
Comparative Study of Different Inertia Weight Strategies in Particle

Swarm Optimization Based on Actual Computational Time Cost

N.E. UDENWAGU, A.A. ONI, A.A. EZENWOKE
Covenant University, Ota

NIGERIA

Abstract: - The particle swarm optimization (PSO) algorithm is attracting a lot of research attention due to its superior
performance over other swarm-based algorithms. However, one of the major challenges facing PSO is the tendency to fall into
local optima, which is known as premature convergence. The inertia weight variable was introduced into PSO to solve this
problem by balancing the relationship between exploration and exploitation stages in swarm activity within a given search space.
Many studies have proposed different inertia weight strategies to improve on convergence performance of PSO including,
Constant Inertia Weight (CIW), Linearly Decreasing Inertia Weight (LDIW), Exponential Inertia Weight (EIW), Chaotic Inertia
Weight (CHIW), Nonlinear Decreasing Inertia Weight (NDIW), Adaptive Inertia Weight (AIW), Random Inertia Weight (RIW)
and Time Varying Inertia Weight (TVIW). However, these strategies have also introduced varying levels of computational
complexities into the PSO algorithm. This study compares eight different inertia weight strategies based on their computational
time cost, in order to propose the most efficient strategy. The experiments were carried out using PSO implementation in a
Cloudsim simulation environment based on actual computational runtime of each inertia weight strategy. In summary, the
chaotic inertia weight strategy has the lowest average runtime of 3610552.27 microseconds, followed by TVIW = 3611035.51
LDIW = 3611035.95, CIW = 3611044.09, AIW = 3611539.87, NDIW = 3612029.75, RIW = 3612520.84, and EIW =
3612524.36.

Keywords: – Inertia weight, Particle swarm optimization, Premature convergence, Time complexity
Received: March 29, 2024. Revised: November 23, 2024. Accepted: December 27, 2024. Published: March 5, 2025.

1. Introduction

Particle Swarm Optimization (PSO) is a swarm-based search
algorithm first introduced by Ebernart and Kennedy in 1995
[1]. Compared to other nature inspired optimization
algorithms, PSO has proven to be more efficient and easier to
implement due to its smaller number of parameters [2]. Its
performance is largely dependent on selection and tuning of its
parameters such as the inertia weight.
In a population-based swarm intelligence algorithms like PSO,
exploration and exploitation are the two important search
stages. The balance between these two stages will yield the
best results and achieve maximum efficiency. Inertia weight
(ω) in PSO is a critical parameter that controls this balance in
the search space. It determines how much of the particle’s
previous velocity will be retained in the next iteration.
Choosing an appropriate inertia weight is crucial for the
performance of PSO to prevent it from converging
prematurely. When the inertia weight is large, the algorithm
tends towards a global search while a smaller inertia weight
tends more to a local search [2]. Inertia weight was first
introduced by Shi and Ebernart [3] to improve on population
diversity and balance in PSO. Different inertia weight
strategies have been proposed in existing literature to solve
this problem of premature convergence including constant
inertia weight (CIW) [4], exponential inertia weight (EIW)
[5], linearly decreasing inertia weight (LDIW) [6], nonlinear
decreasing inertia weight (NDIW) [7], random inertia weight
(RIW) [8], adaptive inertia weight (AIW) [9], time varying
inertia weight (TVIW) [10] and chaotic inertia weight (CHIW)
[11]. These different strategies have introduced varying levels

of improvement along with their computational complexities
into PSO as investigated in this study.
The computational time cost of an algorithm also referred to
as time complexity, describes how the runtime of an algorithm
increases with the size of its input [12]. It provides a high-
level measure of the efficiency of an algorithm and is typically
expressed using Big-O notation. The time cost of an algorithm
depends on factors such as, input size (n), the number of basic
operations, best, average and worst case scenarios [13]. In this
study, the time complexity of each inertia weight strategy was
observed and compared based on the actual computational
time cost of executing the PSO algorithm. The rest of this
study is organized as follows: Section 2 is a brief review of the
characteristics of PSO, section 3 explains the different inertia
weight strategies and their time complexities as presented in
literature. Section 4 presents the experiments to compare
different strategies, while section 5 discusses the experimental
results. Finally, the last section presents the conclusion.

2. Basic Concepts of Particle Swarm

Optimization

The first version of PSO is generally referred to as standard
PSO (SPSO) [14]. Standard PSO contains a swarm of particles
moving in a D-dimensional search space in order to locate an
optimal solution. Each particle i, has a current velocity vector
Vi = [vi1, vi2, …, viD] and a current position vector Xi = [xi1,

xi2, …, xiD], where D is the number of dimensions. In the
SPSO, the Vi and Xi are first randomly initialized. Then in
consecutive iterations, Pbesti which is the best position found

N. E. Udenwagu et al.
International Journal of Theoretical and Applied Mechanics

http://www.iaras.org/iaras/journals/ijtam

ISSN: 2367-8992 1 Volume 9, 2025

by particle i, is represented as Pbesti = [Pbesti1, Pesti2, …,

PbestiD] and the best position found by the whole swarm
Gbest = [Gbest1, Gbest2, … , GbestD]. Both the local position
and the global position are therefore used as a guide in
updating the velocity and position of each particle as shown in
equations 1 and 2 [15].

 (1)

 (2)

Where ω is the inertia weight, which determines to what
extent the previous velocity of a particle is preserved, c1 is the
cognitive acceleration coefficient, c2 is the social acceleration
coefficient, both of which are positive constants, r1 and r2 are
the two uniform random values generated within the range
[0,1]. The pseudo-code for solving a minimization
optimization problem, using standard PSO is shown in
Algorithm 1.

