 222

0 λµ +=∂−⋅−= −
tc  (5) 

In the next section we seek alternative, non-

harmonic solutions of (1a-b) by introducing an 

ansatz for both the vector potential as well as the 

eigen-vorticity λ, to be functions of the single 

variable Vt−= ru where V an arbitrary velocity 

such that AA u∂−=∂− βtc
1

and AA u

2222 ∂=∂− βtc

where β = V/c is the usual relativistic notation. 

Notably, there are appropriate choices of the 

transverse part of A such that the cross product in 

(3) and (5) can be made to vanish so that we can 

guarantee the E ~ A structure of the fields.  

Such waves are often members of the class of non-

dispersive or, non-diffracting solutions of Maxwell 

equations which also satisfy the additional linear 

equation 

( ) 0[]
222 =⋅=∂−∇ −

AA VtV   (6) 

The class of non-diffracting waves has been well 

studied for three decades after the original finding of 

Focused Wave Modes by Brittingham. There are by 

now a variety of known and practically applicable 

cases of such solutions of the linear wave equation 

either in the field of paraxial optics or linear 

acoustics known as Bessel, Gaussian or Airy beams, 

as well as X-waves first proposed in the work of 

Brittingham [30], Hillion [31] and later verified by 

Lu and Greenleaf [32]. The field is nicely reviewed 

in a recent monography [33]. In most of these cases 

the resulting field structures correspond to localized 

wavepackets.  

Since we also demand the simultaneous satisfaction 

of the original equation JA =⋅c[]  for them to also 

satisfy Maxwell equations, and noticing that 

AA u

222 ∂=∂−
tV  we may immediately derive a 

constraint on the current sources using the 

additional relativistic γ factor as  

( ) AAJ uu ∂







−=∂−=

2

0

2

0

1
1

1

γµ
β

µ  (7) 
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Using (5) we may also write the additional condition 

for the orthogonal projection   

( ) AAA u

22 12 λβλ −∂−=×∇  (8) 

It is then straightforward to see from (7) that free 

space solutions exist exactly at the pole β = 1± or V 

= c± where any sources disappear. By a curious 

coincidence, we also notice that such a form of 

current in the case where AAu ~∂  that will be 

examined in next sections, also appeared previously 

in the extended Proca electrodynamics with massive 

photons [34] [35] via the correspondence

( ) 212

0 phm→
−

γµλ . The authors do not know at the 

moment whether such a coincidence could be 

meaningful in some alternative framework, nor is it 

the aim of the present report although mention of is 

given at the end of section 4. We next examine 

specific solutions of (1a-b) with the required 

properties before we explore their possible 

significance in the case of the modified Maxwell 

equations coupled with an additional Axion field. 

 

3 Explicit general solutions of 

Beltrami conditions 

We examine the conditioned equation (1a-b) in 

Cartesian, cylindrical and spherical coordinates. The 

conditions in (1b) can be automatically satisfied 

with the choice of u = z – Vt for the restricted class 

of vector fields A = [f(u), g(u), 0]. In the simplest 

case of a Cartesian system one has a 2-ODE system 

as 





=−∂

=+∂

0)()()(

0)()()(

uguuf

ufuug

z

z

λ
λ

  (9) 

The above evidently has a Hamiltonian symmetry 

which can be emphasized by rewriting it in the form 

)( ⊥⊥ ⋅=∂ ADA λz
where D is the Darboux 

symplectic matrix 









− 01

10 and ),( gf=⊥A . We 

notice that there is a scalar function H such that 

Yλ≅∇ Hgf , which is just a modulated harmonic 

oscillator ( )( )2/22 λgfH += with an associated 

pair of modulated creation-annihilation operators as

( )+ααλ ,2/ . A propagator for the system (9) is 

directly given as )exp( uDλ− and a general solution 

vector can be given as a superposition of two 

Hertzian potentials in the form 

( ) ( )
dz

dw
uuwuw =+= )(,)(cos)(sin 10 λrrA (10)     

Here, 
yx cc eer 210 += and 

yx cc eerDr 1201 −=⋅=

with c1,2 arbitrary constants where, and w is any 

regular analytic function which serves as a 

superpotential. The resulting electric and magnetic 

components will then satisfy ( )ADBDE ⋅=⋅= λ for 

a generic source current  AJ )/( 2

0γµλ−= while 

free space solutions are obtained with u = z - ct. 

