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Abstract: - In this work, a simple and effective numerical model is proposed for solving the problem of a three-
dimensional elastic and isotropic half-space subjected to surface vertical displacements and pressures. For this 
purpose, the Galerkin Boundary Element Method for a three-dimensional half-space is introduced, and both 
surface displacement and pressure fields are discretized in order to obtain fast and accurate numerical solution. 
Assuming a piecewise constant discretization of both surface displacement and pressure fields, several 
numerical tests are performed showing the effectiveness of the model, for instance by determining accurately 
the translational and rotational stiffness of a rigid rectangular foundation on elastic half-space, together with the 
displacements generated by a uniform surface pressure over a rectangular area. 
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1 Introduction 
The three-dimensional (3D) elastic half-space is one 
of the most accurate models for representing the 
behavior of a semi-infinite elastic and isotropic 
continuum, which can be adopted, for instance, for 
describing the response of a soil media subjected to 
external loads. The use of a continuum model is 
accurate since it considers surface deflections 
occurring not only under the directly loaded regions, 
but also within certain areas outside the loaded 
regions, as the common experience can suggest [1]. 
In this field of analysis, the pioneering research of 
Cerruti [2] and Boussinesq [3] introduced the 
potential of an elastic and isotropic 3D half-space, 
that allowed to obtain the expressions of stresses 
and displacements generated by a concentrated force 
normal to half-space surface [4]. The problem of the 
analytic determination of the displacements 
generated by various force distributions on the 
surface of the half-space was studied by many 
researchers in the past [1]. Among the others, Love 
[5] determined the expression of half-space surface 
displacements generated by a uniform pressure over 
a rectangular area. The indentation of a rigid punch 
on the half-space represents another problem which 
involves Boussinesq solution. This problem is 
strictly related to the determination of the dynamic 
stiffness of a rigid rectangular foundation resting on 
an elastic soil, and it is also a classical problem in 
physics, since its solution represents the charge 

density of a thin electrified plate. Many researchers 
determined the solution of this problem by adopting 
different approaches such as power series or the 
Boundary Element Method [6], [7], [8], [9], [10], 
[11], [12]. A brief but complete resume of some 
numerical and analytical solutions of problems 
related to half-space surface loads and rigid loaded 
areas can be also found in the book by Poulos and 
Davis [13]. The analysis of 3D half-space behavior 
for soil-structure interaction purposes is still an 
active field of research [14]. 
In this work, the Galerkin Boundary Element 
Method is adopted for the determination of half-
space surface displacements and/or pressures 
generated by different half-space surface 
loads/imposed displacements. For this purpose, the 
numerical model presented envisages a mixed 
formulation which assumes as independent fields 
both half-space surface normal pressures and 
vertical displacements. Such fields are both 
numerically approximated by means of a piecewise 
constant function in surface plane directions, and the 
loaded surface is subdivided for simplicity into 
rectangular portions, with particular attention to the 
use of power-graded discretization types instead of 
the regular ones. This numerical approach was 
recently adopted for discretizing the contact surface 
of an elastic beam on 3D half-space [15], obtaining 
fast accurate results. In particular, in [15] a standard 
three-dimensional Finite Element Model (FEM) was 
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also introduced for highlighting the effectiveness of 
the proposed mesh reduction method. Here, the 
numerical tests focus only on the determination of 
surface pressures generated by given simple surface 
displacements or the determination of surface 
displacements given by simple surface pressure 
distributions, and results are compared with existing 
analytical and numerical solutions. 
Further developments of this work will focus on the 
development of plate models on 3D half-space, in 
order to simulate the behavior of plane shallow 
foundations on elastic soil. 
 
 

2 Elastic half-space model 
In this work, a 3D elastic, homogeneous, and 
isotropic half space, characterized by an elastic 
modulus Es and a Poisson’s ratio νs is considered. 
The half-space (Fig.1) is referred to a Cartesian 
coordinate system (O,x,y,z), having axis z directed 
downward; then z=0 represents the surface of the 
half-space. Considering a generic area S on the half-
space surface, it can be subjected to various kinds of 
surface pressure distributions; however in the 
following, only a (vertical) normal pressure 
p(x,y,0)=p0(x,y) is considered, and only the 
corresponding vertical surface displacements 
v(x,y,0)=v0(x,y) are taken in consideration. 

 
Fig.1 Half-space subjected to a concentrated vertical 
force p on its surface 
 
The classic approach for the determination of 
stresses and displacements in an elastic 3D half-
space due to surface forces was studied by 
Boussinesq [3] and Cerruti [2] by adopting the 
theory of potential. The following expression 
defines the vertical surface displacement v0(x,y), 
generated by the action of a normal pressure p0(ξ,η) 
over the generic area S: 

0 0( , ) ( , ,ξ,η)  (ξ,η) dξdη
S

v x y g x y p  , (1) 

where g(x,y,ξ,η) is the solution in terms of vertical 
surface displacement generated by a unitary normal 
force applied in a generic point C(ξ,η) on half-space 
surface [4]: 

2 2 1/ 2
0

1 1
( , ,ξ,η)

π [( ξ) +( η) ]
g x y

E x y


 
, (2) 

where 2
0 /(1 ν )s sE E  . In the above equation, the 

expression [(x-ξ)2+(y-η)2]1/2 represents the distance 
d(x,y,ξ,η) of point C from the origin of the 
coordinate system. It is worth noting that g(x,y,ξ,η) 
represents the deformed half-space surface given by 
a unitary force, which is a hyperboloid tending to an 
infinite vertical displacement under the point C and 
is asymptotic to the undeformed surface far from 
point C. 
 
