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Abstract: - The particle swarm optimization (PSO) algorithm is attracting a lot of research attention due to its superior 
performance over other swarm-based algorithms. However, one of the major challenges facing PSO is the tendency to fall into 
local optima, which is known as premature convergence. The inertia weight variable was introduced into PSO to solve this 
problem by balancing the relationship between exploration and exploitation stages in swarm activity within a given search space. 
Many studies have proposed different inertia weight strategies to improve on convergence performance of PSO including, 
Constant Inertia Weight (CIW), Linearly Decreasing Inertia Weight (LDIW), Exponential Inertia Weight (EIW), Chaotic Inertia 
Weight (CHIW), Nonlinear Decreasing Inertia Weight (NDIW), Adaptive Inertia Weight (AIW), Random Inertia Weight (RIW) 
and Time Varying Inertia Weight (TVIW). However, these strategies have also introduced varying levels of computational 
complexities into the PSO algorithm. This study compares eight different inertia weight strategies based on their computational 
time cost, in order to propose the most efficient strategy. The experiments were carried out using PSO implementation in a 
Cloudsim simulation environment based on actual computational runtime of each inertia weight strategy. In summary, the 
chaotic inertia weight strategy has the lowest average runtime of 3610552.27 microseconds, followed by TVIW = 3611035.51 
LDIW = 3611035.95, CIW = 3611044.09, AIW = 3611539.87, NDIW = 3612029.75, RIW = 3612520.84, and EIW = 
3612524.36. 
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1. Introduction 

Particle Swarm Optimization (PSO) is a swarm-based search 
algorithm first introduced by Ebernart and Kennedy in 1995 
[1]. Compared to other nature inspired optimization 
algorithms, PSO has proven to be more efficient and easier to 
implement due to its smaller number of parameters [2]. Its 
performance is largely dependent on selection and tuning of its 
parameters such as the inertia weight.  
In a population-based swarm intelligence algorithms like PSO, 
exploration and exploitation are the two important search 
stages. The balance between these two stages will yield the 
best results and achieve maximum efficiency. Inertia weight 
(ω) in PSO is a critical parameter that controls this balance in 
the search space. It determines how much of the particle’s 
previous velocity will be retained in the next iteration. 
Choosing an appropriate inertia weight is crucial for the 
performance of PSO to prevent it from converging 
prematurely. When the inertia weight is large, the algorithm 
tends towards a global search while a smaller inertia weight 
tends more to a local search [2]. Inertia weight was first 
introduced by Shi and Ebernart [3] to improve on population 
diversity and balance in PSO. Different inertia weight 
strategies have been proposed in existing literature to solve 
this problem of premature convergence including constant 
inertia weight (CIW) [4], exponential inertia weight (EIW) 
[5], linearly decreasing inertia weight (LDIW) [6], nonlinear 
decreasing inertia weight (NDIW) [7], random inertia weight 
(RIW) [8], adaptive inertia weight (AIW) [9], time varying 
inertia weight (TVIW) [10] and chaotic inertia weight (CHIW) 
[11]. These different strategies have introduced varying levels 

of improvement along with their computational complexities 
into PSO as investigated in this study. 
The computational time cost of an algorithm also referred to 
as time complexity, describes how the runtime of an algorithm 
increases with the size of its input [12]. It provides a high-
level measure of the efficiency of an algorithm and is typically 
expressed using Big-O notation. The time cost of an algorithm 
depends on factors such as, input size (n), the number of basic 
operations, best, average and worst case scenarios [13]. In this 
study, the time complexity of each inertia weight strategy was 
observed and compared based on the actual computational 
time cost of executing the PSO algorithm. The rest of this 
study is organized as follows: Section 2 is a brief review of the 
characteristics of PSO, section 3 explains the different inertia 
weight strategies and their time complexities as presented in 
literature. Section 4 presents the experiments to compare 
different strategies, while section 5 discusses the experimental 
results. Finally, the last section presents the conclusion. 
 
2. Basic Concepts of Particle Swarm 

Optimization 

The first version of PSO is generally referred to as standard 
PSO (SPSO) [14]. Standard PSO contains a swarm of particles 
moving in a D-dimensional search space in order to locate an 
optimal solution. Each particle i, has a current velocity vector 
Vi = [vi1, vi2, …, viD] and a current position vector Xi = [xi1, 

xi2, …, xiD], where D is the number of dimensions. In the 
SPSO, the Vi and Xi are first randomly initialized. Then in 
consecutive iterations, Pbesti which is the best position found 
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by particle i, is represented as Pbesti = [Pbesti1, Pesti2, …, 

PbestiD] and the best position found by the whole swarm 
Gbest = [Gbest1, Gbest2, … , GbestD]. Both the local position 
and the global position are therefore used as a guide in 
updating the velocity and position of each particle as shown in 
equations 1 and 2 [15]. 