Localized solutions for particular choices of the 

modulating w factor may stand for a type of EM 

bullet. We notice that the action of the curl operator 

on this class of fields can have an algebraic 

correspondence with D as








∂−

∂
=∂

0

0

z

z

zD . This 

symmetry allows producing a new solution vector 

simply by taking ADA ⋅=′ and since D is anti-

involutive this leads to ABED ′=′=′⋅ λ . A 

superposition of these two fields will generate a 

total field with parallel electric and magnetic 

components. With similar rotations one can also 

produce dual combinations as 

( )AMBMEM ⋅−=⋅−=⋅ λ where DM +Ι= . 

As a matter of fact, one can also turn this into an 

algebraic symmetry by taking any arbitrary pair of 

multiplicative inverses such that

fggf zz )()( ∂−=∂ . If we let then

gfvgfu +=−= , , we naturally have that 

))((log),)((log ugvvgu zzzz ±−∂=±∂±−∂=∂±

so that the combined action of 
∂
zD on any of the four 

vector fields yx vu eeF ±±=  is to map them into 

Fλ− with )(log gz∂=λ . 

To locate more general solutions we follow the 

method of Nishiyama, detailed in [16] where we 

find at least three classes of waves, the first two 

being stationary waves while Type III solutions 

allow for non-transverse travelling waves. 

Following the notation in [16], general Cartesian 

solutions can be found from an extension of (10) 

where one obtains 

( ) dudGeyxgf uG /,)( =+Ψ=− λiii (11)   
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Here, Ψ is any holomorphic function satisfying the 

Cauchy-Riemann conditions for its real and 

imaginary parts. Rewriting (11) in cylindrical 

coordinates we get 

( ) ϕϕϕ
ϕρ ρ iiii

ii
+Ψ=−=− )()( uG

eeegfAA   (12) 

The solution in (10) is indeed recoverable from (12) 

for the choice ( ) ( ) 1−
=Ψ ϕϕ ρρ ii ee plus a 

symmetric superposition. We shall refer to these 

types as the “z-waves”.  

For the cylindrical case a general discussion is given 

in Ko and Jiang [] where the general solution for the 

case ),,,( tζϕρA presents a particular 

mathematical difficulty that has not being tackled 

yet. Still, it is possible to restrict the class of 

solutions to the case vtuu −= ρρ ),,(A where their 

general result can be given as an expansion over 

arbitrary real constants Kn and arbitrary, at least C
1
 

differentiable functions Gn of the form 

( )

( )∑

∑
−

−

=

=

+=

n

Y

nz

n

Y

n

zz

euGKA

euGKA

AA

2222

2222

)(sin

)(cosϕ

ϕϕ eeA

            (13) 

In (13), we have 

( ))(cos,
1 2 uG

d
Y

d

dA

A
n

z ∫=−=
ρ
ρ

ρ
λ

ϕ

     (14) 

Particularly, setting Kn = 0 except for n = 1, we 

obtain 

( )

z

uG
d

uGuG

e
n

eeF

FA

))(sin())(cos(

)(cos2

−=

=
∫−

ϕ

ρ
ρ

              (15) 

For this case we also have 

( ))(sin/),( uGcdudGu −=ρλ              (16) 

We shall also refer to these waves as “ρ-waves”. 

The spherical case from the generic Chang–

Carovillano–Low results in [16] can be written as 

( )
dudGe

r

y
AAA

uG

rr /,
sin

,0 )( =
+Ψ

=−= λ
ϕ
ϕ

ϕ
ii

i      (17) 

Here, we employ a periodic holomorphic function 

such that Ci ∈+Ψ=Ψ ccc ),2()( π with the real 

argument being a function of the first spherical 

angle as ( ))2/tan(log θ=y . Periodicity implies 

an equivalent expansion with complex constants Cm 

as 

m

m

m

m

m

ym

m

eC

eCc

∑

∑
∞

−∞=

∞

−∞=

+








=

=Ψ

2
tan

)( )(

θϕ

ϕ

i

i

            (18) 

A particularly simple case comes out of the choice 

Ψ = 1 which leads to 

( )ϕθϕ
eeA ))(sin())(cos(

sin

1
uGuG

r
−=   (19) 

We shall refer to these waves as the “r-waves”.  

Last but not least, we would like to stress the fact 

that many members of the above three classes may 

not always be physically realizable due to their 

singular Fourier spectrum, hence the choice of the 

generic holomorphic generators Ξ, Υ or G will have 

to be constrained by the demand of a finite spectrum 

which further narrows down the class of physically 

acceptable solutions. For cases of localized waves 

and especially in the Cartesian case of z-waves this 

is easier to accomplice. Having exhausted the 

possible set of analytically known solutions, we may 

now proceed in examining their possible 

significance in the case of the Axionic extensions of 

Maxwell equations. 

