
Empirical Development of Radius of Bubble in Flow of Linear Elastic 

Fluids through a Converging-Diverging Nozzle 
 

AHMED ZEESHAN1,2, MUHAMMAD SHAHID NADEEM1, NIKOS MASTORAKIS2 
  

1Department of Mathematics and Statistics, FOS, 
International Islamic University, 

H-10, Islamabad 
PAKISTAN  

 
2Technical University of Sofia,  

BULGARIA 
 

Abstract: - The basic aim of authors is develop an empirical relation for the radius of bubble versus the emerging 
parameters in modelling of the problem using sensitivity analysis procedure. The cavitating uni-dimensional 
bubbly flow of linear elastic fluid in a converging-diverging nozzle. The fields of mechanical engineering, 
shipping, environmental engineering, chemical engineering, and the medical sciences are just a few of the fields 
where bubbly flows are observed extensively. There are enormous applications of the bubble dynamics in 
engineering and medical. The geometry here considered is used in almost all mechanical machinery that includes 
automobiles, ships, pumps and valves etc. The cavitation tends to damage the wall of impact when bubble collapse 
or interact with neighbouring boundaries. The analysis helps to identify the behaviour of cavitating flow of bubbles 
subject to shape of nozzle and fluid properties.  The equations of targeted flow are solved by RK-method using 
built-in function NDSolve in MATHEMATICA 10. The sensitivity analysis is performed using RSM (Response 
Surface Methodology) to identify the optimal response parameters affecting the flow. It is presented graphically 
that number of bubbles is an optimal parameter which is more sensitive as compared to other parameters involved. 
However elastic parameter and the cavitation number are also responsible to contribute in increase in sensitivity of 
radius and velocity and decrease in sensitivity of pressure. 
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1. Introduction 
Cavitation and bubble dynamics are fascinating 

phenomena that occur in fluid dynamics and have 
applications in various fields, including engineering, 
medicine, and environmental science. Cavitation 
refers to the formation and subsequent collapse of 
vapor-filled bubbles within a liquid when the local 
pressure drops below the vapor pressure of the liquid. 
This phenomenon can give rise to a wide array of 
intricate and substantial outcomes.  
A major aspect of cavitation comprises its stimulus to 
the erosion and damage experienced by machinery 
and structures. The collapse of bubbles in vicinity of 

solid surfaces produces high-intensity shockwaves 
and micro jets, leading to erosion, pitting, and 
material wear. These dynamics are governed by 
principles derived from fluid mechanics, with a 
notable example being the Rayleigh-Plesset equation, 
which provides a mathematical description of how 
the radius of a spherical bubble changes over time 
[1]. In various medical procedures such as ultrasound 
imaging and lithotripsy, the deliberate use of 
controlled bubble cavitation serves therapeutic 
purposes, emphasizing the essential role played by 
bubble dynamics [2]. In the field of environmental 
science, cavitation and bubble dynamics are 
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particularly relevant in the setting of oceanography. 
The formation and collapse of bubbles in the ocean 
can produce subaquatic sounds referred to as 
"cavitation noise." These sounds offer a means to 
study and monitor oceanic processes, including the 
behavior of marine life [3]. 

It is crucial to comprehend that non-Newtonian 
qualities have much greater impact on cavitation or 
bubble dynamics than do Newtonian fluids. owing to 
its expanding use in variety of processes, including 
extrusion of polymers, lubrication with grease and 
heavy oils, coating of paper, use of plasma and 
mercury, nuclear fuel slurries,  liquid alloys, food 
processing, biological processes, reactor cooling, 
heat exchangers, and few other applications. The 
topic of non-Newtonian fluid flow is growing in 
importance. These fluids include, but are not limited 
to, ice cream, paints, shampoos, mud, polymers and 
others. The well-known Navier-Stokes equation 
cannot pretend fluid flow that is not Newtonian. It is 
quite challenging to solve nonlinear constitutive 
equations representing viscous flows. Viscous fluids 
fall into one of these three categories: integral, 
differential, or rate type fluids. Viscoelastic fluid is 
subclass of fluid of rate type. The largest increase in 
viscosity of polymer solutions in an extensional flow, 
such as that created around a spherical bubble during 
its expansion or collapse phase, is the most notable 
outcome. Polymers are forced apart in absence of 
applied flow field, and their length can increase by 
three orders of magnitude in direction of extension. 
Because of this, solution is able to sustain far greater 
stresses, and squeezing is lessened where polymers 
are stretched. Additionally, a lot of biological fluids, 
such as saliva, synovial fluid and blood, exhibit 
viscoelasticity and non-Newtonian properties [4]. 
The importance of cavitation in the advancement of 
current ultrasonic and laser-assisted surgical methods 
makes this a vital topic. The scientific literature lacks 
a thorough description of the fundamental 
mechanisms underlying cavitation in non-Newtonian 
fluids, despite its expanding bioengineering 
applications. Given the diversity of the components 
necessary for understanding the associated processes, 
this is not surprising.  