Algorithm 1: Standard PSO pseudo code for minimization

optimization [15]

1: Initialization

2: Define the swarm size S and the number of dimensions D

3: for each particle i Є [1…S]

4: Randomly generate Xi and Vi, and evaluate the fitness of Xi

denoting it as f(Xi)

5: Set Pbesti = Xi and f(Pbesti) = f(Xi)

6: end for

7: Set Gbest = Pbest1 and f(Gbest) = f(Pbest1)

8: for each particle i Є [1…S]

9: if f(Pbesti) < f(Gbest) then

10: F(Gbest) = f(Pbesti)

11: end if

12: end for

13: while t < maximum number of iterations

14: for each particle i Є [1...S]

15: Evaluate its velocity Vid (t+1) using Equation (1)

16: Update the position Xid(t+1) of the particle using Equation

(2)

17: if f(Xi(t+1)) < f(Pbesti) then

18: Pbesti = Xi (t+1)

19: f(Pbesti) = f(Xi(t + 1))

20: end if

21: if f(Pbesti) < f(Gbest) then

22: Gbest = Pbesti

23: f(Gbest) = f(Pbesti)

24: end if

25: end for

26: t = t + 1

27: end while

28: return Gbest

2.1 Advantages of Particle Swarm Optimization Algorithm

There are several meta-heuristic algorithms that have been
used to solve many types of optimization problems. However,
some of these algorithms may have some weaknesses such as
too many parameters, requiring high programming skills,
extremely high computational cost, transmuting to binary
forms and so on [16], [17]. The advantages of PSO can be
summarized into three basic categories. (a) Relative
implementation simplicity. (b) Fewer controlling parameters,
(inertia weight, cognitive ratio, and social ratio). (c) PSO also
is easily hybridized with other optimization algorithms. PSO
equally has a good control of its exploration and exploitation
phases. In exploration, particles carry out extensive search of
the space, while in exploitation, particles focus on promising
regions of the explored space [18].

Having considered the excellent performance of PSO, it is
important to look at some of its weaknesses which can be
improved by new modifications to its variants especially the
inertia weight. The first weakness in PSO is premature
convergence as outlined in literature. Premature convergence
is caused by lack of diversity in population, especially in
complex multimodal functions [15]. In PSO, the convergence
criterion measures the closeness of a particle in the swarm to
reaching the optimal solution in the problem space. Therefore
if the particles converge away from the actual optimum, this is
termed as premature. Premature convergence is also the
downside of its fast convergence speed. Another weakness of
PSO is the difficulty of controlling the parameters [19].
Though it has three parameters only (c1, c2, w), finding
appropriate setting for these parameters at each iteration has
proven difficult. Several methods have been proposed in
literature for controlling the parameters but none guarantees
an optimal setting. Another weakness of PSO is improper
velocity adjustment which occurs when inappropriate values
of the parameter are chosen [20]. This makes the particles fly
in wrong directions, thereby causing stagnation around the
optimum solution.

2.2 Time Complexity Analysis of Particle Swarm

Optimization

The main factors influencing the time complexity of the PSO
algorithm include, the number of particles (swarm size N), the
number of iterations (termination factor I), the dimensionality
of the problem being solved D, and the cost function
complexity C [12], [13]. The swarm size determines the
number of candidate solutions that are evaluated per iteration.
A higher number of particles typically increased the chances
of finding a global optimum but also increases computational
cost. Each particle has its own velocity and position in the

N. E. Udenwagu et al.
International Journal of Theoretical and Applied Mechanics

http://www.iaras.org/iaras/journals/ijtam

ISSN: 2367-8992 2 Volume 9, 2025

solution space. The number iterations directly affect the time
complexity, as each iteration evaluates the entire swarm. It
defines how long the PSO will run and how many times the
particle positions will be updated. This parameter can be set
based on the convergence criteria (such as fixed number of
iteration or when a solution is found). Larger iteration counts
improve the chance of convergence but lead to higher
computation time. PSO can stop early if convergence occurs,
but in worst-case scenarios, all iterations are needed,
contributing to the time complexity.

The dimensionality is the number of variables or parameters in
the problem space, which influences how much work is done
when calculating new positions and velocities [21]. Each
particle exists in a D-dimensional space where D represents
the number of variables in the optimization problem. Each
particle must update its position and velocity in all
dimensions. High-dimensional problems increase the
complexity since each particle needs to adjust its position in
each dimension at every iteration. For example, if you have
10-dimensional optimization problem, every particle needs to
update its position in each of the 10 dimensions, in each
iteration. The cost function is the complexity of evaluating the
fitness function for a single particle, which can be significant
especially in the case of multi-objective optimization and
therefore is problem-specific. This is usually the most
computationally expensive part of PSO [22]. For each particle
in every iteration, the algorithm has to calculate the fitness of
the current position. The complexity of the fitness evaluation
function depends entirely on the specific problem being
solved. If evaluating the fitness function is computationally
expensive, for example non-linear functions or functions
requiring complex mathematical operations, it will dominate
the time complexity of PSO.

Considering these factors, the average overall time complexity
T of PSO can be expressed as shown in equation 1.

 (1)

Where N is the number of particles (swarm size), I is the
number of iterations, D is the dimensionality of the problem
and C is the complexity of evaluating the fitness function. In
general, PSO is considered as efficient algorithm. However, as
C grows in complexity, for example in cases of
computationally intensive inertia weight and constriction
factor strategies, the overall runtime can increase significantly.

3. Different Inertia Weight Strategies in

PSO

In Particle Swarm Optimization (PSO), inertia weight is a
crucial factor that controls the trade-off between exploration
(global search) and exploitation (local search) abilities of the
algorithm [4]. Various strategies for adjusting the inertia
weight have been developed to improve the performance of
PSO, with each strategy aimed at achieving a balance between
exploration and exploitation. The choice of strategy largely
depends on the nature of the optimization problem, desired
convergence speed, and complexity. The key is finding a
balance between exploration and exploitation while keeping
the computational complexity the barest minimum. Some
inertia weight strategies are commonly used in many
optimization problems, while some advanced techniques and
hybrid methods have been proposed to further enhance PSO’s
performance [23]. These advanced strategies are often tailored
to specific problems or used in combination with other
mechanisms to increase the algorithm’s adaptability. In this
section, the different inertia weights presented in literature are
analyzed in the light of their computational time cost and also
summarized in table 1.