 

4 Beltrami flows in Axion 

electrodynamics 

The general duality symmetry of Maxwell equations 

with or without sources is defined from the 

invariance under an SO(2) matrix operator R 

applied to a pair of fields 
T

),(),(),( BERBEBE ⋅=′′→  where the new pair is 

again another valid solution. Introduction of an 

additional pseudo-scalar field θ(r) causes a 
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symmetry breaking via an additional term in the 

electromagnetic Lagrangian 

 ( ) AJBE ⋅++−= − ρφ221

0 ||||)2/1( cL  as

( ) Α+⋅+→ LtcLL BEr ),()/( 000 θµκ . The 

additional pure Axion Lagrangian also includes a 

new potential as )()2/1( θθθ µ
µ UL +∂∂=Α .  

In [24], a new modified version of Maxwell 

equations which admit dynamic duality 

transformations is given with magnetic monopole 

charges and currents and an additional degree of 

freedom for the pseudo-scalar field θ satisfying an 

inhomogeneous Klein-Gordon operator with a new 

current term as  

( ) Ucj θθ µκθ ∂+⋅−= BE)/( 0          (20) 

This time, the duality rotation adopts a new degree 

of freedom via the correspondence of the internal 

angle ξ with the new field θ as κθξ −=tan  and 

after performing a rotation that makes monopole 

charges and currents to vanish as in [24] we have 
















 −
=








′

′

B

E

B

E

1

1

κθ
κθ

c

c
          (21) 

The five augmented Axionic Maxwell equations for 

linear media then become  

U

c et

t

m

θδθ

µ

ρµ

ερ

∂−⋅−=

+′∂=′×∇

′−∂=′×∇

=′⋅∇

=′⋅∇

−

BE

JEB

BE

B

E

[]

/

0

2

0

0

      (22a-e) 

where δ = κ/µ0c ~ 0.002κ. The cost of making the 

rotation dynamic is to alter the gauge freedom and 

additional gauges have been introduced to that 

purpose so that one obtains an axionic 

electrodynamics with three wave equations. After 

performing an internal rotation removing the 

magnetic sources the two revised electromagnetic 

wave equations with the new gauges become 

SS ete ∇−=′⋅∂+=′ JA[],[] ρφ         (23a) 

S

S

te

te

∇−×∇+∂−=⋅

∂+⋅∇+=

)([]

[]

BBJA

B

θθκ

θκρφ
          (23b) 

Here, φtS ∂+⋅∇= A , comes from the standard 

part of the Lorentz gauge.  

We next observe that the original map in (19) is 

formally similar with the transform proposed by 

Lakhtakia [8] in the so called, Beltrami-Maxwell 

reformulation with Zi→−κθ where
00 / εµ=Z . 

The same can also be applied in the case of (20) as a 

composite map to produce the axionic analogue of 

complex Beltrami-Maxwell fields as 

( ) ( )

( ) 







+=









+⋅+=









−

+

B

E
DI

B

E
DIDiI

Q

Q

βα

κθ)(ˆ)( Z

           (24) 

Here, ZZ ii −== κθβκθα , . Given also new 

sources defined as 

( ) ( )emem ZsZs JiJSi ±−==±−= ±± )2/1(,)2/1( ρρ
 the new fields will then satisfy 

( )
))((

||||[]

2

22

1

κθκθκθ

δθ θ

+−−=

∂−−−⋅−=

+∂±=×∇

±=⋅∇

−+−+

±±
−

±

±±

i

QQQQ

SQiQ

iQ

ZZZc

Uddc

c

cs

t
  

(25a-d) 

Let then ( )BEBE ′′→ ,),)(ˆ(T  be the action of (21) 

on some abstract bivector to a new one in the space 

of solutions of (22). We want to examine the field 

structure entailed by this map as an endomorphism 

in the set of all vector fields admissible by the new 

Axion-Maxwell postulates.  The eigenspace analysis 

of (19) gives a set of eigenvalues and eigenvectors 

as  

[ ]
22

2/1

2,1

2/1

)(1||

,1||,||

κθ

κθξ

cl

clell

+=

±==

±

−
±

±
±± ei

       (26) 

Let then A′ a vector potential such that (22) are 

satisfied by a bivector with elements 

be ′−=′ )/1( κθc where κ an arbitrary scalar factor 

such that ebe ),1(),( κθc−∝′′ , and
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( )bebebe ′′=→′′ −
−

−
,),(),)(ˆ(

11
lT .  We conclude 

that strictly parallel electric and magnetic 

components are not in general possible without 

further restricting the choice of the vorticity and the 

resulting proportionality factor in terms of some 

solution of the last equation in 22(a-e). 