     (1) 

    
             (2) 

Where ω is the inertia weight, which determines to what 
extent the previous velocity of a particle is preserved, c1 is the 
cognitive acceleration coefficient, c2 is the social acceleration 
coefficient, both of which are positive constants, r1 and r2 are 
the two uniform random values generated within the range 
[0,1]. The pseudo-code for solving a minimization 
optimization problem, using standard PSO is shown in 
Algorithm 1. 

Algorithm 1: Standard PSO pseudo code for minimization 

optimization [15] 

1: Initialization 

2: Define the swarm size S and the number of dimensions D 

3: for each particle i Є [1…S] 

4: Randomly generate Xi and Vi, and evaluate the fitness of Xi 

denoting it as f(Xi) 

5: Set Pbesti = Xi and f(Pbesti) = f(Xi) 

6: end for 

7: Set Gbest = Pbest1 and f(Gbest) = f(Pbest1) 

8: for each particle i Є [1…S] 

9:  if f(Pbesti) < f(Gbest) then 

10:  F(Gbest) = f(Pbesti) 

11: end if 

12: end for 

13: while t < maximum number of iterations 

14: for each particle i Є [1...S] 

15: Evaluate its velocity Vid (t+1) using Equation (1) 

16: Update the position Xid(t+1) of the particle using Equation 

(2) 

17: if f(Xi(t+1)) < f(Pbesti) then 

18:  Pbesti = Xi (t+1) 

19: f(Pbesti) = f(Xi(t + 1)) 

20: end if 

21: if f(Pbesti) < f(Gbest) then 

22: Gbest = Pbesti 

23: f(Gbest) = f(Pbesti) 

24: end if 

25: end for 

26: t = t + 1 

27: end while 

28: return Gbest 

 

 
2.1 Advantages of Particle Swarm Optimization Algorithm 

There are several meta-heuristic algorithms that have been 
used to solve many types of optimization problems. However, 
some of these algorithms may have some weaknesses such as 
too many parameters, requiring high programming skills, 
extremely high computational cost, transmuting to binary 
forms and so on [16], [17]. The advantages of PSO can be 
summarized into three basic categories. (a) Relative 
implementation simplicity. (b) Fewer controlling parameters, 
(inertia weight, cognitive ratio, and social ratio). (c) PSO also 
is easily hybridized with other optimization algorithms. PSO 
equally has a good control of its exploration and exploitation 
phases. In exploration, particles carry out extensive search of 
the space, while in exploitation, particles focus on promising 
regions of the explored space [18].  

Having considered the excellent performance of PSO, it is 
important to look at some of its weaknesses which can be 
improved by new modifications to its variants especially the 
inertia weight. The first weakness in PSO is premature 
convergence as outlined in literature. Premature convergence 
is caused by lack of diversity in population, especially in 
complex multimodal functions [15]. In PSO, the convergence 
criterion measures the closeness of a particle in the swarm to 
reaching the optimal solution in the problem space. Therefore 
if the particles converge away from the actual optimum, this is 
termed as premature. Premature convergence is also the 
downside of its fast convergence speed. Another weakness of 
PSO is the difficulty of controlling the parameters [19]. 
Though it has three parameters only (c1, c2, w), finding 
appropriate setting for these parameters at each iteration has 
proven difficult. Several methods have been proposed in 
literature for controlling the parameters but none guarantees 
an optimal setting. Another weakness of PSO is improper 
velocity adjustment which occurs when inappropriate values 
of the parameter are chosen [20]. This makes the particles fly 
in wrong directions, thereby causing stagnation around the 
optimum solution. 