3.1 Constant Inertia Weight (CIW)

In this strategy, the inertia weight is kept constant throughout
the entire optimization process.
It is simple to implement, however, a fixed value might not be
ideal for all stages of the optimization process. It can result in
poor convergence behavior (either too much exploration or
premature convergence). Constant inertia weight was first
introduced into PSO by Shi and Ebernart in 1998 with values
between 0.8 and 1.2 as shown in equation 6, [4]. They
concluded that inertia weight values outside the range of [0.8,
1.2] may not yield the optimal result. Since then other
researchers have developed different variants of the constant
inertia weight. In [24] a constant inertia weight of value 0.85
(equation 7), was used to improve the convergence capacity of
multi-objective PSO in conjunction with some other nature-
inspired algorithms, for green mobility in electric vehicle
charging. They used a MOPSO algorithm with a constant
inertia weight to tackle the challenge of simultaneous
optimization of conflicting objectives such as minimizing
costs, maximizing energy production, and reducing
environmental impact. The equations for the two studies are
represented in equations 2 and 3. Due to its simplicity,
constant inertia weight incurs negligible computational cost on
the algorithm because it consists only of one assignment
statement per iteration

 (2)

 (3)

Where ω = Inertia weight

3.2 Linearly Decreasing Inertia Weight (LDIW)

This inertia weight is decreased linearly over time, starting
with a high value, encouraging exploration at the beginning,

N. E. Udenwagu et al.
International Journal of Theoretical and Applied Mechanics

http://www.iaras.org/iaras/journals/ijtam

ISSN: 2367-8992 3 Volume 9, 2025

and decreases to a smaller value, encouraging exploitation as
the algorithm progresses. It helps maintain a balance between
exploration in the early stages and exploitation in the later
stages. It might not be flexible enough to adapt to the
problem’s complexity. In [6], a linearly decreasing inertia
weight was proposed as shown in equation 4. The algorithm
performed best where ω1 is larger than ω2 thereby decreasing
the inertia weight slowly as the iteration progresses. In their
experiments the parameters were set as ω1 = 0.9, ω2 = 0.4, Tmax
= 300 and α = 2. In [25] a linear decreasing inertia weight was
implemented combined with a chaotic inertia weight. Their
variant of LDIW is shown in equation 5. The two inertia
weights were diffused into one by finding a common lowest
denominator for each equation. This strategy was also
implemented in the study [26].

 (4)

Where ω(t) is the inertia weight related to the number of
iterations, ω1 is the initial inertia weight, ω2 is the maximum
inertia weight, t is the current number of iterations, Tmax is the

maximum number of iterations, α is the exponential
coefficient.

 (5)

Where ωl is the current inertia weight, ωmax is the maximum
inertia weight, ωmin is the minimum inertia weight Imax is the
maximum iteration and t is the current iteration.
In most cases, the complexity of LDIW consists of simple
assignment statement and normal arithmetic operations such
as addition, division and subtractions. However, in some
variants such as [6], a complex exponential factor is
introduced which significantly increases the computation
overhead of the algorithm as the number of iteration increases.

3.3 Nonlinear Decreasing Inertia Weight (NDIW)

In this strategy, the inertia weight decreases nonlinearly (e.g.,
exponentially, logarithmically) over time. The nonlinear decay
allows for more flexibility than the linear approach. It
provides more fine-grained control over the exploration-
exploitation trade-off, but may require tuning of decay
parameters. In [27] a non-linear decreasing inertia weight was
proposed as shown in equation 6. In their study, the velocity
formula was modified by using time varying inertia weight,
social and cognitive variables. Another non-linear strategy
was implemented in [7] as shown in equation 7. The strategy
was defined based on the best global position, the best fitness,
the minimal fitness and the current iteration.

 (6)

Where ωmin is the minimum inertia weight = 0.4, ωmax is the
maximum inertia weight = 0.9, kmax is the maximum iteration,
β is the exponential coefficient = 0.4.

 (7)

where gb is the best position found in the entire swarm, fmax is
maximal fitness in the current iteration and fmin is the minimal
fitness value in the current iteration respectively. Parameter fr
is the randomly generated number in the range [0,1]. The time
complexity of NDIW is similar to that of LDIW. However, in
NDIW the non-linear factor is amplified by the extra
arithmetic operator in each iteration. For example, in [7], the
inverse function of global best and the minimal fitness adds
extra complexity to the algorithm.

3.4 Random Inertia Weight (RIW)

This this strategy, the inertia weight is chosen randomly
within a predefined range. This adds stochasticity, which can
help avoid local minima and enhance exploration, but may
lead to unstable or erratic behavior without proper tuning. In
[28] a random inertia weight was proposed where N(0,1)
obeys the standard state distribution as shown in equation 8.

 (8)

Where µmax is set = 0.8, µmin = 0.4 and σ = 0.8.

In another study [8], a stochastic inertia weight was proposed
as given in equation 9, where ωmin is the minimum inertia
weight = 0.4, ωmax is the maximum inertia weight = 0.9, k is
the current iteration and Tmiax is maximum iteration, rb is a
random number in the interval range (-0.1,0.1).

