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Abstract: - The basic aim of authors is develop an empirical relation for the radius of bubble versus the emerging
parameters in modelling of the problem using sensitivity analysis procedure. The cavitating uni-dimensional
bubbly flow of linear elastic fluid in a converging-diverging nozzle. The fields of mechanical engineering,
shipping, environmental engineering, chemical engineering, and the medical sciences are just a few of the fields
where bubbly flows are observed extensively. There are enormous applications of the bubble dynamics in
engineering and medical. The geometry here considered is used in almost all mechanical machinery that includes
automobiles, ships, pumps and valves etc. The cavitation tends to damage the wall of impact when bubble collapse
or interact with neighbouring boundaries. The analysis helps to identify the behaviour of cavitating flow of bubbles
subject to shape of nozzle and fluid properties. The equations of targeted flow are solved by RK-method using
built-in function NDSolve in MATHEMATICA 10. The sensitivity analysis is performed using RSM (Response
Surface Methodology) to identify the optimal response parameters affecting the flow. It is presented graphically
that number of bubbles is an optimal parameter which is more sensitive as compared to other parameters involved.
However elastic parameter and the cavitation number are also responsible to contribute in increase in sensitivity of
radius and velocity and decrease in sensitivity of pressure.
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1. Introduction solid surfaces produces high-intensity shockwaves

Cavitation and bubble dynamics are fascinating and micro jets, leading to erosion, pitting, and
phenomena that occur in fluid dynamics and have material wear. These dynamics are governed by
applications in various fields, including engineering, principles derived from fluid mechanics, with a
medicine, and environmental science. Cavitation notgble exarpple being the quleigh-P 1§ss§t equation,
refers to the formation and subsequent collapse of which prov1des a ma.thematlcal description of hOW
vapor-filled bubbles within a liquid when the local the radius of a spherical bubble changes over time
pressure drops below the vapor pressure of the liquid. [1]~ In various m.edlceq procedures Sth as ultrasound
This phenomenon can give rise to a wide array of imaging and lithotripsy, the deliberate use of
intricate and substantial outcomes. controlled bubble cavitation serves therapeutic
A major aspect of cavitation comprises its stimulus to purposes, emphasizing the essential role .played by
the erosion and damage experienced by machinery bubble dynamics [2]. In the field of environmental
and structures. The collapse of bubbles in vicinity of science, cavitation and bubble dynamics are
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particularly relevant in the setting of oceanography.
The formation and collapse of bubbles in the ocean
can produce subaquatic sounds referred to as
"cavitation noise." These sounds offer a means to
study and monitor oceanic processes, including the
behavior of marine life [3].

It is crucial to comprehend that non-Newtonian
qualities have much greater impact on cavitation or
bubble dynamics than do Newtonian fluids. owing to
its expanding use in variety of processes, including
extrusion of polymers, lubrication with grease and
heavy oils, coating of paper, use of plasma and
mercury, nuclear fuel slurries, liquid alloys, food
processing, biological processes, reactor cooling,
heat exchangers, and few other applications. The
topic of non-Newtonian fluid flow is growing in
importance. These fluids include, but are not limited
to, ice cream, paints, shampoos, mud, polymers and
others. The well-known Navier-Stokes equation
cannot pretend fluid flow that is not Newtonian. It is
quite challenging to solve nonlinear constitutive
equations representing viscous flows. Viscous fluids
fall into one of these three categories: integral,
differential, or rate type fluids. Viscoelastic fluid is
subclass of fluid of rate type. The largest increase in
viscosity of polymer solutions in an extensional flow,
such as that created around a spherical bubble during
its expansion or collapse phase, is the most notable
outcome. Polymers are forced apart in absence of
applied flow field, and their length can increase by
three orders of magnitude in direction of extension.
Because of this, solution is able to sustain far greater
stresses, and squeezing is lessened where polymers
are stretched. Additionally, a lot of biological fluids,
such as saliva, synovial fluid and blood, exhibit
viscoelasticity and non-Newtonian properties [4].
The importance of cavitation in the advancement of
current ultrasonic and laser-assisted surgical methods
makes this a vital topic. The scientific literature lacks
a thorough description of the fundamental
mechanisms underlying cavitation in non-Newtonian
fluids, despite its expanding bioengineering
applications. Given the diversity of the components
necessary for understanding the associated processes,
this is not surprising.