2.2 Time Complexity Analysis of Particle Swarm 

Optimization 

The main factors influencing the time complexity of the PSO 
algorithm include, the number of particles (swarm size N), the 
number of iterations (termination factor I), the dimensionality 
of the problem being solved D, and the cost function 
complexity C [12], [13]. The swarm size determines the 
number of candidate solutions that are evaluated per iteration. 
A higher number of particles typically increased the chances 
of finding a global optimum but also increases computational 
cost. Each particle has its own velocity and position in the 
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solution space. The number iterations directly affect the time 
complexity, as each iteration evaluates the entire swarm. It 
defines how long the PSO will run and how many times the 
particle positions will be updated. This parameter can be set 
based on the convergence criteria (such as fixed number of 
iteration or when a solution is found). Larger iteration counts 
improve the chance of convergence but lead to higher 
computation time. PSO can stop early if convergence occurs, 
but in worst-case scenarios, all iterations are needed, 
contributing to the time complexity. 

The dimensionality is the number of variables or parameters in 
the problem space, which influences how much work is done 
when calculating new positions and velocities [21]. Each 
particle exists in a D-dimensional space where D represents 
the number of variables in the optimization problem. Each 
particle must update its position and velocity in all 
dimensions. High-dimensional problems increase the 
complexity since each particle needs to adjust its position in 
each dimension at every iteration. For example, if you have 
10-dimensional optimization problem, every particle needs to 
update its position in each of the 10 dimensions, in each 
iteration. The cost function is the complexity of evaluating the 
fitness function for a single particle, which can be significant 
especially in the case of multi-objective optimization and 
therefore is problem-specific. This is usually the most 
computationally expensive part of PSO [22]. For each particle 
in every iteration, the algorithm has to calculate the fitness of 
the current position. The complexity of the fitness evaluation 
function depends entirely on the specific problem being 
solved. If evaluating the fitness function is computationally 
expensive, for example non-linear functions or functions 
requiring complex mathematical operations, it will dominate 
the time complexity of PSO. 

Considering these factors, the average overall time complexity 
T of PSO can be expressed as shown in equation 1. 

  (1) 
 

Where N is the number of particles (swarm size), I is the 
number of iterations, D is the dimensionality of the problem 
and C is the complexity of evaluating the fitness function. In 
general, PSO is considered as efficient algorithm. However, as 
C grows in complexity, for example in cases of 
computationally intensive inertia weight and constriction 
factor strategies, the overall runtime can increase significantly. 

 

 

 

3. Different Inertia Weight Strategies in 

PSO 

In Particle Swarm Optimization (PSO), inertia weight is a 
crucial factor that controls the trade-off between exploration 
(global search) and exploitation (local search) abilities of the 
algorithm [4]. Various strategies for adjusting the inertia 
weight have been developed to improve the performance of 
PSO, with each strategy aimed at achieving a balance between 
exploration and exploitation. The choice of strategy largely 
depends on the nature of the optimization problem, desired 
convergence speed, and complexity. The key is finding a 
balance between exploration and exploitation while keeping 
the computational complexity the barest minimum. Some 
inertia weight strategies are commonly used in many 
optimization problems, while some advanced techniques and 
hybrid methods have been proposed to further enhance PSO’s 
performance [23]. These advanced strategies are often tailored 
to specific problems or used in combination with other 
mechanisms to increase the algorithm’s adaptability. In this 
section, the different inertia weights presented in literature are 
analyzed in the light of their computational time cost and also 
summarized in table 1.  
 
3.1 Constant Inertia Weight (CIW) 

In this strategy, the inertia weight is kept constant throughout 
the entire optimization process. 
It is simple to implement, however, a fixed value might not be 
ideal for all stages of the optimization process. It can result in 
poor convergence behavior (either too much exploration or 
premature convergence).  Constant inertia weight was first 
introduced into PSO by Shi and Ebernart in 1998 with values 
between 0.8 and 1.2 as shown in equation 6, [4]. They 
concluded that inertia weight values outside the range of [0.8, 
1.2] may not yield the optimal result. Since then other 
researchers have developed different variants of the constant 
inertia weight. In [24] a constant inertia weight of value 0.85 
(equation 7), was used to improve the convergence capacity of 
multi-objective PSO in conjunction with some other nature-
inspired algorithms, for green mobility in electric vehicle 
charging. They used a MOPSO algorithm with a constant 
inertia weight to tackle the challenge of simultaneous 
optimization of conflicting objectives such as minimizing 
costs, maximizing energy production, and reducing 
environmental impact. The equations for the two studies are 
represented in equations 2 and 3. Due to its simplicity, 
constant inertia weight incurs negligible computational cost on 
the algorithm because it consists only of one assignment 
statement per iteration 
 

 (2) 
 

 (3) 
 