In the literature, several constitutive equations 
are used to characterize the behavior of non-
Newtonian fluids. The Maxwell and Oldroyd-B 
models have greatly exceeded expectations and 
anticipation. Their relative simplicity has 
undoubtedly been appealing, particularly in the case 

of numerical simulation of viscoelastic flows, where 
simple models have been critical in developing 
numerical techniques. Dumbbell and the KBKZ 
model are two more prominent viscoelastic models 
that had widely employed. Shima et al. [5] conducted 
a study to examine the behavior of an individual 
spherical bubble immersed in a sound field within a 
purely viscous liquid , Tsujino et al. [6], and Brujan 
[7]. Also, Shima et al. [8] investigated bubble 
oscillations by employing a linear viscoelastic model 
to characterize the rheological properties of the 
liquid. Ting [9] employed an Oldroyd three-constant 
model that incorporates characteristic relaxation and 
retardation times, which are used to scale the 
covariant convected time derivatives of stress and 
strain rate. Additionally, he considered thermal 
effects arising from the phase changes of water, such 
as evaporation or condensation. The resulting 
integro-differential equation was solved numerically 
for a solution containing 500 ppm of polyethylene 
oxide (PEO). Ting's conclusion was that 
viscoelasticity has a minimal retardation effect on 
bubble growth and collapse, provided that the 
material constants align with the properties of dilute 
polymer solutions. Furthermore, Ting's work 
suggests that heat and mass transfer effects are not 
significant under cavitation conditions. In a separate 
study, a rigorous experimental study was conducted 
and a numerical exploration was made of a Venturi 
reactor characterized by a pronounced choking effect. 
This investigation employed a custom-developed, 
state-of-the-art compressible cavitation phase-change 
solver to gain insights into the flow dynamics and 
underlying choking mechanisms in cavitation-
induced choked flow scenarios [10]. 

Zana and Leal [10] numerically tackled the 
conservation equations for mass and momentum, as 
well as a gas diffusion equation, to analyze the 
collapse of a single bubble. The impact of 
viscoelastic medium or fluid on the oscillations of 
bubbles, is due to Fogler and Goddard [11]. One of 
the most intriguing findings was that the presence of 
elasticity can delay bubble collapse and cause 
prolonged oscillatory motion. A recent contribution 
to studies involving cavitation is viscoelastic 
materials using different constitutive equations of 
non-Newtonian fluids has been discussed by Fogler 
and Goddard [11], Shima and Tsujino [12], Allen and 
Roy [13-14], Gaudron et al. [15]. Since the 
viscoelastic materials behave like tissues so to 
discuss the cavitation in the tissues of living 

Ahmed Zeeshan et al.
International Journal of Theoretical and Applied Mechanics 

http://www.iaras.org/iaras/journals/ijtam

ISSN: 2367-8992 15 Volume 9, 2025



organism it is felt appropriate to discuss cavitation in 
viscoelastic materials. Initially to study tissues most 
of the researcher has considered Maxwell-type fluid 
models. However based on the property of relaxation 
to its original structure in tissues studies suggested 
that it will be far more better to use Kelvin-Voigt 
models instead of using Maxwell-type models [15]. 

Tangren et al. [16] has presented his study of 
bubbly flow through nozzles and ducts. Later on 
discussion on these type of flows was made by Wang 
and Brennen [17]. A comprehensive investigation 
into the essential flow characteristics of vortex-based 
cavitation devices, employing both experimental and 
computational approaches was performed [18], the 
study encompassed a wide spectrum, encompassing 
the simulation of cavitating flows within these 
devices across a diverse range of viscosity levels and 
device scales. For experimental endeavors, the 
aqueous glycerol solutions with viscosities spanning 
up to 800 centipoise (cP) was taken. It is effectively 
identified the inception of cavitation through the 
analysis of acoustic signals, providing valuable 
insights into the behavior of cavitating flows in these 
systems. Effects of non-dimensional parameters on 
such flows in Newtonian fluid were depicted by 
Zamoum & Kessel [19] while in presence of 
elastic/viscoelastic fluids (neo-Hookean, linear 
elastic and Mooney Rivlin) in nozzles and channels 
were presented by Zeeshan et al. [20-21]. Effect of 
surface materials on the surface of hydrofoils are 
investigated by Hao et al. [22]. 

A one-dimensional bubbly mixing of fluid in 
ducts and nozzles is one of straightforward flow 
combinations of liquid and gas. In many applications 
in engineering and the medical sciences, it is a 
significant problem. A low-pressure area causes the 
flow past a nozzle to cavitate, which causes the flow 
to quicken. A barotropic relation, 𝑝 = 𝑓(𝜌), can be 
constructed in some bubbly flows if the fluid 
pressure is expected to be only a function of fluid 
density. All effects caused by bubble contents—aside 
from compressibility—are insignificant, and the 
bubbly mixture can be thought of as a single-phase 
compressible flow. 