Since equations (22a-e) are identical with the 

standard Maxwell system in the absence of 

monopoles one expects the existence of free space 

solutions as those in section 3 as well as general 

non-diffractive solutions for non-zero solenoidal 

current sources. The original fields will then have 

the general form 

 

2

2

)(1

)()(

)(1

)()(

κθ
κθλβ

κθ
κθλβ

+

′+′∂
−=

+

′−′∂
−=

AA
B

AA
E

u

u

             (27) 

We then notice that the new gauge conditions of 

(23a-b), partially fix the choice of the arbitrary 

vorticity scalar λ as a function of θ. Indeed, for the 

consistency of the transformed fields with the 

additional gauge terms all charges must vanish in 

the transformed fields generated by A′  and for this 

we must also have 0)( =′⋅∇ Aλθ . Assume then a 

generic dependence as λ(θ(u)) where u = x – vt in 

which case, condition (1b) guarantees that 

0)/( =′⋅∇=′⋅∇ AA θθλλ dd . In case of 

parallel electric and magnetic components

ABE λµ =′−=′ , (27) simplifies as  

AB

AE

′=

′=

+

−

)()(

)()(

θλθϕ

θλθϕ
             (28) 

where, 
12 ))(1)(()( −

− +−= κθµκθθϕ c  and 

12 ))(1)(1()( −
− ++= κθκθµθϕ c . 

For free space solutions, one should also assure that 

the gauge current term BB ×∇+∂ θθ )( t , also 

vanishes. We can then utilize relation (8) of section 

2¸ to get AA ′−∂=′×∇ − )()/()( 21 λθλλθ udd

.This then allows eliminating the 2
nd

 derivative from 

the θ wave equation by an additional time 

differentiation over the constraint of the vanishing 

current in which case we get 

AA ′−∂=′∂ )())(/( 2λθθλλ utddc            (29) 

Since all derivatives can now be eliminated we are 

left with a functional equation relating λ(θ) with θ. 

The situation is further simplified in the case of 

fields for which AA ∝∂u .  

Last but not least, the recent strong constraints on 

the extremely small Axionic mass could have some 

relevance in the case of sub-luminal formations of 

large scale non-diffractive travelling waves from 

weak, non-relativistic slow current sources of 

galactic origin. In particular taking into account the 

observations at the end of section 2, and adopting 

the convention of an harmonic axion potential as 

2/)(~)( 2θθ mU we notice that both the vector 

potential and the θ field will satisfy a pair of similar 

Klein-Gordon operators as 

( ) 0[] 2 =′⋅− AeM              (30a) 

( ) 222 ||)()()([] A′=− +− θλθφθδφθm        (30b) 

Here, we use the effective mass term as

0

2 /)( µθλ−≈eM  assuming parallel electric and 

magnetic components of a sub-luminal cyclonic 

vorticity following a weak ionic current. The rhs of 

(28b) contains some hard nonlinearity but since 

there is no unique choice for λ we can make a 

reasonable choice at least in 1
st
 order as  

...)()()( 10

2 +−≈+− θθλθφθφ kk  with k a 

constant. Then a simplified equation is obtained as 

2

0

2

1

2 ||||[] AA ′≈







′+− kkm θδ        (31) 

The peculiar appearance of a new effective mass as 
222
|| A′−= δkmme

 suggests here a kind of 

oscillatory “screening” effect which although weak 

could have an additional contribution while existing 

data for equipartitioned magnetic fields strength 

provide an order of magnitude as 10
-9

 Tesla. While 

such an argument appears speculative for the 

original cold dark matter proposal, it could still be 

of some importance in applications like topological 

insulators in limited, controlled environments.  
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We discussed the unique case of some recently 

found special solutions of Maxwell equations and in 

particular a special class of them having the form of 

non-diffracting travelling waves with both 

transverse and parallel electric and magnetic 

components. We then extracted some general 

expressions for this class based on previous 

mathematical analysis of the resulting equations for 

the vector potential originating in the classification 

of vector fields in ideal hydrodynamics by Beltrami. 

The resulting electromagnetic formations seem to 

resemble a sort of moving “vorticity walls” or self-

focused wave modes that could easily be passed as 

an unexpected kind of longtitudinal radiation in the 

absence of a phased array detector for determination 

of the vorticity components. We noticed the 

particular significance that these modes could have 

in the case of the proposed augmentation of 

electrodynamics in axion field theory and we 

examined their influence on the additional axion 

field equation showing the possibility of an 

oscillating axion mass.  
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