Where ω = Inertia weight 
 
3.2 Linearly Decreasing Inertia Weight (LDIW) 

This inertia weight is decreased linearly over time, starting 
with a high value, encouraging exploration at the beginning, 
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and decreases to a smaller value, encouraging exploitation as 
the algorithm progresses. It helps maintain a balance between 
exploration in the early stages and exploitation in the later 
stages. It might not be flexible enough to adapt to the 
problem’s complexity. In [6], a linearly decreasing inertia 
weight was proposed as shown in equation 4. The algorithm 
performed best where ω1 is larger than ω2 thereby decreasing 
the inertia weight slowly as the iteration progresses. In their 
experiments the parameters were set as ω1 = 0.9, ω2 = 0.4, Tmax 
= 300 and α = 2. In [25] a linear decreasing inertia weight was 
implemented combined with a chaotic inertia weight. Their 
variant of LDIW is shown in equation 5. The two inertia 
weights were diffused into one by finding a common lowest 
denominator for each equation. This strategy was also 
implemented in the study [26]. 
 

 (4) 
 
Where ω(t) is the inertia weight related to the number of 
iterations, ω1 is the initial inertia weight, ω2 is the maximum 
inertia weight, t is the current number of iterations, Tmax is the 

maximum number of iterations, α is the exponential 
coefficient. 
 

 (5) 

 
Where ωl is the current inertia weight, ωmax is the maximum 
inertia weight, ωmin is the minimum inertia weight Imax is the 
maximum iteration and t is the current iteration. 
In most cases, the complexity of LDIW consists of simple 
assignment statement and normal arithmetic operations such 
as addition, division and subtractions. However, in some 
variants such as [6], a complex exponential factor is 
introduced which significantly increases the computation 
overhead of the algorithm as the number of iteration increases. 
 
3.3 Nonlinear Decreasing Inertia Weight (NDIW) 

In this strategy, the inertia weight decreases nonlinearly (e.g., 
exponentially, logarithmically) over time. The nonlinear decay 
allows for more flexibility than the linear approach. It 
provides more fine-grained control over the exploration-
exploitation trade-off, but may require tuning of decay 
parameters. In [27] a non-linear decreasing inertia weight was 
proposed as shown in equation 6. In their study, the velocity 
formula was modified by using time varying inertia weight, 
social and cognitive variables. Another non-linear strategy 
was implemented in [7] as shown in equation 7. The strategy 
was defined based on the best global position, the best fitness, 
the minimal fitness and the current iteration. 
 

 (6) 
 
Where ωmin is the minimum inertia weight = 0.4, ωmax is the 
maximum inertia weight = 0.9, kmax is the maximum iteration, 
β is the exponential coefficient = 0.4.  
 

 (7) 
 

where gb is the best position found in the entire swarm, fmax is 
maximal fitness in the current iteration and fmin is the minimal 
fitness value in the current iteration respectively. Parameter fr 
is the randomly generated number in the range [0,1]. The time 
complexity of NDIW is similar to that of LDIW. However, in 
NDIW the non-linear factor is amplified by the extra 
arithmetic operator in each iteration. For example, in [7], the 
inverse function of global best and the minimal fitness adds 
extra complexity to the algorithm. 
 
 
3.4 Random Inertia Weight (RIW) 

This this strategy, the inertia weight is chosen randomly 
within a predefined range. This adds stochasticity, which can 
help avoid local minima and enhance exploration, but may 
lead to unstable or erratic behavior without proper tuning. In 
[28] a random inertia weight was proposed where N(0,1) 
obeys the standard state distribution as shown in equation 8. 
 

 (8) 
 
Where µmax is set = 0.8, µmin = 0.4 and σ = 0.8. 
 
In another study [8], a stochastic inertia weight was proposed 
as given in equation 9, where ωmin is the minimum inertia 
weight = 0.4, ωmax is the maximum inertia weight = 0.9, k is 
the current iteration and Tmiax is maximum iteration, rb is a 
random number in the interval range (-0.1,0.1). 
 