Motivated by all above contributions, the authors 
have considered the cavitating flow of Kelvin-Voigt 
(linear elastic) fluid through a converging-diverging 
nozzle. The schematic of the flow is shown in Figure 

1. Utilizing built-in functions, the RK technique is 
used along with the symbolic computation 

programme MATHEMATICA and the package 
NDSolve to identify singularity or state changes in a 
problem and then take appropriate action, such as 
restarting the integration. Effectively acting as a 
controller method, the NDSolve "EventLocator" 
method searches for measures and takes the 
necessary action, while integration of differential 
system is otherwise fully left to an underlying 
methodology [23]. By setting elasticity parameter to 
zero, the Newtonian formulation of Zamoum & 
Kessel may be retrieved for the validity of the results. 
The steady state solutions revealed two distinct flow 
regimes, referred to as quasi-steady and quasi-
unsteady [19–21]. The former is distinguished by the 
significant spatial fluctuations caused by the 
cavitation bubbles' pulsations downstream of the 
throat. To flashing flow, the quasi-unsteady solutions 
relate.  As the flow moves from one area to another, 
bifurcation happens [19–21]. We displayed the flow 
characteristics under the influence of various factors 
while purposefully limiting ourselves to the zone 
known as stable region, where neither flashing nor 
bifurcation happens. Furthermore, related studies can 
be found in [24-32] to have insight of the flows in 
non-Newtonian and especially viscoelastic materials 
or fluids. 

 Equations of the said flow were initially solved 
to find the data points, usually termed as outcomes of 
an experiment. Response Surface Methodology 
(RSM)[33] is used to analyze the potentially 
significant input parameter(s) from the list of 
involved parameters. RSM is a statistical and 
mathematical technique used to predict the behavior 
of an underlying system on the basis of experimental 
data. Here the experimental data or set of points are 
the computational values of the output responses 
obtained by numerically solving the system of 
equations due to varying input responses. A 
statistical experimental design is developed by using 
the central composite design. Three input parameters, 
the cavitation number, the modulus of elasticity or 
elastic parameter and number of bubbles are taken 
into account whose impacts on the output parameters, 
the radius of the bubble, the velocity of flow and 
minimum pressure coefficient is sought. Correlations 
are developed using RSM between input and output 
responses of the flow problem. We have never before 
studied the sensitivity analysis of cavitating flow of 
linear elastic fluid in a converging-diverging nozzle. 
We have now covered how the Reynolds number, 
Weber number, void percent, and elastic modulus 
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𝐿 

Area of cross 
section, 𝐴(𝑥) 

Flow 

𝑥 

affect the flow's radius, pressure coefficient, and 
velocity. Other studies related to sensitivity analysis  

of flow behavior could be found in [34-35]. 

 

2 Problem Formulation  

In the current article, flow of contaminant, air 
bubbles are considered through various geometries in 

elastic fluid (Second-Grade Fluid). Continuum 
mechanics formalism is used to describe the 
dynamics of bubbles.  
 

Fig.1: Cavitating flow of bubbly mixture through a 
nozzle (converging-diverging) 

The nozzle described in above figure, mathematically 
is described in (1). 

1
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Equations of continuity and momentum for bubbly 
flow are given as [16] 
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here, ( , )x t denotes the void fraction, it depends on 
( , )R x t  as stated below 
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pC , denotes the fluid pressure coefficient stated as 
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and   is the population of bubble per unit of 
volume. The RP equation for a bubbly mixture of a 
non-Newtonian fluid is described in (8), where we 
have considered in our study a second-grade fluid for 
which last, the integral term on the right hand side is 
separately evaluated. 
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D Dt  the Lagrangian derivative, is defined in (7), 
, , , ,l l BR S P  and ( )P t are radius, viscosity, 

density, surface tension, pressure inside the bubble 
and pressure far away from the bubble wall 
respectively.  
D

u
Dt t x

 
 
 

 (7
) 

Presence of some contaminant gas made us to choose 
its partial pressure termed here as GP and some water 

vapour (or the vapour of considered fluid) vP . On the 
assumption that the gas entrapped, is incondensable 
the partial pressure is described as [21]. 

0
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k
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R
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R

 
  

 
 (8) 

where 
0GP is the initial partial pressure in interior of 

the bubble, k  and 0R , being poly-tropic index and 
initial radius of the bubble,  subsequently, the total 
pressure inside the bubble and initial partial pressure 
are described below .  

 
0

3
0 / k

B G v v GP P P P R R P     (9) 

0 0(2 / )G vP P P S R    (10) 
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Let extP  is the pressure field that is applied externally 

to the bubble and siP is linked to the pressure that 
other bubbles diffuse and the pressure that any other 
exterior field applies to the bubble i . The poly-tropic 
index, the value for gas is provided in the literature as 
1.4, is used to calculate this relationship.  