In the literature, several constitutive equations
are used to characterize the behavior of non-
Newtonian fluids. The Maxwell and Oldroyd-B
models have greatly exceeded expectations and
anticipation.  Their  relative  simplicity  has
undoubtedly been appealing, particularly in the case
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of numerical simulation of viscoelastic flows, where
simple models have been critical in developing
numerical techniques. Dumbbell and the KBKZ
model are two more prominent viscoelastic models
that had widely employed. Shima et al. [5] conducted
a study to examine the behavior of an individual
spherical bubble immersed in a sound field within a
purely viscous liquid , Tsujino et al. [6], and Brujan
[7]. Also, Shima et al. [8] investigated bubble
oscillations by employing a linear viscoelastic model
to characterize the rheological properties of the
liquid. Ting [9] employed an Oldroyd three-constant
model that incorporates characteristic relaxation and
retardation times, which are used to scale the
covariant convected time derivatives of stress and
strain rate. Additionally, he considered thermal
effects arising from the phase changes of water, such
as evaporation or condensation. The resulting
integro-differential equation was solved numerically
for a solution containing 500 ppm of polyethylene
oxide (PEO). Ting's conclusion was that
viscoelasticity has a minimal retardation effect on
bubble growth and collapse, provided that the
material constants align with the properties of dilute
polymer solutions. Furthermore, Ting's work
suggests that heat and mass transfer effects are not
significant under cavitation conditions. In a separate
study, a rigorous experimental study was conducted
and a numerical exploration was made of a Venturi
reactor characterized by a pronounced choking effect.
This investigation employed a custom-developed,
state-of-the-art compressible cavitation phase-change
solver to gain insights into the flow dynamics and
underlying choking mechanisms in cavitation-
induced choked flow scenarios [10].

Zana and Leal [10] numerically tackled the
conservation equations for mass and momentum, as
well as a gas diffusion equation, to analyze the
collapse of a single bubble. The impact of
viscoelastic medium or fluid on the oscillations of
bubbles, is due to Fogler and Goddard [11]. One of
the most intriguing findings was that the presence of
elasticity can delay bubble collapse and cause
prolonged oscillatory motion. A recent contribution
to studies involving cavitation 1is viscoelastic
materials using different constitutive equations of
non-Newtonian fluids has been discussed by Fogler
and Goddard [11], Shima and Tsujino [12], Allen and
Roy [13-14], Gaudron et al. [15]. Since the
viscoelastic materials behave like tissues so to
discuss the cavitation in the tissues of living
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organism it is felt appropriate to discuss cavitation in
viscoelastic materials. Initially to study tissues most
of the researcher has considered Maxwell-type fluid
models. However based on the property of relaxation
to its original structure in tissues studies suggested
that it will be far more better to use Kelvin-Voigt
models instead of using Maxwell-type models [15].

Tangren et al. [16] has presented his study of
bubbly flow through nozzles and ducts. Later on
discussion on these type of flows was made by Wang
and Brennen [17]. A comprehensive investigation
into the essential flow characteristics of vortex-based
cavitation devices, employing both experimental and
computational approaches was performed [18], the
study encompassed a wide spectrum, encompassing
the simulation of cavitating flows within these
devices across a diverse range of viscosity levels and
device scales. For experimental endeavors, the
aqueous glycerol solutions with viscosities spanning
up to 800 centipoise (cP) was taken. It is effectively
identified the inception of cavitation through the
analysis of acoustic signals, providing valuable
insights into the behavior of cavitating flows in these
systems. Effects of non-dimensional parameters on
such flows in Newtonian fluid were depicted by
Zamoum & Kessel [19] while in presence of
elastic/viscoelastic ~ fluids (neo-Hookean, linear
elastic and Mooney Rivlin) in nozzles and channels
were presented by Zeeshan et al. [20-21]. Effect of
surface materials on the surface of hydrofoils are
investigated by Hao et al. [22].

A one-dimensional bubbly mixing of fluid in
ducts and nozzles is one of straightforward flow
combinations of liquid and gas. In many applications
in engineering and the medical sciences, it is a
significant problem. A low-pressure area causes the
flow past a nozzle to cavitate, which causes the flow
to quicken. A barotropic relation, p = f(p), can be
constructed in some bubbly flows if the fluid
pressure is expected to be only a function of fluid
density. All effects caused by bubble contents—aside
from compressibility—are insignificant, and the
bubbly mixture can be thought of as a single-phase
compressible flow.