 (9) 
 
The complexity of random inertia weight strategy consists of 
basic arithmetic operations in combination with a random 
operator and complex exponential operator. For example in 
[8], the complex exponential factor erb is combined with the 
division of current iteration k and maximum iteration Tmax   
 
 
3.5 Adaptive Inertia Weight (AIW) 

 

In the adaptive strategy, the inertia weight is adjusted 
dynamically based on the performance of the particles or other 
indicators such as velocity or fitness. It is more adaptive to 
different optimization stages and problem complexities. 
However, it is more complex to implement and requires 
careful design. 
For example, if the particles are not improving, the inertia 
weight may be increased to encourage exploration, or 
decreased if the particles are showing good convergence. In 
[29] a Bayesian method was used to design an adaptive inertia 
weight, where the weight could change according to the initial 
position of particle. However, the Bayesian approach has a 
drawback of local optima which was solved using a mutation 
operation. In [30] a stability-based adaptive inertia weight 
(SAIW) was also introduced. In order to adjust the inertia 
weight for each particle, feedback from the particle is used, 
based on the fact that the particle’s performance is memorized. 
The value of inertia weight is considered different for each 
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dimension, so that the convergence speed increases, especially 
in asymmetric environments. The value of the inertia weight 
in each dimension is used to compute the acceleration 
coefficients adaptively.  
In [9], the inertia weight value determines the speed of the 
search particles during each iteration which is directly related 
to the adaptive values of the current iteration number. 
Therefore the adaptive weight is calculated as shown in 
equation 10 – 13. 
 

 (10) 
 

 (11) 
 

  (12) 
 

 (13) 
 
Where tmax is the maximum iteration number and t is the 
current iteration. ω0 is the starting inertia weight. fi is the 
current fitness value of the ith particle, favg is the average 
fitness value of the whole group, fmax is the best adaptive value 
and fmin is the worst adaptive value of a particle at iteration t. 
In [31] an adaptive inertia weight strategy was proposed where 
the inertia weight is updated by the global best value and the 
exponential function of the current value as in equations 15 
and 16. For each iteration, if the relative difference between 
the current w value and the global optimal value is large, the 
inertia weight increases, and vice versa. Other adaptive inertia 
weight strategies include [32], [33], [34]. 
 

 (14) 
 

    
 (15) 
 
Where t is the current number of iteration and wstart and wend 
are the starting and ending inertia weight respectively. The 
adaptive inertia weight strategies consist of several complex 
arithmetic operations. For example, in [31], the velocity 
update in each iteration contains complex exponential factors 
of global best and previous position. It also includes the 
exponentiation of the sum of starting and ending inertia 
weights. These complex operations impose significant level of 
computational complexity on the algorithm. 
 
3.6 Chaotic Inertia Weight (CHIW) 

This approach utilizes chaotic sequences to adjust the inertia 
weight. Chaotic sequences provide randomness but are 
deterministic and can help avoid stagnation in optimization. It 
combines deterministic and random behaviors, helping to 
explore and exploit the search space more effectively. It 
requires careful selection of chaotic maps and parameters. In 
[11] a chaotic inertia weight was proposed to integrate the 
fitness based dynamic inertia weight with velocity update as 

shown in equation 16. Other studies on chaotic inertia weight 
include [25],  
 

  (16) 

 
Where: 
 
fi  = Fitness of the ith particle 
fbest = Fitness of global best particle 
 
 
3.7 Time-Varying Inertia Weight (TVIW) 

In this strategy, the inertia weight varies based on time or 
iteration, often through pre-designed schedules. It provides a 
smooth transition between exploration and exploitation 
phases, but may require tuning of the schedule. A time varying 
inertia weight was proposed in [10] which is a modification of 
adaptive inertia weigh, SAIW. However, the proposed inertia 
weight decreases faster that the SAIW and is shown in 
equation 17. 
 

  (17) 
 
Where ωmax is the maximum inertia weight, ωmax is the 
minimum inertia weight and t is the current iteration. 
 
 
3.8 Exponential Inertia Weight (EIW) 

In this strategy, the inertia weight follows a quadratic or 
polynomial function rather than a linear one. This gives more 
flexibility in controlling the rate at which inertia weight 
decreases. It has more control over the speed of inertia weight 
decay, allowing for gradual or steep transitions between 
exploration and exploitation, but requires parameter tuning for 
the polynomial degree and coefficients. In [5], a quadratic 
inertia weigh was proposed in which ω decreased from higher 
value initially for greater exploration and then tends to be 
constant throughout the middle range of iterations. This 
strategy is shown in equation 18 - 20. 
 