, ( )ext si A iP P P t                     
(10a) 

where pressure disseminated by other bubbles 
defined in (14) as 
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where ij jid d is distance of bubble i  from bubble j  
and vice versa. Using Eqn. (13) and (14) in Eqn. (8) 
produces 
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The distance ij jiD d d   between each bubble and 
the others is assumed to be constant, and it is also 
assumed that all of the bubbles are subject to the 
same external pressure field , ( ) ( )A iP t P t , which 
here is considered to be negligibly small due to 
which Eqn. (13)  takes the form shown in Eqn. (16) 
for which the initial conditions are stated in eqn. (17). 
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For steady-state solutions equations (2-3) becomes 
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Eqn. (29) is obtained by using non-dimensional 
variables described in (28) in eqn. (16) 
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Where use of the Lagrangian derivative deliberated 
earlier, reduces above eqn. (17) and (13) as given 
below, 
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where, is the Weber number 2 /l s sWe R u S ,
( , , )f R u x  is non-dimensional form of r.h.s of eqn. 

(26) which is given in (33) and 
22( ) /v l sP P u   is the cavitation number 
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Coupled Eqs. (15-16) & Eqs. (19-21) are solved by 
RK –Method to find the unknown variables involved, 
which in detail is discussed in the following section.  

3 Sensitivity Analysis 

The impacts of three input parameters, the elasticity 
parameter n  (number of bubbles), Reynolds number 
(Re) and elasticity parameter ( ) on the three output 
responses the radius, velocity and the pressure 
coefficient are examined in this chapter. The optimal 
parameter is obtained using Response Surface 
Methodology (RSM) by carrying out the sensitivity 
analysis of the effective parameters on the flow of a 
cavitating uni-dimensional, linear elastic fluid 
through a converging-diverging nozzle. The ranges 
taken in this study of the input parameter whose 
responses are to be determined towards output 
responses are as follows: 

a. Number of bubbles ( n ) varied from 2 to 4. 
b. Reynolds number (Re) varied from 200 to 

500. 
c. Elasticity parameter ( ) varied from 0.001  to 

0.1 . 
The value of 𝑥 has been set at 𝑥 = 8, inside of the 
converging-diverging section of the nozzle to obtain 
the numerical data used in the analysis and presented 
in the Table 2.To perform sensitivity analysis 20 
runs of an experiment are considered. Table 1 
defines the ranges of parameters (input) while on 
solving the corresponding differential equations of 
the flow, the values of output responses, the radius, 
the velocity and the pressure are listed in Table 2. 
Results of the variance analysis (ANOVA) for 
dependent variables, the radius, the velocity and the 
pressure are furnished in Tables 3-5. Here important 
aspects in these tables are the F-values and P-values 
in ANOVA analysis. The F-value are representatives 
of the variation in the data while P-values are the 
representatives of the probability validation of the 
model’s accuracy. Larger F-values are directives for 
the significance of the results while in case of P-

values, lower values supports the significance. 
Consequently, both values considered together to 
have strong agreement for the significance of the 
results. Table 6 demonstrates the estimated 
regression coefficients on the basis of discussed 
criteria. From where we see that in case of the three 
dependent variables radius, velocity and pressure in 
terms of the coded parameters significant terms are 
constant, 𝐴, 𝐶, 𝐴2  and 𝐴𝐶  while other terms 
𝐵, 𝐶, 𝐵2, 𝐶2, 𝐴𝐵 and 𝐵𝐶 become insignificant on the 
basis of higher P-values and lower F-values. Also 
their contribution to the results is given in Table 3-5, 
seems to be too small to be considered. Residual 
errors generally are attributed to the un-matched data 
points to the regression line whereas lack-of-Fit 
exhibits when model is unable to describe the 
connectedness between the input and output 
parameters. The graphs of residuals for radius, 
velocity and pressure are elaborated in Figures 2(a-

c)-4(a-c) respectively which shows that errors are 
normally distributed along the straight line and hence 
are well-fitted. 
Equations for radius, velocity and pressure are given 
in eqns. (22-24). Sensitivity of the radius, velocity 
and pressure are their partial derivatives, given in 
eqns. (25-33). Values of sensitivity for radius, 
velocity and pressure are obtained by taking 𝐴 = 0, 
the lower value, and by varying the values of 𝐵 and 
𝐶. Table 7 (a-c) demonstrates the values obtained for 
sensitivity of the three output variables while graphs 
for these values are presented in Figures 5(a-c)-7 (a-

c). 
Table 1: Input variables and their domains used in 

the statistical analysis 

Variable Symbol −1 0 +1 
Number of 
Bubbles 

n  2 3 4 

Reynolds 
number 

Re  200 350 500 

Elastic 
parameter 

  0.001 0.0505 0.1 
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Table 2: The computed values for this experiment against the randomly designated values of input response 