 (9)

The complexity of random inertia weight strategy consists of
basic arithmetic operations in combination with a random
operator and complex exponential operator. For example in
[8], the complex exponential factor erb is combined with the
division of current iteration k and maximum iteration Tmax

3.5 Adaptive Inertia Weight (AIW)

In the adaptive strategy, the inertia weight is adjusted
dynamically based on the performance of the particles or other
indicators such as velocity or fitness. It is more adaptive to
different optimization stages and problem complexities.
However, it is more complex to implement and requires
careful design.
For example, if the particles are not improving, the inertia
weight may be increased to encourage exploration, or
decreased if the particles are showing good convergence. In
[29] a Bayesian method was used to design an adaptive inertia
weight, where the weight could change according to the initial
position of particle. However, the Bayesian approach has a
drawback of local optima which was solved using a mutation
operation. In [30] a stability-based adaptive inertia weight
(SAIW) was also introduced. In order to adjust the inertia
weight for each particle, feedback from the particle is used,
based on the fact that the particle’s performance is memorized.
The value of inertia weight is considered different for each

N. E. Udenwagu et al.
International Journal of Theoretical and Applied Mechanics

http://www.iaras.org/iaras/journals/ijtam

ISSN: 2367-8992 4 Volume 9, 2025

dimension, so that the convergence speed increases, especially
in asymmetric environments. The value of the inertia weight
in each dimension is used to compute the acceleration
coefficients adaptively.
In [9], the inertia weight value determines the speed of the
search particles during each iteration which is directly related
to the adaptive values of the current iteration number.
Therefore the adaptive weight is calculated as shown in
equation 10 – 13.

 (10)

 (11)

 (12)

 (13)

Where tmax is the maximum iteration number and t is the
current iteration. ω0 is the starting inertia weight. fi is the
current fitness value of the ith particle, favg is the average
fitness value of the whole group, fmax is the best adaptive value
and fmin is the worst adaptive value of a particle at iteration t.
In [31] an adaptive inertia weight strategy was proposed where
the inertia weight is updated by the global best value and the
exponential function of the current value as in equations 15
and 16. For each iteration, if the relative difference between
the current w value and the global optimal value is large, the
inertia weight increases, and vice versa. Other adaptive inertia
weight strategies include [32], [33], [34].

 (14)

 (15)

Where t is the current number of iteration and wstart and wend
are the starting and ending inertia weight respectively. The
adaptive inertia weight strategies consist of several complex
arithmetic operations. For example, in [31], the velocity
update in each iteration contains complex exponential factors
of global best and previous position. It also includes the
exponentiation of the sum of starting and ending inertia
weights. These complex operations impose significant level of
computational complexity on the algorithm.

3.6 Chaotic Inertia Weight (CHIW)

This approach utilizes chaotic sequences to adjust the inertia
weight. Chaotic sequences provide randomness but are
deterministic and can help avoid stagnation in optimization. It
combines deterministic and random behaviors, helping to
explore and exploit the search space more effectively. It
requires careful selection of chaotic maps and parameters. In
[11] a chaotic inertia weight was proposed to integrate the
fitness based dynamic inertia weight with velocity update as

shown in equation 16. Other studies on chaotic inertia weight
include [25],

 (16)

Where:

fi = Fitness of the ith particle
fbest = Fitness of global best particle

3.7 Time-Varying Inertia Weight (TVIW)

In this strategy, the inertia weight varies based on time or
iteration, often through pre-designed schedules. It provides a
smooth transition between exploration and exploitation
phases, but may require tuning of the schedule. A time varying
inertia weight was proposed in [10] which is a modification of
adaptive inertia weigh, SAIW. However, the proposed inertia
weight decreases faster that the SAIW and is shown in
equation 17.

 (17)

Where ωmax is the maximum inertia weight, ωmax is the
minimum inertia weight and t is the current iteration.

3.8 Exponential Inertia Weight (EIW)

In this strategy, the inertia weight follows a quadratic or
polynomial function rather than a linear one. This gives more
flexibility in controlling the rate at which inertia weight
decreases. It has more control over the speed of inertia weight
decay, allowing for gradual or steep transitions between
exploration and exploitation, but requires parameter tuning for
the polynomial degree and coefficients. In [5], a quadratic
inertia weigh was proposed in which ω decreased from higher
value initially for greater exploration and then tends to be
constant throughout the middle range of iterations. This
strategy is shown in equation 18 - 20.

 (18)

 (19)

Where the starting inertia weight ω is set as 0.7 and the ending
is 0.4. The maxiter is the maximum number of iterations set as
200 and r is the increment variable starting from
the value 0 to maxiter. k is the profile variable set =15. In [35],
the authors proposed a natural exponential (base e) inertia
weight strategy as expressed in equation 24. It is assumed that
ωstart is = 0.9, ωend is = 0., Tmax is fixed at 3000. Other
similar inertia weight strategies were proposed in [23] and
[36].

 (20)

N. E. Udenwagu et al.
International Journal of Theoretical and Applied Mechanics

http://www.iaras.org/iaras/journals/ijtam

ISSN: 2367-8992 5 Volume 9, 2025

Table I

Summary of Different Inertia Weight Strategies

NAME REF

VALUE (EQUATION)

Constant inertia weight

[4] ω= [0.8,1.2]

[24] ω= [0.85]

Linearly decreasing
inertia weight

[6]

[25]

Nonlinear decreasing
inertia weight

[27] (10)
[7]

Random inertia weight

[28]

[8]

Adaptive inertia weight

[9]

[31]

Time-varying inertia
weight

[10]

Chaotic inertia weight [11]

Exponential inertia
weight

[5]
[35] (22)

4. The Experiments

4.1 Simulation Environment

To compare the computational time of different inertia
weight strategies, the PSO algorithm was implemented

in Cloudsim simulation environment. Cloudsim is an
open source cloud simulation tool specifically designed
to model and analyze the performance of cloud
computing environment [37]. It is a software framework
based on Java programming language that allows
researchers, cloud service providers, and cloud users to
simulate and evaluate various aspects of cloud systems.
The main purpose of Cloudsim is to assist in

understanding the behavior and performance
characteristics of cloud computing systems under

different conditions. It helps users assess the impact of
various factors such as workload patterns, resource
allocation, strategies, scheduling policies, and system
configurations on the performance and efficiency of
cloud deployments [38]. The experiments were carried
out in a computer with the following configuration: OS
– Windows 10 (x64), Intel® Core™ i5-4210U CPU,
1.70GHz, 2.40GHz. RAM – 6GB

4.2 Parameter Settings

The PSO algorithm parameters in this study are selected
uniformly for all inertia weight strategies examined.
This is to ensure a fair comparison between the
strategies. The population sized is selected as 1,000,

N. E. Udenwagu et al.
International Journal of Theoretical and Applied Mechanics

http://www.iaras.org/iaras/journals/ijtam

ISSN: 2367-8992 6 Volume 9, 2025

while c1 = c2 = 2. r1 is a random number between [0,1],
r2 is also a random number between [0,11] but selected
independent of r1. Each experiment was executed 15
times (15 cycles), and each cycle contains 805 loops of
100 iterations. Eight inertia weight strategies were used
for the actual experiments as listed in table 2. Each
equation was encoded and implemented separately in
PSO algorithm to run the experiments and the results
recorded for comparison.