  (18) 
 

 (19) 
 
Where the starting inertia weight ω is set as 0.7 and the ending 
is 0.4. The maxiter is the maximum number of iterations set as 
200 and r is the increment variable starting from  
the value 0 to maxiter. k is the profile variable set =15. In [35], 
the authors proposed a natural exponential (base e) inertia 
weight strategy as expressed in equation 24. It is assumed that 
ωstart is = 0.9, ωend is = 0., Tmax is fixed at 3000.  Other 
similar inertia weight strategies were proposed in [23] and 
[36].  
 

 (20) 
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Table I 

Summary of Different Inertia Weight Strategies 

NAME REF 

 

VALUE (EQUATION) 

 
Constant inertia weight 

[4] ω= [0.8,1.2] 
 

[24] ω= [0.85] 
 

 
Linearly decreasing 
inertia weight 

[6]  
 

[25] 
 

 
Nonlinear decreasing 
inertia weight 

[27]   (10) 
[7]  

 
 
 
 
Random inertia weight 
 

[28]   
 

[8]  
 

 
 
 
Adaptive inertia weight 

[9]  
 

[31] 
 

 
 

 
Time-varying inertia 
weight 

[10]   
 

Chaotic inertia weight [11]   

 
 
 
Exponential inertia 
weight 

[5]  
[35]   (22) 

 
 

4. The Experiments 

4.1 Simulation Environment 

To compare the computational time of different inertia 
weight strategies, the PSO algorithm was implemented  
 
in Cloudsim simulation environment. Cloudsim is an 
open source cloud simulation tool specifically designed 
to model and analyze the performance of cloud 
computing environment [37]. It is a software framework 
based on Java programming language that allows 
researchers, cloud service providers, and cloud users to 
simulate and evaluate various aspects of cloud systems. 
The main purpose of Cloudsim is to assist in 

understanding the behavior and performance 
characteristics of cloud computing systems under  
 
 
different conditions. It helps users assess the impact of 
various factors such as workload patterns, resource 
allocation, strategies, scheduling policies, and system 
configurations on the performance and efficiency of 
cloud deployments [38]. The experiments were carried 
out in a computer with the following configuration: OS 
– Windows 10 (x64), Intel® Core™ i5-4210U CPU, 
1.70GHz, 2.40GHz. RAM – 6GB 
 

4.2 Parameter Settings 

The PSO algorithm parameters in this study are selected 
uniformly for all inertia weight strategies examined. 
This is to ensure a fair comparison between the 
strategies. The population sized is selected as 1,000, 
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while c1 = c2 = 2. r1 is a random number between [0,1], 
r2 is also a random number between [0,11] but selected 
independent of r1.  Each experiment was executed 15 
times (15 cycles), and each cycle contains 805 loops of 
100 iterations. Eight inertia weight strategies were used 
for the actual experiments as listed in table 2. Each 
equation was encoded and implemented separately in 
PSO algorithm to run the experiments and the results 
recorded for comparison. 

 

4.3 Objective Function 

In this study, the PSO algorithm was implemented to 
optimize one objective function which is task execution 
time (TET) by scheduling incoming tasks to available 
virtual machines in cloud computing infrastructure. The 
mathematical model of TET is shown in equations 21 
and 22. The first metric examined is the task execution 
rate of each virtual machine, which can be expressed as 
a function of the virtual machine speed and the number 
of CPU in the virtual machine  [17]. This metric is part 
of the task execution time as shown in equation 22. 

 
 (21) 

 
Where Rj is thhe task execution rate of the jth virtual 
machine, Sj is the speed of the the jth virtual machine, 
and Cj = The number of CPU in the the jth virtual 
machine.  
The task execution time (TET) is the amount of time 
expended in executing a single task on a given virtual 
machine [39]. It is a function of the task length and the 
rate of execution of the virtual machine as shown in 
equation 22. This objective functions is to be 
minimized. 

 (22) 

Where, TETij is the time taken to execute task i on 
virtual machine j, TLi is the length of task i, and Rj is the 
task execution rate of virtual machine j. 

 

 

 

Table II 

Inertia Weight Strategies Used in Actual Experiments 

SN NAME VALUE (EQUATION) REF 

 

SETTING 

1 CIW ω= [0.85] [24] ω = 0.85 
2 LDIW  [6] ω1 = 0.9, ω2 = 0.4, Tmax = 

100 and α = 2. 
 

3 NDIW  [27] ωmin 0.4, ωmax =0.9, β=0.4 

 
4 RIW  [8] ωmin = 0.4, ωmax = 0.9, rb = 

rand(0,1). 
 