Run 
Order 

Codal Values Input Responses Output Responses 
A  B  C  n  Re    R (radius) u  (velocity) P (pressure) 

1 0 0 0 3 350 0.0505 1.09049 1.16116 -0.347475 
2 0 -1 0 3 200 0.0505 1.09047 1.16116 -0.347474 
3 1 0 0 4 350 0.0505 1.06389 1.16078 -0.346478 
4 1 1 1 4 500 0.1000 1.06355 1.16078 -0.346466 
5 1 -1 1 4 200 0.1000 1.06353 1.16078 -0.346466 
6 -1 -1 -1 2 200 0.0010 1.15833 1.16220 -0.350249 
7 0 0 0 3 350 0.0505 1.09049 1.16116 -0.347475 
8 -1 0 0 2 350 0.0505 1.15630 1.16217 -0.350163 
9 0 0 -1 3 350 0.0010 1.09119 1.16117 -0.347501 
10 0 0 0 3 350 0.0505 1.09049 1.16116 -0.347475 
11 0 0 0 3 350 0.0505 1.09049 1.16116 -0.347475 
12 0 0 0 3 350 0.0505 1.09049 1.16116 -0.347475 
13 0 0 0 3 350 0.0505 1.09049 1.16116 -0.347475 
14 0 1 0 3 500 0.0505 1.09050 1.16116 -0.347476 
15 -1 -1 1 2 200 0.1000 1.15413 1.16213 -0.350072 
16 -1 1 -1 2 500 0.0010 1.15844 1.16220 -0.350253 
17 1 -1 -1 4 200 0.0010 1.06422 1.16079 -0.346490 
18 1 1 -1 4 500 0.0010 1.06424 1.16079 -0.346491 
19 0 0 1 3 350 0.1000 1.08980 1.16115 -0.347449 
20 -1 1 1 2 500 0.1000 1.15423 1.16214 -0.350076 
 

Table 3: Results of variance analysis of radius of the bubble 

Source DF Adj SS Adj MS F-Value P-Value 
Model 9 0.023283 0.002587 57761.88 0.000 
Linear 3 0.021357 0.007119 158949.83 0.000 
N 1 0.021344 0.021344 476570.23 0.000 
Re 1 0.000000 0.000000 0.18 0.685 
Gamma 1 0.000012 0.000012 279.08 0.000 
Square 3 0.001920 0.000640 14289.82 0.000 
n*n 1 0.001057 0.001057 23590.01 0.000 
Re*Re 1 0.000000 0.000000 0.01 0.945 
gamma*gamma 1 0.000000 0.000000 0.00 0.994 
2-Way Interaction 3 0.000006 0.000002 46.00 0.000 
n*Re 1 0.000000 0.000000 0.08 0.782 
n*gamma 1 0.000006 0.000006 137.93 0.000 
Re*gamma 1 0.000000 0.000000 0.00 0.987 
Error 10 0.000000 0.000000     
Lack-of-Fit 5 0.000000 0.000000   
Pure Error 5 0.000000 0.000000     
Total 19 0.023284       
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Table 4: Results of variance analysis of velocity of the bubble 

Source DF Adj SS Adj MS F-Value P-Value 
Model 9 0.000005 0.000001 36596.54 0.000 
Linear 3 0.000005 0.000002 99400.17 0.000 
N 1 0.000005 0.000005 298020.03 0.000 
Re 1 0.000000 0.000000 0.62 0.448 
Gamma 1 0.000000 0.000000 179.86 0.000 
Square 3 0.000000 0.000000 10357.57 0.000 
n*n 1 0.000000 0.000000 17030.98 0.000 
Re*Re 1 0.000000 0.000000 0.04 0.855 
gamma*gamma 1 0.000000 0.000000 0.04 0.855 
2-Way Interaction 3 0.000000 0.000000 31.90 0.000 
n*Re 1 0.000000 0.000000 0.78 0.398 
n*gamma 1 0.000000 0.000000 94.13 0.000 
Re*gamma 1 0.000000 0.000000 0.78 0.398 
Error 10 0.000000 0.000000     
Lack-of-Fit 5 0.000000 0.000000   
Pure Error 5 0.000000 0.000000     
Total 19 0.000005       