4.3 Objective Function

In this study, the PSO algorithm was implemented to
optimize one objective function which is task execution
time (TET) by scheduling incoming tasks to available
virtual machines in cloud computing infrastructure. The
mathematical model of TET is shown in equations 21
and 22. The first metric examined is the task execution
rate of each virtual machine, which can be expressed as
a function of the virtual machine speed and the number
of CPU in the virtual machine [17]. This metric is part
of the task execution time as shown in equation 22.

 (21)

Where Rj is thhe task execution rate of the jth virtual
machine, Sj is the speed of the the jth virtual machine,
and Cj = The number of CPU in the the jth virtual
machine.
The task execution time (TET) is the amount of time
expended in executing a single task on a given virtual
machine [39]. It is a function of the task length and the
rate of execution of the virtual machine as shown in
equation 22. This objective functions is to be
minimized.

 (22)

Where, TETij is the time taken to execute task i on
virtual machine j, TLi is the length of task i, and Rj is the
task execution rate of virtual machine j.

Table II

Inertia Weight Strategies Used in Actual Experiments

SN NAME VALUE (EQUATION) REF

SETTING

1 CIW ω= [0.85] [24] ω = 0.85
2 LDIW [6] ω1 = 0.9, ω2 = 0.4, Tmax =

100 and α = 2.

3 NDIW [27] ωmin 0.4, ωmax =0.9, β=0.4

4 RIW [8] ωmin = 0.4, ωmax = 0.9, rb =

rand(0,1).

5 AIW

[31] ωstart 0.9, ωend =0.4,

6 CHIW

[11] fi = ith fitness
fbest = global best

7 TVIW [10] ωmin 0.4, ωmax =0.9

8 EIW

[5] ωstart = 0.9, ωend = 0.4,
maxiter = 100,
k = 15

N. E. Udenwagu et al.
International Journal of Theoretical and Applied Mechanics

http://www.iaras.org/iaras/journals/ijtam

ISSN: 2367-8992 7 Volume 9, 2025

5. Discussion of Results

This study analyzed thirteen different inertia weight
strategies grouped into eight categories. However, eight
of them were selected, one from each category for
comparative analysis. These include, constant inertia
weight [24], linear decreasing inertia weight [6],
nonlinear decreasing inertia weight [27], random inertia
weight [8], adaptive inertia weight [31], chaotic inertia
weight [11], time varying inertia weight [10] and
exponential [5] inertia weigh strategies. The strategies
were compared based on computational time cost in
Particle Swarm Optimization (PSO) algorithm.

The results recorded in table 3 represent the actual
runtime of the algorithm for each inertia weight
strategy, measured in microseconds. Each experiment
was carried out 15 times, based on 100 iterations per
cycle, to calculate the average, standard deviation,
minimum and maximum runtime. The average time for
each inertia weight strategy are, CIW = 3611044.09,
LDIW = 3611035.95, NDIW = 3612029.75, RIW =
3612520.84, AIW = 3611539.87, CHIW 3610552.27,
TVIW = 3611035.51 and EIW = 3612524.36. This
represents the average time taken to run the PSO
algorithm for optimizing the task execution time (TET)
in load balancing of a cloud infrastructure. In addition,
the standard deviations for the eight strategies are
3824.25, 3833.25, 3616.09, 3397.32, 3752.70, 3822.45,
3833.74, and 3391.26 respectively.

Considering the line graph in Fig. 1, it indicates that the
CIW first hit the minimum value of 3607044.92 at two
points before a maximum value of 3614500.00 at two
points also. This indicates that the CIW maintained a
regular behavior in time consumption during the entire
experiment. As shown in Fig. 2, the LDIW shows
consistently varying time consumption in all cycles,
going between lowest and highest values of 3607044.92
and respectively. As for NDIW, Fig. 3 indicates an
initial oscillation between a low value of 3607068.42
and high value of 3614500.00, before maintaining a
stable high value. The RIW maintained its high
computations time of 3614500.00 in most cycles,
touching its lowest value 3607044.92 only at the

beginning and once at the middle as shown in Fig. 4.
The AIW stays on either high value or low values
consistently. It does not swing between highs and lows
regularly like RIW. It has its highest value at
3614500.00 and lowest value at 3607048.17 as shown in
Fig. 5. The TVIW showed a similar behavior as the
LDIW and AIW as shown in Fig. 6. This is expected
since a combination of linear decreasing and adaptive
behavior will lead to time varying tendencies. The EIW
as shown in Fig. 7 displays a balance between
continuous high values of 3614500.00 and continuously
oscillating between low values of 3607044.92. Fig. 8
showed that the CHIW maintained its chaotic nature by
not following any regular pattern but moving between
high and low values. Finally, Fig. 9 summarized the
general behavior of the strategies, showing that they all
remained between a certain range of 3607044.92 to
3614500.00 microseconds.

In summary, the chaotic inertia weight strategy has the
lowest computational time followed by time varying
strategy based on the results. The eight inertia weight
strategies can therefore the ranked in descending order
of computational time cost as follows CHIW, TVIW,
LDIW, CIW, AIW, NDIW, RIW, and EIW. The study
in in [40] ranked 6 different inertia weight strategies
based on convergence behavior and concluded that AIW
performed the best. Again the study in in [41] which
compared 15 inertia weight strategies and concluded
that the CHIW strategy recorded the best performance.
In other words, the results in this study show that the
superior computational complexity of CHIW strategy
corresponds with its optimal performance in
convergence as recorded [41].