5 AIW 
 

 
 

 

[31] ωstart 0.9, ωend =0.4,  

 

6 CHIW 

 
 

[11] fi  = ith  fitness 
fbest = global best 
 

7 TVIW  [10] ωmin 0.4, ωmax =0.9 

8 EIW  
 

 

[5] ωstart = 0.9, ωend = 0.4, 
maxiter = 100, 
k = 15 
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5. Discussion of Results 

 

This study analyzed thirteen different inertia weight 
strategies grouped into eight categories. However, eight 
of them were selected, one from each category for 
comparative analysis. These include, constant inertia 
weight [24], linear decreasing inertia weight [6], 
nonlinear decreasing inertia weight [27], random inertia 
weight [8], adaptive inertia weight [31], chaotic inertia 
weight [11], time varying inertia weight [10] and 
exponential [5] inertia weigh strategies. The strategies 
were compared based on computational time cost in 
Particle Swarm Optimization (PSO) algorithm.  

The results recorded in table 3 represent the actual 
runtime of the algorithm for each inertia weight 
strategy, measured in microseconds. Each experiment 
was carried out 15 times, based on 100 iterations per 
cycle, to calculate the average, standard deviation, 
minimum and maximum runtime. The average time for 
each inertia weight strategy are, CIW = 3611044.09, 
LDIW = 3611035.95, NDIW = 3612029.75, RIW = 
3612520.84, AIW = 3611539.87, CHIW 3610552.27, 
TVIW = 3611035.51 and EIW = 3612524.36. This 
represents the average time taken to run the PSO 
algorithm for optimizing the task execution time (TET) 
in load balancing of a cloud infrastructure. In addition, 
the standard deviations for the eight strategies are 
3824.25, 3833.25, 3616.09, 3397.32, 3752.70, 3822.45, 
3833.74, and 3391.26 respectively.  

Considering the line graph in Fig. 1, it indicates that the 
CIW first hit the minimum value of 3607044.92 at two 
points before a maximum value of 3614500.00 at two 
points also. This indicates that the CIW maintained a 
regular behavior in time consumption during the entire 
experiment. As shown in Fig. 2, the LDIW shows 
consistently varying time consumption in all cycles, 
going between lowest and highest values of 3607044.92 
and respectively. As for NDIW, Fig. 3 indicates an 
initial oscillation between a low value of 3607068.42 
and high value of 3614500.00, before maintaining a 
stable high value. The RIW maintained its high 
computations time of 3614500.00 in most cycles, 
touching its lowest value 3607044.92 only at the 

beginning and once at the middle as shown in Fig. 4. 
The AIW stays on either high value or low values 
consistently. It does not swing between highs and lows 
regularly like RIW. It has its highest value at 
3614500.00 and lowest value at 3607048.17 as shown in 
Fig. 5. The TVIW showed a similar behavior as the 
LDIW and AIW as shown in Fig. 6. This is expected 
since a combination of linear decreasing and adaptive 
behavior will lead to time varying tendencies. The EIW 
as shown in Fig. 7 displays a balance between 
continuous high values of 3614500.00 and continuously 
oscillating between low values of 3607044.92. Fig. 8 
showed that the CHIW maintained its chaotic nature by 
not following any regular pattern but moving between 
high and low values. Finally, Fig. 9 summarized the 
general behavior of the strategies, showing that they all 
remained between a certain range of 3607044.92 to 
3614500.00 microseconds. 

In summary, the chaotic inertia weight strategy has the 
lowest computational time followed by time varying 
strategy based on the results. The eight inertia weight 
strategies can therefore the ranked in descending order 
of computational time cost as follows CHIW, TVIW, 
LDIW, CIW, AIW, NDIW, RIW, and EIW. The study 
in in [40] ranked 6 different inertia weight strategies 
based on convergence behavior and concluded that AIW 
performed the best. Again the study in in [41] which 
compared 15 inertia weight strategies and concluded 
that the CHIW strategy recorded the best performance. 
In other words, the results in this study show that the 
superior computational complexity of CHIW strategy 
corresponds with its optimal performance in 
convergence as recorded [41]. 
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Table III 