Table 5: Results of variance analysis of pressure 

Source DF Adj SS Adj MS F-Value P-Value 
Model 9 0.000038 0.000004 43863.29 0.000 
Linear 3 0.000034 0.000011 119023.76 0.000 
N 1 0.000034 0.000034 356853.47 0.000 
Re 1 0.000000 0.000000 0.13 0.729 
Gamma 1 0.000000 0.000000 217.69 0.000 
Square 3 0.000004 0.000001 12525.34 0.000 
n*n 1 0.000002 0.000002 20669.48 0.000 
Re*Re 1 0.000000 0.000000 0.00 0.994 
gamma*gamma 1 0.000000 0.000000 0.00 0.994 
2-Way Interaction 3 0.000000 0.000000 40.78 0.000 
n*Re 1 0.000000 0.000000 0.06 0.805 
n*gamma 1 0.000000 0.000000 122.27 0.000 
Re*gamma 1 0.000000 0.000000 0.00 0.972 
Error 10 0.000000 0.000000   
Lack-of-Fit 5 0.000000 0.000000 * * 
Pure Error 5 0.000000 0.000000   
Total 19 0.000038    

 

Ahmed Zeeshan et al.
International Journal of Theoretical and Applied Mechanics 

http://www.iaras.org/iaras/journals/ijtam

ISSN: 2367-8992 21 Volume 9, 2025



 

 

 

 
Fig. 2: Residual Plots of the Radius 

 

 

 

 
Fig. 3: Residual Plots of the Velocity 
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Fig. 4: Residual Plots of the Pressure 

 

Table 6 

Estimated regression coefficients for radius, velocity 

and pressure 

Term Coefficient P-value 
Radius   

Constant 1.09049 0.000 
𝐴 -0.046200 0.000 
𝐵 0.000028 0.685 
𝐶 -0.001118 0.000 
𝐴2 0.019601 0.000 
𝐵2 -0.000009 0.945 
𝐶2 0.000001 0.994 
𝐴𝐵 -0.000021 0.782 
𝐴𝐶 0.000879 0.000 
𝐵𝐶 -0.000001 

𝑅2 = 100% 
0.987 

𝑅2 − 𝑎𝑑𝑗
= 100% 

Velocity   
Constant 1.16116 0.000 

𝐴 -0.000692 0.000 
𝐵 0.000001 0.448 
𝐶 -0.000017 0.000 
𝐴2 0.000315 0.000 
𝐵2 0.000000 0.855 
𝐶2 0.000000 0.855 
𝐴𝐵 -0.000001 0.398 
𝐴𝐶 0.000014 0.000 
𝐵𝐶 0.000001 

𝑅2 = 100% 
0.398 

𝑅2 − 𝑎𝑑𝑗
= 99.99% 

Pressure   

Constant -0.347475 0.000 
𝐴 0.001842 0.000 
𝐵 -0.000001 0.729 
𝐶 0.000045 0.000 
𝐴2 -0.000845 0.000 
𝐵2 0.000000 0.994 
𝐶2 0.000000 0.994 
𝐴𝐵 0.000001 0.805 
𝐴𝐶 -0.000038 0.000 
𝐵𝐶 0.000000 

𝑅2 = 100% 
0.972 

𝑅2 = 100% 
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1.14775 0.003214 0.004742
0.067744 0.026980 0.002369
0.003419 ,

R A B

C C AC

BC

  

  


 (22) 

2

1.00179 0.000049 0.000074
0.000983 0.000439 0.000041
0.000059 ,

V A B

C C AC

BC

  

  


 (23) 

2

0.004433+0.000112 0.000166
0.002462 0.001107 0.000091A
0.000133 ,

P A B

C C C

BC

  

  


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C
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
  
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  



 
 (27) 
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C

A


  
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(28) 

0.000074 00.000059 ,V
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
  
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(29) 

0.000983 0.000878
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V
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  


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(30) 

0.000112 0.000091 ,P
C

A


 

  
(31) 

0.000166 0.000133 ,P
C

B


 

  
(32) 

0.002462 0.002214

0.000091 0.000133 .

P
C

C

A B


 



 
 

(33) 

The sensitivity analysis for the radius, the velocity and the pressure when 𝐴 = 0 

𝐴 = 0 Sensitivity analysis 

𝐵 𝐶 /R A   /R B   /R C   /V A   
/V B 
 

/V C 
 /P A   /P B   /P C   

−1 
−1 0.001524 0.002096 0.042005 0.000033 0.000044 0.000804 0.000294 −0.000432 −0.002028 
0 0.003893 0.005515 0.095965 0.000074 0.000103 0.001682 0.000385 −0.000565 −0.004242 
1 0.006262 0.008934 0.149925 0.000115 0.000162 0.002560 0.000476 −0.000698 −0.006456 

0 
−1 0.001524 0.002096 0.042518 0.000033 0.000044 0.000813 0.000294 −0.000432 −0.002048 

0 0.003893 0.005515 0.096478 0.000074 0.000103 0.001691 0.000385 −0.000565 −0.004262 
1 0.006262 0.008934 0.150438 0.000115 0.000162 0.002569 0.000476 −0.000698 −0.006476 

1 
−1 0.001524 0.002096 0.043030 0.000033 0.000044 0.000822 0.000294 −0.000432 −0.002068 
0 0.003893 0.005515 0.096991 0.000074 0.000103 0.001700 0.000385 −0.000565 −0.004282 
1 0.006262 0.008934 0.150951 0.000115 0.000162 0.002578 0.000476 −0.000698 −0.006496 
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(a)