Motivated by all above contributions, the authors
have considered the cavitating flow of Kelvin-Voigt
(linear elastic) fluid through a converging-diverging
nozzle. The schematic of the flow is shown in Figure
1. Utilizing built-in functions, the RK technique is
used along with the symbolic computation
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programme MATHEMATICA and the package
NDSolve to identify singularity or state changes in a
problem and then take appropriate action, such as
restarting the integration. Effectively acting as a
controller method, the NDSolve "EventLocator"
method searches for measures and takes the
necessary action, while integration of differential
system is otherwise fully left to an underlying
methodology [23]. By setting elasticity parameter to
zero, the Newtonian formulation of Zamoum &
Kessel may be retrieved for the validity of the results.
The steady state solutions revealed two distinct flow
regimes, referred to as quasi-steady and quasi-
unsteady [19-21]. The former is distinguished by the
significant spatial fluctuations caused by the
cavitation bubbles' pulsations downstream of the
throat. To flashing flow, the quasi-unsteady solutions
relate. As the flow moves from one area to another,
bifurcation happens [19-21]. We displayed the flow
characteristics under the influence of various factors
while purposefully limiting ourselves to the zone
known as stable region, where neither flashing nor
bifurcation happens. Furthermore, related studies can
be found in [24-32] to have insight of the flows in
non-Newtonian and especially viscoelastic materials
or fluids.

Equations of the said flow were initially solved
to find the data points, usually termed as outcomes of
an experiment. Response Surface Methodology
(RSM)[33] is used to analyze the potentially
significant input parameter(s) from the list of
involved parameters. RSM is a statistical and
mathematical technique used to predict the behavior
of an underlying system on the basis of experimental
data. Here the experimental data or set of points are
the computational values of the output responses
obtained by numerically solving the system of
equations due to varying input responses. A
statistical experimental design is developed by using
the central composite design. Three input parameters,
the cavitation number, the modulus of elasticity or
elastic parameter and number of bubbles are taken
into account whose impacts on the output parameters,
the radius of the bubble, the velocity of flow and
minimum pressure coefficient is sought. Correlations
are developed using RSM between input and output
responses of the flow problem. We have never before
studied the sensitivity analysis of cavitating flow of
linear elastic fluid in a converging-diverging nozzle.
We have now covered how the Reynolds number,
Weber number, void percent, and elastic modulus
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affect the flow's radius, pressure coefficient, and
velocity. Other studies related to sensitivity analysis

2 Problem Formulation

In the current article, flow of contaminant, air
bubbles are considered through various geometries in

Area of cross
section, A(x)

elastic fluid (Second-Grade Fluid). Continuum
mechanics formalism is used to describe the
dynamics of bubbles.

Fig.1: Cavitating flow of bubbly mixture through a
nozzle (converging-diverging)

The nozzle described in above figure, mathematically
is described in (1).

1 27X g
A(X) = {I—ECPM,N{I—COS(%H} ;0<x<L 0

I; O<xand x>L

Equations of continuity and momentum for bubbly
flow are given as [16]

0 0
a[(—0{+1)A]+&[(—05+1)UA]=0 (2)
Ju 1%

x o 2(l-a) ®

here, ax(X,t)denotes the void fraction, it depends on
R(x,1) as stated below

47nR’

BTy

(4)

C o » denotes the fluid pressure coefficient stated as
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of flow behavior could be found in [34-35].

2(P.(t)—P
SR AURIA o

plus
and 77 is the population of bubble per unit of

volume. The RP equation for a bubbly mixture of a
non-Newtonian fluid is described in (8), where we
have considered in our study a second-grade fluid for
which last, the integral term on the right hand side is
separately evaluated.

DR 3 (DRjz
R+ =
Dt 2\ Dt

1 ) ©)

2S
= (PR —Po (1))~ ~Pext +3 [ " Tar
,Ol R R r

D/Dt the Lagrangian derivative, is defined in (7),
R.v,,0,S,P; and P, (t) are radius, viscosity,

density, surface tension, pressure inside the bubble
and pressure far away from the bubble wall
respectively.

D & & 7

Etzat OX )

Presence of some contaminant gas made us to choose
its partial pressure termed here as Py and some water
vapour (or the vapour of considered fluid) P,. On the

assumption that the gas entrapped, is incondensable
the partial pressure is described as [21].

R 3k
%:%{ﬁ} (8)

where PGO is the initial partial pressure in interior of

the bubble, K and R,, being poly-tropic index and

initial radius of the bubble, subsequently, the total
pressure inside the bubble and initial partial pressure
are described below .