Results of Actual Computation Time for Different Inertia Weight Strategies 

Cycle CIW LDIW NDIW RIW AIW CHIW TVIW EIW 

1 3614500.00 3614500.00 3614500.00 3607044.92 3614500.00 3607128.66 3607095.92 3614500.00 
2 3607113.71 3607095.92 3614500.00 3614500.00 3614500.00 3614500.00 3607095.92 3614500.00 
3 3607068.42 3614500.00 3607095.93 3614500.00 3614500.00 3607044.92 3614500.00 3614500.00 
4 3607044.92 3614500.00 3607099.74 3614500.00 3614500.00 3607123.49 3614500.00 3614500.00 
5 3607095.93 3607044.92 3614500.00 3614500.00 3607123.50 3607123.49 3614500.00 3614500.00 
6 3614500.00 3607095.64 3607113.71 3614500.00 3607113.71 3614500.00 3607048.17 3607048.17 
7 3614500.00 3614500.00 3614500.00 3607048.17 3607048.17 3614500.00 3607128.66 3614500.00 
8 3614500.00 3614500.00 3614500.00 3614500.00 3607113.71 3607048.17 3614500.00 3607123.49 
9 3607095.93 3614500.00 3614500.00 3614500.00 3614500.00 3607123.49 3614500.00 3614500.00 
10 3614500.00 3607095.93 3614500.00 3614500.00 3614500.00 3614500.00 3614500.00 3614500.00 
11 3614500.00 3614500.00 3607068.42 3607123.50 3614500.00 3614500.00 3607048.17 3614500.00 
12 3607128.67 3607044.92 3614500.00 3614500.00 3607070.25 3607095.92 3614500.00 3607123.49 
13 3607113.71 3614500.00 3614500.00 3607095.93 3614500.00 3614500.00 3607044.92 3607070.25 
14 3614500.00 3607048.17 3607068.42 3614500.00 3614500.00 3614500.00 3614500.00 3614500.00 
15 3614500.00 3607113.71 3614500.00 3614500.00 3607128.66 3607095.92 3607070.92 3614500.00 
AVG 3611044.09 3611035.95 3612029.75 3612520.84 3611539.87 3610552.27 3611035.51 3612524.36 

STD 3824.25 3833.25 3616.09 3397.32 3752.70 3822.45 3833.74 3391.26 

MIN 3607044.92 3607044.92 3607068.42 3607044.92 3607048.17 3607044.92 3607044.92 3607048.17 

MAX 3614500.00 3614500.00 3614500.00 3614500.00 3614500.00 3614500.00 3614500.00 3614500.00 

 

 

Fig. 1 Computation time of PSO based on constant 
inertia weight 

 

 

Fig. 2 Computation time of PSO based on linearly 
decreasing inertia weight 
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Fig. 3 Computation time of PSO based on nonlinear 
decreasing inertia weight 

 

Fig. 4 Computation time of PSO based on random 
inertia weight 

 

 

 

Fig. 5 Computation time of PSO based on adaptive 
inertia weight 

 

 

Fig. 6 Computation time of PSO based on time varying 
inertia weight 

 

 

 

Fig. 7 Computation time of PSO based on exponential 
inertia weight 

 

 

Fig. 8 Computation time of PSO based on chaotic 
inertia weight 
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Fig. 9 Comparative computation time for PSO based on 
different inertia weight strategies 

 

 

Fig. 10 Comparative computation time for PSO based 
on different inertia weight strategies 

 

6. Conclusion 

In this study, eight different PSO-based inertia weight 
strategies were compared on the basis of their actual 
computational time cost. These strategies include, 
constant inertia weight (CIW), linearly decreasing 
inertia weight (LDIW), nonlinear decreasing inertia 
weight (NDIW), random inertia weight (RIW), adaptive 
(AIW), chaotic inertia weight (CHIW), time varying 
inertia weight (TVIW) and exponential inertia weight 
(EIW) strategies. The experiments compared the 
strategies by observing the computational runtime of 
each algorithm in optimizing the task execution time in 
a cloud infrastructure using Cloudsim simulation tool. 
In summary, the chaotic inertia weight strategy has the 
lowest average runtime of 3610552.27 microseconds, 
followed by TVIW = 3611035.51 LDIW = 3611035.95, 
CIW = 3611044.09, AIW = 3611539.87, NDIW = 
3612029.75, RIW = 3612520.84, and EIW = 
3612524.36. 

Therefore the inertia weight strategies arranged in 
descending order of performance are CHIW, TVIW, 

LDIW, CIW, AIW, NDIW, RIW, and EIW. Researchers 
seeking to choose from existing variants of PSO and 
other swarm based algorithms may find this study 
useful. In a future work, it will be important to consider 
the impact of different constriction factor strategies on 
the performance of Particle Swarm Optimization. 
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