N. E. Udenwagu et al.
International Journal of Theoretical and Applied Mechanics

http://www.iaras.org/iaras/journals/ijtam

ISSN: 2367-8992 8 Volume 9, 2025

Table III

Results of Actual Computation Time for Different Inertia Weight Strategies

Cycle CIW LDIW NDIW RIW AIW CHIW TVIW EIW

1 3614500.00 3614500.00 3614500.00 3607044.92 3614500.00 3607128.66 3607095.92 3614500.00
2 3607113.71 3607095.92 3614500.00 3614500.00 3614500.00 3614500.00 3607095.92 3614500.00
3 3607068.42 3614500.00 3607095.93 3614500.00 3614500.00 3607044.92 3614500.00 3614500.00
4 3607044.92 3614500.00 3607099.74 3614500.00 3614500.00 3607123.49 3614500.00 3614500.00
5 3607095.93 3607044.92 3614500.00 3614500.00 3607123.50 3607123.49 3614500.00 3614500.00
6 3614500.00 3607095.64 3607113.71 3614500.00 3607113.71 3614500.00 3607048.17 3607048.17
7 3614500.00 3614500.00 3614500.00 3607048.17 3607048.17 3614500.00 3607128.66 3614500.00
8 3614500.00 3614500.00 3614500.00 3614500.00 3607113.71 3607048.17 3614500.00 3607123.49
9 3607095.93 3614500.00 3614500.00 3614500.00 3614500.00 3607123.49 3614500.00 3614500.00
10 3614500.00 3607095.93 3614500.00 3614500.00 3614500.00 3614500.00 3614500.00 3614500.00
11 3614500.00 3614500.00 3607068.42 3607123.50 3614500.00 3614500.00 3607048.17 3614500.00
12 3607128.67 3607044.92 3614500.00 3614500.00 3607070.25 3607095.92 3614500.00 3607123.49
13 3607113.71 3614500.00 3614500.00 3607095.93 3614500.00 3614500.00 3607044.92 3607070.25
14 3614500.00 3607048.17 3607068.42 3614500.00 3614500.00 3614500.00 3614500.00 3614500.00
15 3614500.00 3607113.71 3614500.00 3614500.00 3607128.66 3607095.92 3607070.92 3614500.00
AVG 3611044.09 3611035.95 3612029.75 3612520.84 3611539.87 3610552.27 3611035.51 3612524.36

STD 3824.25 3833.25 3616.09 3397.32 3752.70 3822.45 3833.74 3391.26

MIN 3607044.92 3607044.92 3607068.42 3607044.92 3607048.17 3607044.92 3607044.92 3607048.17

MAX 3614500.00 3614500.00 3614500.00 3614500.00 3614500.00 3614500.00 3614500.00 3614500.00

Fig. 1 Computation time of PSO based on constant
inertia weight

Fig. 2 Computation time of PSO based on linearly
decreasing inertia weight

N. E. Udenwagu et al.
International Journal of Theoretical and Applied Mechanics

http://www.iaras.org/iaras/journals/ijtam

ISSN: 2367-8992 9 Volume 9, 2025

Fig. 3 Computation time of PSO based on nonlinear
decreasing inertia weight

Fig. 4 Computation time of PSO based on random
inertia weight

Fig. 5 Computation time of PSO based on adaptive
inertia weight

Fig. 6 Computation time of PSO based on time varying
inertia weight

Fig. 7 Computation time of PSO based on exponential
inertia weight

Fig. 8 Computation time of PSO based on chaotic
inertia weight

N. E. Udenwagu et al.
International Journal of Theoretical and Applied Mechanics

http://www.iaras.org/iaras/journals/ijtam

ISSN: 2367-8992 10 Volume 9, 2025

Fig. 9 Comparative computation time for PSO based on
different inertia weight strategies

Fig. 10 Comparative computation time for PSO based
on different inertia weight strategies

6. Conclusion

In this study, eight different PSO-based inertia weight
strategies were compared on the basis of their actual
computational time cost. These strategies include,
constant inertia weight (CIW), linearly decreasing
inertia weight (LDIW), nonlinear decreasing inertia
weight (NDIW), random inertia weight (RIW), adaptive
(AIW), chaotic inertia weight (CHIW), time varying
inertia weight (TVIW) and exponential inertia weight
(EIW) strategies. The experiments compared the
strategies by observing the computational runtime of
each algorithm in optimizing the task execution time in
a cloud infrastructure using Cloudsim simulation tool.
In summary, the chaotic inertia weight strategy has the
lowest average runtime of 3610552.27 microseconds,
followed by TVIW = 3611035.51 LDIW = 3611035.95,
CIW = 3611044.09, AIW = 3611539.87, NDIW =
3612029.75, RIW = 3612520.84, and EIW =
3612524.36.

Therefore the inertia weight strategies arranged in
descending order of performance are CHIW, TVIW,

LDIW, CIW, AIW, NDIW, RIW, and EIW. Researchers
seeking to choose from existing variants of PSO and
other swarm based algorithms may find this study
useful. In a future work, it will be important to consider
the impact of different constriction factor strategies on
the performance of Particle Swarm Optimization.

References

[1] J. Kennedy and R. C. Eberhart, “A DISCRETE
BINARY VERSION OF THE PARTICLE
SWARM ALGORITHM,” in 1997 IEEE

International Conference on Systems, Man, and

Cybernetics. Computational Cybernetics and

Simulation, 1997, pp. 4–8.

[2] S. N. Langazane and A. K. Saha, “A
Comparative Review of Current Optimization
Algorithms for Maximizing Overcurrent Relay
Selectivity and Speed,” IEEE Access, vol. 12,
no. March, pp. 53205–53223, 2024, doi:
10.1109/ACCESS.2024.3387704.

[3] R. C. Eberhart and Y. Shi, “Tracking and
optimizing dynamic systems with particle
swarms,” Proc. IEEE Conf. Evol. Comput.