P, =P, +P, =P, +(R,/R)"P, )
P, =P.—P,+(2S/R,) (10)
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Let P

ext
to the bubble and P, is linked to the pressure that

other bubbles diffuse and the pressure that any other
exterior field applies to the bubble I. The poly-tropic
index, the value for gas is provided in the literature as
1.4, is used to calculate this relationship.

ext_P +P (t)

is the pressure field that is applied externally

(10a)

where pressure disseminated by other bubbles
defined in (14) as

P. = < ﬂR R 2 DRi
Y 47d, Dt ' Dt

=0, is distance of bubble i from bubble |

and vice versa. Using Eqn. (13) and (14) in Eqn. (8)
produces

(11

where dij

RD2R+§(DRT_PB—Pw(t)_2S 1
Dt* 2\ Dt A PR P

_ DR, 2
Z —( j ’j+PAi(t) +ijidr (12)
i d.; Dt Dt ' Ppnr

The distance D =d;; =d; between each bubble and
the others is assumed to be constant, and it is also
assumed that all of the bubbles are subject to the
P,i(t)=P(t) , which
here is considered to be negligibly small due to

which Eqn. (13) takes the form shown in Eqn. (16)
for which the initial conditions are stated in eqn. (17).

same external pressure field

RD2R+E(DRJZ_PB—Pw(t)_2S
Dt* 2\ Dt o) AR

L grn( 2]

=95MS=mE=P atx=0
X

3 [Zagr 19
PrT

R, =R,0

S

For steady-state solutions equations (2-3) becomes
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UA(l-a) = (1-«,) = constant

dC
—2 = 2(-a)u du
dx dx

(15)
(16)

Eqn. (29) is obtained by using non-dimensional
variables described in (28) in eqn. (16)

Lit:RLﬁ:RE,Z\:A,a:i,

'Ag S S AS uS (17)
o X o W~ p - 3
X:—’t:—s’ =—, = RS

RS RS p pS 77 77

DR 3(DRY o 1

2 - | == 1_?

Dt> 2\ Dt 2 R

2(1 1Y) (n-1)Ru;

Wel R R* D (18)

2 2 C
« r22 5+2R[%) -2 _p,
Dt Dt 2

Where use of the Lagrangian derivative deliberated
earlier, reduces above eqn. (17) and (13) as given

below,
2

Ry AR, QAR nolp R
dx dx dx d

2 2
(] (%)
2 Ldx d

dx (19)
+g(1_Lj+i(l_LJ+&
2 R*) welR R*) 2
+f(R,u,x)=0
R=1,d—R=O,U=Oande:Oat
X (20)

Xx=0

where, is the Weber number We=pRU’/S ,

f (R,u, X) is non-dimensional form of r.h.s of eqn.

(26)  which s given in  (33) and
o =2(P,—P)/ pu.is the cavitation number
4u dR 1
f(RuX)=————-27|1-—
(R0 = ReR & y( sz 1)
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Coupled Egs. (15-16) & Egs. (19-21) are solved by
RK —Method to find the unknown variables involved,
which in detail is discussed in the following section.

3 Sensitivity Analysis

The impacts of three input parameters, the elasticity
parameter n (number of bubbles), Reynolds number
(Re) and elasticity parameter (/) on the three output

responses the radius, velocity and the pressure
coefficient are examined in this chapter. The optimal
parameter is obtained using Response Surface
Methodology (RSM) by carrying out the sensitivity
analysis of the effective parameters on the flow of a
cavitating uni-dimensional, linear elastic fluid
through a converging-diverging nozzle. The ranges
taken in this study of the input parameter whose
responses are to be determined towards output
responses are as follows:

a. Number of bubbles (n) varied from 2 to 4.

b. Reynolds number (Re) varied from 200 to
500.
c. Elasticity parameter () ) varied from 0.001 to

0.1.
The value of x has been set at x = 8, inside of the
converging-diverging section of the nozzle to obtain
the numerical data used in the analysis and presented
in the Table 2.To perform sensitivity analysis 20
runs of an experiment are considered. Table 1
defines the ranges of parameters (input) while on
solving the corresponding differential equations of
the flow, the values of output responses, the radius,
the velocity and the pressure are listed in Table 2.
Results of the wvariance analysis (ANOVA) for
dependent variables, the radius, the velocity and the
pressure are furnished in Tables 3-5. Here important
aspects in these tables are the F-values and P-values
in ANOVA analysis. The F-value are representatives
of the variation in the data while P-values are the
representatives of the probability validation of the
model’s accuracy. Larger F-values are directives for
the significance of the results while in case of P-
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values, lower values supports the significance.
Consequently, both values considered together to
have strong agreement for the significance of the
results. Table 6 demonstrates the estimated
regression coefficients on the basis of discussed
criteria. From where we see that in case of the three
dependent variables radius, velocity and pressure in
terms of the coded parameters significant terms are
constant, A,C,A*> and AC while other terms
B,C,B?,C?, AB and BC become insignificant on the
basis of higher P-values and lower F-values. Also
their contribution to the results is given in Table 3-5,
seems to be too small to be considered. Residual
errors generally are attributed to the un-matched data
points to the regression line whereas lack-of-Fit
exhibits when model is unable to describe the
connectedness between the input and output
parameters. The graphs of residuals for radius,
velocity and pressure are elaborated in Figures 2(a-
€)-4(a-c) respectively which shows that errors are
normally distributed along the straight line and hence
are well-fitted.