 
(b) 

 
(c) 

 
Fig. 5: Sensitivity analysis of Radius for (a) 𝐴 =

0, 𝐵 = −1 (b) 𝐴 = 0, 𝐵 = 0 (c) 𝐴 = 0, 𝐵 = 1 

 

(a)

 

(b)

 
(c) 

 

Fig. 6: Sensitivity analysis of velocity  for (a) 𝐴 =

0, 𝐵 = −1 (b) 𝐴 = 0, 𝐵 = 0 (c) 𝐴 = 0, 𝐵 = 1 
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4  Results and Discussion 

The graphical solution of the flow equations (15-16) 
and (19-21) is presented in Fig. 8-18. The parameters 
and their ranges used in this graphical analysis are 
taken as 

a. dimensionless elasticity parameter  (0.1 to 
0.3) 

b. initial void fraction 
s  to be of the order 

310 to 110  
c. Reynolds number (100 to 1000) 
d. Number of bubbles  n  (1 to 3) 

Fig.8 to Fig.18 helps to obtain some important 
observations a related to the bubbly flows in a linear 
elastic fluid passing through a converging-diverging 
nozzle. Initially the bubbles (spherical) are 
considered to have same size and uniform 
distribution in the flow with each bubble having 
volume    3 .4 / 3V R x  Radius, velocity and 
pressure with respect to the varying parameter of 
elasticity are depicted in Fig. 8-10.  Due to an 
increase in elasticity radius and velocity tends to 
decrease as it behaves like a damping to flow while 
pressure tends to increase. When more than one 
bubble ( 2n  ) are considered the same phenomena 
is observed. This decreasing effect is particularized 
in Fig. 11-13 while effects of Reynolds number are 
portrayed in Fig. 14-16. Increase in Reynolds number 
surges the radius and velocity also frequency as well 
as oscillations which will give escalation to 
cavitation in flow because of the fall of pressure. 

Fig. 17 and 18 demonstrates the effects of 
upstream void fractions (

s ) on the radius and 
velocity in a flowing elastic fluid (linear elastic fluid) 
passing through converging-diverging nozzle. It is 
apparent from the graphs that the radius and velocity 
after passing through the throat increases while 
frequency oscillations decrease. In case of 
converging-diverging nozzle the radius and velocity 
increases without bound for 23.4 10s

  , which 
is flashing point after which flow reaches unstable 
region. 

(a)

 

(b)

 

(c) 

 
Fig. 7: Sensitivity analysis of pressure  for (a) 𝐴 =
0, 𝐵 = −1 (b) 𝐴 = 0, 𝐵 = 0 (c) 𝐴 = 0, 𝐵 = 1 

Ahmed Zeeshan et al.
International Journal of Theoretical and Applied Mechanics 

http://www.iaras.org/iaras/journals/ijtam

ISSN: 2367-8992 26 Volume 9, 2025



 

Fig. 8: Variation in radius of bubble against 
numerous values of elasticity parameter for 
flow of linear elastic fluid in a converging-
diverging nozzle 

 

Fig. 9: Variation in radius of bubble against 
numerous values of elasticity parameter 
 

 

Fig. 10: Variation in pressure of bubble 
against numerous values of elasticity 
parameter for flow of linear elastic fluid in a 
converging-diverging nozzle 
 

 

Fig. 11: Variation in radius of bubble against 
numerous values of number of bubbles n for 
flow of linear elastic fluid in a converging-
diverging nozzle 

 

Fig. 12: Variation in velocity of the fluid for 
different values of the number of bubbles 
 

 

Fig. 13: Variation in pressure of the fluid for 
different values of the number of bubbles 
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Fig. 14: Variation in radius of the bubble for 
different values of the Reynolds number 

 
Fig. 15: Variation in velocity of the bubble 
for different values of the Reynolds number 
 

 

Fig. 16: Variation in pressure for different 
values of the Reynolds number 
 

 

Fig. 17: Variation in radius for different 
values of the initial void fraction 

 
Fig. 18: Variation in velocity for different 
values of the initial void fraction 
 

Discussion on the numerical results is followed 
by the discussion on the sensitivity of three output 
parameters, the radius, the velocity and pressure in 
response to the input parameters of the flow. The 
impacts of three sundry parameters, the elasticity 
parameter (  ), the cavitation number ( ) and the 
number of bubbles ( n ) on the three output responses 
the radius, velocity and the pressure coefficient are 
examined in this article. The optimal parameter is 
obtained using Response Surface Methodology 
(RSM) by carrying out the sensitivity analysis of the 
effective parameters on the flow of a cavitating uni-
dimensional, linear elastic fluid through a 
converging-diverging nozzle. The ranges taken in 
this study of the input parameter whose responses are 
to be determined towards output responses are as 
follows: 

a. Elasticity parameter ( ) varied from 0.001  
to 0.1 . 