ICEC, vol. 1, pp. 94–100, 2001, doi:
10.1109/cec.2001.934376.

[4] S. Yuhui and E. Russel, “A Modified Particle
Swarm Optimizer,” in 1998 IEEE International

Conference on Evolutionary Computation

Proceedings. IEEE World Congress on

Computational Intelligence, 1998, doi:
10.1109/ICEC.1998.699146.

[5] S. Saxena, “A New Non Linear Inertia Weight
Approach in PSO for Faster Rigid Image
Registration,” 2019 6th Int. Conf. Signal

Process. Integr. Networks, pp. 607–612, 2019.

[6] J. Guan and W. Zhang, “Improved Topological
Optimization Method Based on Particle Swarm
Optimization Algorithm,” IEEE Access, vol. 10,
pp. 52067–52074, 2022, doi:
10.1109/ACCESS.2022.3174602.

[7] B. Borowska, “Nonlinear Inertia Weight in
Particle Swarm Optimization,” in 2017 12th

International Scientific and Technical

Conference on Computer Sciences and

Information Technologies (CSIT), 2017, vol.
729, pp. 5–8, doi: 10.1109/STC-
CSIT.2017.8098790.

N. E. Udenwagu et al.
International Journal of Theoretical and Applied Mechanics

http://www.iaras.org/iaras/journals/ijtam

ISSN: 2367-8992 11 Volume 9, 2025

[8] C. Huang, Y. Zhao, M. Zhang, and H. Yang,
“APSO : An A ∗ -PSO Hybrid Algorithm for
Mobile Robot Path Planning,” IEEE Access,
vol. 11, no. May, pp. 43238–43256, 2023, doi:
10.1109/ACCESS.2023.3272223.

[9] Y. Zhang, Y. Zhao, X. Fu, and J. Xu, “A feature
extraction method of the particle swarm
optimization algorithm based on adaptive inertia
weight and chaos optimization for Brillouin
scattering spectra,” Opt. Commun., vol. 376, pp.
56–66, 2016, doi:
10.1016/j.optcom.2016.04.049.

[10] D. E. Ratnawati, M. Marjono, W. Widodo, and
S. Anam, “PSO-ELM with Time-varying Inertia
Weight for Classification of SMILES Codes,”
Int. J. Intell. Eng. Syst., vol. 13, no. 6, pp. 522–
532, 2020, doi: 10.22266/ijies2020.1231.46.

[11] K. K. Bharti and P. K. Singh, “Opposition
chaotic fitness mutation based adaptive inertia
weight BPSO for feature selection in text
clustering,” Appl. Soft Comput. J., pp. 1–15,
2016, doi: 10.1016/j.asoc.2016.01.019.

[12] J. Qiao, S. Li, M. Liu, Z. Yang, J. Chen, and P.
Liu, “OPEN A modified particle swarm
optimization algorithm for a vehicle scheduling
problem with soft time windows,” Sci. Rep., pp.
1–18, 2023, doi: 10.1038/s41598-023-45543-z.

[13] J. Pepe, B. Mapetu, Z. Chen, and L. Kong,
“Low-time complexity and low-cost binary
particle swarm optimization algorithm for task
scheduling and load balancing in cloud
computing,” Springer Sci., 2019, doi:
/doi.org/10.1007/s10489-019-01448-x Low-
time.

[14] J. Kennedy and R. Eberhart, “Particle Swarm
Optimization,” in Proceedings of ICNN’95 -

International Conference on Neural Networks,
1995, pp. 1942–1948, doi:
10.1109/ICNN.1995.488968.

[15] T. M. Shami, A. A. El-saleh, M. Alswaitti, and
S. Mirjalili, “Particle Swarm Optimization : A
Comprehensive Survey,” IEEE Access, vol. 10,
pp. 10031–10061, 2022, doi:
10.1109/ACCESS.2022.3142859.

[16] T. Shaqarin and B. Noack, “A Fast Converging
Particle Swarm Optimization through,”
Multidiscip. Digit. Publ. Inst., vol. 1, pp. 1–13,
2022.

[17] A. Pradhan and S. K. Bisoy, “A novel load
balancing technique for cloud computing
platform based on PSO,” J. King Saud Univ. -

Comput. Inf. Sci., vol. 34, no. 7, pp. 3988–3995,
2022, doi: 10.1016/j.jksuci.2020.10.016.

[18] D. Saxena and A. K. Singh, “Communication
Cost Aware Resource Efficient Load Balancing
(CARE-LB) Framework for Cloud Datacenter
Communication Cost Aware Resource Efficient
Load Balancing (CARE- LB) Framework for
Cloud Datacenter,” Recent Av. Comput. Sci.

Commun., no. April 2021, 2020, doi:
10.2174/2666255813999200818173107.

[19] T. Alfakih, M. M. Hassan, and M. Al-razgan,
“Multi-Objective Accelerated Particle Swarm
Optimization With Dynamic Programing
Technique for Resource Allocation in Mobile
Edge Computing,” IEEE Access, vol. 9, pp.
167503–167520, 2021, doi:
10.1109/ACCESS.2021.3134941.

[20] A. G. Gad, Particle Swarm Optimization

Algorithm and Its Applications : A Systematic

Review, vol. 29, no. 5. Springer Netherlands,
2022.

[21] X. Zhang and D. Zou, “A Novel Simple Particle
Swarm Optimization Algorithm for Global
Optimization,” MDPI Math., 2018, doi:
10.3390/math6120287.

[22] E. Algorithms, M. K. Kakkar, and J. Singla,
“Performance comparison of genetic algorithms
and particle swarm optimization for model
integer programming bus timetabling problem
Performance comparison of genetic algorithms
and particle swarm optimization for model
integer programming bus timetabling p,” in IOP

Conference Series: Materials Science and

Engineering, 2018, doi: 10.1088/1757-
899X/332/1/012020.

[23] H. T. Liang and F. H. Kang, “Adaptive
Mutation Particle Swarm Algorithm with
Dynamic Nonlinear Changed Inertia Weight,”
Opt. - Int. J. Light Electron Opt., 2016, doi:
10.1016/j.ijleo.2016.06.002.