Equations for radius, velocity and pressure are given
in eqns. (22-24). Sensitivity of the radius, velocity
and pressure are their partial derivatives, given in
eqns. (25-33). Values of sensitivity for radius,
velocity and pressure are obtained by taking A = 0,
the lower value, and by varying the values of B and
C. Table 7 (a-c) demonstrates the values obtained for
sensitivity of the three output variables while graphs
for these values are presented in Figures 5(a-c)-7 (a-
c).

Table 1: Input variables and their domains used in

the statistical analysis

Variable Symbol -1 0 +1
Number of n 2 3 4
Bubbles

Reynolds Re 200 350 500
number

Elastic 4 0.001 0.0505 0.1
parameter
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Table 2: The computed values for this experiment against the randomly designated values of input response

Run Codal Values Input Responses Output Responses

Order A B C n Re /4 R (radius) U (velocity) P (pressure)
1 0 0 0 3 350 0.0505 1.09049 1.16116 -0.347475
2 0 -1 0 3 200 0.0505 1.09047 1.16116 -0.347474
3 1 0 0 4 350 0.0505 1.06389 1.16078 -0.346478
4 1 1 1 4 500 0.1000 1.06355 1.16078 -0.346466
5 1 -1 1 4 200 0.1000 1.06353 1.16078 -0.346466
6 -1 -1 - 2 200 0.0010 1.15833 1.16220 -0.350249
7 0 0 0 3 350 0.0505 1.09049 1.16116 -0.347475
8 -1 0 0 2 350 0.0505 1.15630 1.16217 -0.350163
9 0 0 -1 3 350 0.0010 1.09119 1.16117 -0.347501
10 0 0 0 3 350 0.0505 1.09049 1.16116 -0.347475
11 0 0 0 3 350 0.0505 1.09049 1.16116 -0.347475
12 0 0 0 3 350 0.0505 1.09049 1.16116 -0.347475
13 0 0 0 3 350 0.0505 1.09049 1.16116 -0.347475
14 0 1 0 3 500 0.0505 1.09050 1.16116 -0.347476
15 -1 - 1 2 200 0.1000 1.15413 1.16213 -0.350072
16 -1 1 -1 2 500 0.0010 1.15844 1.16220 -0.350253
17 1 -1 -1 4 200 0.0010 1.06422 1.16079 -0.346490
18 1 1 -1 4 500 0.0010 1.06424 1.16079 -0.346491
19 0 0 1 3 350 0.1000 1.08980 1.16115 -0.347449
20 -1 1 1 2 500 0.1000 1.15423 1.16214 -0.350076

Table 3: Results of variance analysis of radius of the bubble

Source DF Adj SS Adj MS F-Value P-Value
Model 9 0.023283 0.002587 57761.88 0.000
Linear 3 0.021357 0.007119  158949.83 0.000
N 1 0.021344  0.021344  476570.23 0.000
Re 1 0.000000  0.000000 0.18 0.685
Gamma 1 0.000012 0.000012 279.08 0.000
Square 3 0.001920  0.000640 14289.82 0.000
n*n 1 0.001057 0.001057 23590.01 0.000
Re*Re 1 0.000000  0.000000 0.01 0.945
gamma*gamma 1 0.000000 0.000000 0.00 0.994
2-Way Interaction 3 0.000006 0.000002 46.00 0.000
n*Re 1 0.000000  0.000000 0.08 0.782
n*gamma 1 0.000006 0.000006 137.93 0.000
Re*gamma 1 0.000000  0.000000 0.00 0.987
Error 10 0.000000  0.000000

Lack-of-Fit 5 0.000000  0.000000

Pure Error 5 0.000000  0.000000

Total 19 0.023284
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Table 4: Results of variance analysis of velocity of the bubble