b. Cavitation number ( ) varied from 0.5  to 
0.8 . 
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c. Number of bubbles ( n ) varied from 1 to 4 . 
The value of 𝑥 has been set at 𝑥 = 8, inside of the 
converging-diverging section of the nozzle to obtain 
the numerical data used in the analysis and presented 
in the Table 2. As per the procedure of the statistical 
analysis, analysis of 20 runs is performed. Numerical 
results for these 20 runs of the statistical analysis of 
all the three output variables radius, velocity and 
pressure obtained against the three input variables, 
elasticity parameter, cavitation number and number 
of bubbles are presented in Table 2. Using the 
regression coefficient the effects of performed 
conditions on dependent variables (radius, velocity 
and pressure), the variance analysis for each variable, 
are presented in Tables 3 to Table 5 respectively. 
From the Tables 3 to 5 we see that due to high values 
of 𝑅2 for radius, velocity and pressure, only 0.02% 
changes in case of radius, 0.03% changes in cases of 
both velocity and pressure are not admissible. Also it 
can be seen from the tables that all the terms are 
significant in analysis and are considerable whose P-
values are above 0.05 or 5% while the terms having 
smaller P-values are insignificant, could be 
henceforth neglected. On these assumptions of the 
model all terms are significant except the terms 
𝐴2, 𝐵2 and 𝐴𝐵 as seen in Table 6 and are neglected 
in further analysis. Sensitivity is plotted in Figs. 5-7 
using bar diagrams for better understanding. Figs. 5 
(a-c) is plotted for 𝐴 = 0, in Fig. 5 (a) 𝐵 = −1 that is 
𝛾 = 0.5, in Fig. 5 (b) 𝐵 = 0 that is 𝛾 = 0.0505 while 
in Fig. 5 (c) 𝐵 = 1 that is 𝛾 = 0.1 is considered. In 
all figs. 5(a-c) C assumes the values −1, 0 and 1. In 
the stated conditions, the sensitivity of radius shown 
in Figs. 5 (a-c) increases with the increase in value C. 
Same is the case for sensitivity of velocity in Figs. 6 
(a-c) while in case of pressure increasing values of C, 
results in the decrease in sensitivity of pressure. 
 

5  Conclusion 

The study carried out to investigate the influence of 
emerging parameters on the flow behavior of bubbly-
cavitating flow of linear elastic fluid flowing across 
the nozzle (converging-diverging nozzle) described 
in Fig. 1. Apart from the fact that two flow regimes 
are possible, we have only discussed the flow 
behavior in stable region despite of finding the 
critical point for bifurcation to occur. Large-scale 
spatial fluctuations are noted, even a small value of 
void fraction creates fluctuations in the flow, other 

parameters also effects significantly. An increase in 
velocity and decrease in pressure is clearly 
consequence of the Bernoulli’s principle. To observe 
the effects of the elasticity parameter, the cavitation 
number and the number of bubbles in the flow we 
have studied sensitivity of the parameters towards 
unknown variables radius, velocity and pressure. 
According to earlier research on cavitation in 
viscoelastic media, overall elasticity acts to lessen the 
abrasiveness of collapse and development compared 
to the behavior in a Newtonian medium. Depending 
on the constitutive model, the elastic terms have 
varying coefficients and exponents that are 
dependent on the deviation from the initial 
configuration. As one might anticipate, these phrases 
stand for an elastic restoring force, or a spring. The 
constitutive model may have a substantial impact on 
the bubble response. Here likewise we see that 
increasing in values of 𝐶  that is the number of 
bubbles in flow is most prominent among the other 
parameters. Increase in value of 𝐶 cause an increase 
in sensitivity of the radius as well as velocity while 
increase in value of 𝐶 causes a decrease in sensitivity 
of pressure as the case may be due to satisfaction of 
Bernoulli’s principle. In all the cases sensitivity of 
radius and velocity to A (elasticity), B (cavitation 
number) and C (the number of bubbles) increases 
while pressure decreases in irrespective of the fact in 
first case it is positive while in other cases it is 
negative. It is important to note that this sensitivity 
analysis has been carried out in the converging 
diverging section of the nozzle for some specific 
value of horizontal axis. We cannot generalize it for 
the whole domain anyhow we could examine the 
behavior where needed. When we look at the Figs. 5-
7, we observe that there is not a significant change 
from fig. a-c, it means by changing input values this 
behavior is unaltered. 
 

6  Nomenclature 

We              Weber Number 
A  Nozzles’cross-section area 2m  
u  Velocity of flow 
  Bubble Population 

  The void fraction of the bubbly mixture 

l  Density of the fluid  
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R  
Radius of bubble 

t  Time 
Cp  Fluid pressure coefficient 
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