[24] S. Barakat, A. I. Osman, E. Tag-eldin, A. A.
Telba, H. M. Abdel, and M. M. Samy,
“Achieving green mobility : Multi-objective
optimization for sustainable electric vehicle
charging,” Energy Strateg. Rev., vol. 53, no.
December 2023, p. 101351, 2024, doi:
10.1016/j.esr.2024.101351.

N. E. Udenwagu et al.
International Journal of Theoretical and Applied Mechanics

http://www.iaras.org/iaras/journals/ijtam

ISSN: 2367-8992 12 Volume 9, 2025

[25] T. B. Nkwanyana and Z. Wang, “Improved
Particle Swarm Optimization Base on the
Combination of Linear Decreasing and Chaotic
Inertia Weights,” in 12th International

Conference on Computational Intelligence and

Communication Networks, 2021, no. 1, pp. 460–
465, doi: 10.1109/CICN.2020.82.

[26] P. Aksornsri and S. Wongsa, “Valve Stiction
Quantification using Particle Swarm
Optimisation with Linear Decrease Inertia
Weight,” in 2016 13th International Conference

on Electrical Engineering/Electronics,

Computer, Telecommunications and

Information Technology (ECTI-CON), 2016, pp.
0–5.

[27] R. Grewal, “Modified Pso Algorithm With Non-
Linearly Decreasing Inertia Weight,” Int. J. Res.

Inf. Sci. Appl. Tech., vol. 5, no. 8, pp. 21586–
215815, 2021, doi: 10.46828/ocpu/ijrisat/21586.

[28] M. Lin, Z. Wang, and F. Wang, “Hybrid
Differential Evolution and Particle Swarm
Optimization Algorithm Based on Random
Inertia Weight,” IEEE, pp. 411–414, 2019.

[29] L. Zhang, Y. Tang, C. Hua, and X. Guan, “A
new particle swarm optimization algorithm with
adaptive inertia weight based on Bayesian
techniques,” Appl. Soft Comput. J., vol. 28, pp.
138–149, 2015, doi:
10.1016/j.asoc.2014.11.018.

[30] M. Taherkhani and R. Safabakhsh, “A novel
stability-based adaptive inertia weight for
particle swarm optimization,” Appl. Soft

Comput. J., pp. 1–15, 2015, doi:
10.1016/j.asoc.2015.10.004.

[31] X. Gu, M. Huang, and X. U. Liang, “A Discrete
Particle Swarm Optimization Algorithm With
Adaptive Inertia Weight for Solving
Multiobjective Flexible Job-shop Scheduling
Problem,” IEEE Access, vol. 8, pp. 33125–
33136, 2020, doi:
10.1109/ACCESS.2020.2974014.

[32] Y. Shi, “Optimization of PID Parameters of
Hydroelectric Generator Based on Adaptive
Inertia Weight PSO,” in IEEE 8th Joint

International Information Technology and

Artificial Intelligence Conference (ITAIC 2019),
2019, no. Itaic, pp. 1854–1857.

[33] A. K. Shukla, P. Singh, and M. Vardhan, “An
adaptive inertia weight teaching-learning-based

optimization algorithm and its applications,”
Elsevier, vol. 77, pp. 309–326, 2020, doi:
10.1016/j.apm.2019.07.046.

[34] T. S. Li and P. Kuo, “Intelligent Control
Strategy for Robotic Arm by Using Adaptive
Inertia Weight and Acceleration Coefficients
Particle Swarm Optimization,” IEEE Access,
vol. 7, pp. 126929–126940, 2019, doi:
10.1109/ACCESS.2019.2939050.

[35] C. Guimin, M. Zhengfeng, J. Jianyuan, and X.
Huang, “Self-active inertia weight strategy in
particle swarm optimization algorithm,” Proc.

World Congr. Intell. Control Autom., vol. 1, no.
2002, pp. 3686–3689, 2006, doi:
10.1109/WCICA.2006.1713058.

[36] C. Yang, W. Gao, N. Liu, and C. Song, “Low-
discrepancy sequence initialized particle swarm
optimization algorithm with high-order
nonlinear time-varying inertia weight,” Appl.

Soft Comput. J., vol. 29, pp. 386–394, 2015,
doi: 10.1016/j.asoc.2015.01.004.

[37] R. Swathy, B. Vinayagasundaram, G. Rajesh,
and A. Nayyar, “Game theoretical approach for
load balancing using SGMLB model in cloud
environment,” PLoS One, pp. 1–22, 2020, doi:
10.1371/journal.pone.0231708.

[38] F. T. Johora, I. Ahmed, A. I. Shajal, and R.
Chowdhory, “A load balancing strategy for
reducing data loss risk on cloud using
remodified throttled algorithm,” Int. J. Electr.

Comput. Eng., vol. 12, no. 3, pp. 3217–3225,
2022, doi: 10.11591/ijece.v12i3.pp3217-3225.

[39] E. S. Alkayal, N. R. Jennings, and M. F.
Abulkhair, “Efficient Task Scheduling Multi-
Objective Particle Swarm Optimization in
Cloud Computing,” Proc. - Conf. Local

Comput. Networks, LCN, pp. 17–24, 2016, doi:
10.1109/LCN.2016.024.

[40] J. Chrouta, F. Farhani, A. Zaafouri, and M.
Jemli, “Comparing inertia weights in Multi-
swarm Particle Swarm Optimization,” IEEE

Xplore, pp. 278–283, 2019.

[41] J. C. Bansal, P. K. Singh, M. Saraswat, A.
Verma, S. S. Jadon, and A. Abraham, “Inertia
Weight Strategies in Particle Swarm
Optimization,” IEEE, pp. 633–640, 2011.

N. E. Udenwagu et al.
International Journal of Theoretical and Applied Mechanics

http://www.iaras.org/iaras/journals/ijtam

ISSN: 2367-8992 13 Volume 9, 2025