Source DF  AdjSS Adj MS F-Value P-Value
Model 9 0.000005  0.000001 36596.54 0.000
Linear 3 0.000005  0.000002 99400.17 0.000
N 1 0.000005  0.000005 298020.03  0.000
Re 1 0.000000  0.000000 0.62 0.448
Gamma 1 0.000000  0.000000 179.86 0.000
Square 3 0.000000  0.000000 10357.57 0.000
n*n 1 0.000000  0.000000 17030.98 0.000
Re*Re 1 0.000000  0.000000 0.04 0.855
gamma*gamma 1 0.000000  0.000000 0.04 0.855
2-Way Interaction 3 0.000000  0.000000 31.90 0.000
n*Re 1 0.000000  0.000000 0.78 0.398
n*gamma 1 0.000000  0.000000 94.13 0.000
Re*gamma 1 0.000000  0.000000 0.78 0.398
Error 10 0.000000  0.000000

Lack-of-Fit 5 0.000000  0.000000

Pure Error 5 0.000000  0.000000

Total 19 0.000005

Table 5: Results of variance analysis of pressure

Source DF  AdjSS Adj MS F-Value P-Value
Model 9 0.000038  0.000004  43863.29 0.000
Linear 3 0.000034  0.000011 119023.76  0.000
N 1 0.000034  0.000034 356853.47  0.000
Re 1 0.000000  0.000000 0.13 0.729
Gamma 1 0.000000  0.000000  217.69 0.000
Square 3 0.000004  0.000001 12525.34 0.000
n*n 1 0.000002  0.000002 20669.48 0.000
Re*Re 1 0.000000  0.000000 0.00 0.994
gamma*gamma 1 0.000000  0.000000 0.00 0.994
2-Way Interaction 3 0.000000  0.000000  40.78 0.000
n*Re 1 0.000000  0.000000 0.06 0.805
n*gamma 1 0.000000  0.000000 122.27 0.000
Re*gamma 1 0.000000  0.000000 0.00 0.972
Error 10 0.000000  0.000000

Lack-of-Fit 5 0.000000  0.000000 * *
Pure Error 5 0.000000  0.000000

Total 19 0.000038
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Fig. 3: Residual Plots of the Velocity
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Table 6
Estimated regression coefficients for radius, velocity
and pressure
Term Coefficient P-value
Radius
Constant 1.09049 0.000
A -0.046200 0.000
B 0.000028 0.685
C -0.001118 0.000
A? 0.019601 0.000
B? -0.000009 0.945
C? 0.000001 0.994
AB -0.000021 0.782
AC 0.000879 0.000
BC -0.000001 0.987
R? = 100% R? — adj
=100%
Velocity
Constant 1.16116 0.000
A -0.000692 0.000
B 0.000001 0.448
c -0.000017 0.000
A? 0.000315 0.000
B? 0.000000 0.855
C? 0.000000 0.855
AB -0.000001 0.398
AC 0.000014 0.000
BC 0.000001 0.398
R? = 100% R? — adj
= 99.99%
Pressure
Constant -0.347475 0.000
A 0.001842 0.000
B -0.000001 0.729
c 0.000045 0.000
A? -0.000845 0.000
B? 0.000000 0.994
C? 0.000000 0.994
AB 0.000001 0.805
AC -0.000038 0.000
BC 0.000000 0.972

R? = 100% R? = 100%
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R=1.14775-0.003214A—-0.004742B
~0.067744C +0.026980C* +0.002369AC
+0.003419BC,

V =1.00179-0.000049A—-0.000074B
~0.000983C +0.000439C* +0.000041AC
+0.000059BC,

P =-0.004433+0.000112A+0.000166B
+0.002462C —0.001107C* —0.000091AC
—0.000133BC,

oR

A =-0.003214+0.002369C,

% — 0.004742 +0.003419C,

R =-0.067744+0.05396C
oC

+0.002369A+0.0034198B,

(22)

(23)

(24)

(25)

(26)

(27)
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The sensitivity analysis for the radius, the velocity and the pressure when A = 0

N .000049+0.000041C, (28)

oA

oV

=5 =0.000074+00.000055C, (29)

N 0.000983+ 0.000878C

oC (30)

+0.000041A+ 0.0000598B,

P 0.000112—0.000091C, 31)

oA

oP

& 0.000166—0.000133C, (32)

B

oP

F 0.002462—0.002214C

oC (33)

—0.000091A—0.000133B.

Sensitivity analysis

N/B N/ opion  oP/oB oP/C
0.000044 0.000804 0.000294 —0.000432 —0.002028
0.000103 0.001682 0.000385 —0.000565 —0.004242
0.000162 0.002560 0.000476 —0.000698 —0.006456
0.000044 0.000813 0.000294 —0.000432 —0.002048
0.000103 0.001691 0.000385 —0.000565 —0.004262
0.000162 0.002569 0.000476 —0.000698 —0.006476
0.000044 0.000822 0.000294 —0.000432 —0.002068
0.000103 0.001700 0.000385 —0.000565 —0.004282
0.000162 0.002578 0.000476 —0.000698 —0.006496

A=0

B ¢ OR/OA 0OR/oB oR/oC oV /oA
—1 0.001524 0.002096 0.042005  0.000033

—1 0 0.003893 0.005515 0.095965 0.000074
1 0.006262 0.008934 0.149925  0.000115
—1 0.001524 0.002096 0.042518  0.000033

0 0 0.003893 0.005515 0.096478 0.000074
1 0.006262 0.008934 0.150438  0.000115
—1 0.001524 0.002096 0.043030  0.000033

1 0 0.003893 0.005515 0.096991  0.000074
1 0.006262 0.008934 0.150951  0.000115
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4 Results and Discussion

The graphical solution of the flow equations (15-16)
and (19-21) is presented in Fig. 8-18. The parameters
and their ranges used in this graphical analysis are
taken as
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a. dimensionless elasticity parameter » (0.1 to

0.3)
b. initial void fraction ¢ to be of the order

10”to10™
c. Reynolds number (100 to 1000)
d. Number of bubbles n (1 to 3)

Fig.8 to Fig.18 helps to obtain some important
observations a related to the bubbly flows in a linear
elastic fluid passing through a converging-diverging
nozzle. Initially the bubbles (spherical) are
considered to have same size and uniform
distribution in the flow with each bubble having
volume V =(4/3)7zR*(x). Radius, velocity and

pressure with respect to the varying parameter of
elasticity are depicted in Fig. 8-10. Due to an
increase in elasticity radius and velocity tends to
decrease as it behaves like a damping to flow while
pressure tends to increase. When more than one
bubble (N> 2) are considered the same phenomena
is observed. This decreasing effect is particularized
in Fig. 11-13 while effects of Reynolds number are
portrayed in Fig. 14-16. Increase in Reynolds number
surges the radius and velocity also frequency as well
as oscillations which will give escalation to
cavitation in flow because of the fall of pressure.

Fig. 17 and 18 demonstrates the effects of
upstream void fractions ( ¢ ) on the radius and
velocity in a flowing elastic fluid (linear elastic fluid)
passing through converging-diverging nozzle. It is
apparent from the graphs that the radius and velocity
after passing through the throat increases while
frequency oscillations decrease. In case of
converging-diverging nozzle the radius and velocity
increases without bound for « > 3.4x107, which
is flashing point after which flow reaches unstable
region.

Volume 9, 2025



Ahmed Zeeshan et al.

20 — y=01

0.0

X

Fig. 8: Variation in radius of bubble against
numerous values of elasticity parameter for
flow of linear elastic fluid in a converging-

diverging nozzle
'1 . A

Fig. 9: Variation in radius of bubble against
numerous values of elasticity parameter

Fig. 10: Variation in pressure of bubble
against numerous values of elasticity
parameter for flow of linear elastic fluid in a
converging-diverging nozzle
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Fig. 11: Variation in radius of bubble against
numerous values of number of bubbles n for
flow of linear elastic fluid in a converging-
diverging nozzle

Fig. 12: Variation in velocity of the fluid for
different values of the number of bubbles

Fig. 13: Variation in pressure of the fluid for
different values of the number of bubbles

Volume 9, 2025



Ahmed Zeeshan et al.

x

Fig. 14: Variation in radius of the bubble for
different values of the Reynolds number

Re=100
... Re=200

1.4

Re=500

0 5 10 15 20 25 30 35
Fig. 15: Variation in velocity of the bubble
for different values of the Reynolds number

0 5 10 15 20 25 30 35
x

Fig. 16: Variation in pressure for different
values of the Reynolds number
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Fig. 17: Variation in radius for different
values of the initial void fraction
—1 5.10-2
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Fig. 18: Variation in velocity for different
values of the initial void fraction

Discussion on the numerical results is followed
by the discussion on the sensitivity of three output
parameters, the radius, the velocity and pressure in
response to the input parameters of the flow. The
impacts of three sundry parameters, the elasticity
parameter (), the cavitation number (o) and the

number of bubbles (N ) on the three output responses
the radius, velocity and the pressure coefficient are
examined in this article. The optimal parameter is
obtained using Response Surface Methodology
(RSM) by carrying out the sensitivity analysis of the
effective parameters on the flow of a cavitating uni-
dimensional, linear elastic fluid through a
converging-diverging nozzle. The ranges taken in
this study of the input parameter whose responses are
to be determined towards output responses are as
follows:

a. Elasticity parameter () varied from 0.001
to 0.1.

b. Cavitation number (o) varied from 0.5 to

0.8.
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c. Number of bubbles (n) varied from 1 to 4 .
The value of x has been set at x = 8, inside of the
converging-diverging section of the nozzle to obtain
the numerical data used in the analysis and presented
in the Table 2. As per the procedure of the statistical
analysis, analysis of 20 runs is performed. Numerical
results for these 20 runs of the statistical analysis of
all the three output variables radius, velocity and
pressure obtained against the three input variables,
elasticity parameter, cavitation number and number
of bubbles are presented in Table 2. Using the
regression coefficient the effects of performed
conditions on dependent variables (radius, velocity
and pressure), the variance analysis for each variable,
are presented in Tables 3 to Table 5 respectively.
From the Tables 3 to 5 we see that due to high values
of R? for radius, velocity and pressure, only 0.02%
changes in case of radius, 0.03% changes in cases of
both velocity and pressure are not admissible. Also it
can be seen from the tables that all the terms are
significant in analysis and are considerable whose P-
values are above 0.05 or 5% while the terms having
smaller P-values are insignificant, could be
henceforth neglected. On these assumptions of the
model all terms are significant except the terms
A?,B? and AB as seen in Table 6 and are neglected
in further analysis. Sensitivity is plotted in Figs. 5-7
using bar diagrams for better understanding. Figs. 5
(a-c) is plotted for A = 0, in Fig. 5 (a) B = —1 that is
y = 0.5, in Fig. 5 (b) B = 0 that is y = 0.0505 while
in Fig. 5 (c) B =1 that is y = 0.1 is considered. In
all figs. 5(a-c) C assumes the values —1,0 and 1. In
the stated conditions, the sensitivity of radius shown
in Figs. 5 (a-c) increases with the increase in value C.
Same is the case for sensitivity of velocity in Figs. 6
(a-c) while in case of pressure increasing values of C,
results in the decrease in sensitivity of pressure.

5 Conclusion

The study carried out to investigate the influence of
emerging parameters on the flow behavior of bubbly-
cavitating flow of linear elastic fluid flowing across
the nozzle (converging-diverging nozzle) described
in Fig. 1. Apart from the fact that two flow regimes
are possible, we have only discussed the flow
behavior in stable region despite of finding the
critical point for bifurcation to occur. Large-scale
spatial fluctuations are noted, even a small value of
void fraction creates fluctuations in the flow, other
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parameters also effects significantly. An increase in
velocity and decrease in pressure is clearly
consequence of the Bernoulli’s principle. To observe
the effects of the elasticity parameter, the cavitation
number and the number of bubbles in the flow we
have studied sensitivity of the parameters towards
unknown variables radius, velocity and pressure.
According to earlier research on cavitation in
viscoelastic media, overall elasticity acts to lessen the
abrasiveness of collapse and development compared
to the behavior in a Newtonian medium. Depending
on the constitutive model, the elastic terms have
varying coefficients and exponents that are
dependent on the deviation from the initial
configuration. As one might anticipate, these phrases
stand for an elastic restoring force, or a spring. The
constitutive model may have a substantial impact on
the bubble response. Here likewise we see that
increasing in values of C that is the number of
bubbles in flow is most prominent among the other
parameters. Increase in value of C cause an increase
in sensitivity of the radius as well as velocity while
increase in value of C causes a decrease in sensitivity
of pressure as the case may be due to satisfaction of
Bernoulli’s principle. In all the cases sensitivity of
radius and velocity to A (elasticity), B (cavitation
number) and C (the number of bubbles) increases
while pressure decreases in irrespective of the fact in
first case it is positive while in other cases it is
negative. It is important to note that this sensitivity
analysis has been carried out in the converging
diverging section of the nozzle for some specific
value of horizontal axis. We cannot generalize it for
the whole domain anyhow we could examine the
behavior where needed. When we look at the Figs. 5-
7, we observe that there is not a significant change
from fig. a-c, it means by changing input values this
behavior is unaltered.

6 Nomenclature

We Weber Number

A Nozzles’cross-section area m’
Velocity of flow

n Bubble Population

a The void fraction of the bubbly mixture

P Density of the fluid
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R Radius of bubble

t Time

Cp Fluid pressure coefficient

P Fluid pressure

L Length of the nozzle

H Dynamic viscosity of the fluid
S Surface tension

o) Cavitation number

o) Second-Grade fluid parameter
Re Reynolds number

PG Non-condensable gas inside the bubble
X Eulerian coordinates
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