 

3 A simple Galerkin Boundary 
Element Method for half-space 
surface displacements and pressures 
Simple problems such as the determination of half-
space surface displacements due to constant 
pressures applied to simple or regular areas (for 
instance, rectangular), or, vice-versa, the 
determination of the surface pressures generated by 
known simple surface displacements given by rigid 
indenters, may be solved analytically starting from 
(1). However, many problems cannot be solved 
analytically, and numerical procedures can be 
adopted starting from (1). For instance, a Galerkin 
approach can be adopted for obtaining numerical 
solutions of (1), by introducing the following 
bilinear form and inner product: 

0 0 0 0( , ) ( , )B p p B p p   

0 0( , ,ξ,η) (ξ,η) ( , ) dξdηd d
S S

g x y p p x y x y    (3) 

0 0 0 0( , ) ( , ) ( , )d d
S

v p v x y p x y x y   (4) 

Then, the weak form of (1) can be written as 
follows: 

0 0 0 0( , ) ( , )v p B p p . (5) 

In this work, a simple Galerkin discretization is 
adopted by subdividing the loaded area S of half-
space surface into portions having a simple shape, 
namely a triangular or rectangular one. In particular 
in the following, rectangles with length hxi and 
height hyi are considered together with a piecewise 
constant base function over the generic i-th surface 
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portion for discretizing surface displacements and 
pressures: 

1 on the -th element
ρ ( , )

0 elsewhere on i

i
x y

S


 


 (6) 

Hence, the half-space surface pressure and the 
vertical displacement for each i-th element can be 
approximated as 

p0(x, y) = [ρ(x, y) ]Tri, (7) 

v0(x, y) = [ρ(x, y) ]Tqi. (8) 

where ri and qi are the vector components of surface 
pressures and vertical displacements. In particular, 
each component ri represents a uniform surface 
pressure on the i-th surface portion, whereas each 
component qi is a vertical displacement lumped at 
the centre of the corresponding i-th surface portion. 
Substituting (7) and (8) into (5), the weak problem 
written in discrete form assumes the following 
expression: 

Hq = Gr, (9) 

which describes a mixed problem characterized by 
unknown surface displacement and pressure fields. 
Hence, surface vertical displacements q can be 
prescribed, and pressures r can be determined, or 
vice-versa. The components of matrices H and G 
are: 

1 1
1 1( )( )

ρ ρ d d
0

i i

i i

y x
i i i i

ij i j

y x

x x y y i j
h x y

i j

 
   

   
   (10) 

1 1 1 1η ξ

0 η ξ

ρ1
ρ d d dξdη

( , ,ξ,η)

i i i i

i i i i

y x
j

ij i

y x

g x y
E d x y

   
     , (11) 

where (xi,xi+1,yi,yi+1) are the coordinates of the 
vertices of the i-th surface element and (ξi,ξi+1,ηi, 
ηi+1) are the coordinates of the vertices of j-th 
surface element. It can be observed that matrix H 
turns out to be diagonal, having components along 
the diagonal equal to the area of each surface 
portion, whereas matrix G turns out to be more 
complex and fully populated. Details about its 
components are reported in [15] and [16]. 
 
 
3.1 Half-space surface discretization 
In this work and in the following numerical tests, a 
rectangular area S is considered, L1 and L2 are area 
length and width in x and y direction, respectively, 
whereas the area is assumed to be centered with 
respect to the origin of the coordinate system: 

S={(x,y,z): -L1/2≤ x ≤L1/2, -L2/2≤ y ≤L2/2, z=0}. (12) 

The surface S is subdivided into rectangular 
elements and the simplest discretization is obviously 
the regular one with equally spaced portions. Setting 
the number of elements nx and ny in plane directions, 
each element length is hxi=L1/nx and the 
corresponding width is hyi=L2/ny. However, it is well 
known that the solution of (1), (3) and (4) generally 
exhibits singular behaviour close to the edges and 
corners of S [17]. For this reason, a regular 
discretization of S may not be able to correctly 
approximate surface displacements and/or pressures 
at edges and corners. In order to obtain more 
accurate results, it is common to use power graded 
meshes [18], [19], [20], which are characterized by 
small surface portions close to edges and corners 
and large surface portions close to the origin. Such a 
discretization is obtained by means of a grading 
exponent β≥1, and assuming a generic 
dimensionless coordinate t, which may represent 
both x and y directions, on the interval (-1/2,1/2), 
characterized by the vertices of the subdivisions 
following the subsequent expression: 

β
1 2

1 for 0 / 2
2

for / 2

j

n j

j
j n

nt

t n j n

              
   

. (13) 

where n is the number of subdivisions of the 
interval. 
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Fig.2 Examples of power graded surface 
discretization for a unitary square area, n=8 
subdivisions along each side, varying β 
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For β=1, the vertices turn out to be equally spaced, 
but as β increases, the vertices are more 
concentrated at the end of the interval. In Fig.2 
some examples of power-graded meshes are shown 
by considering for simplicity a square area having 
L1=L2=1 and with the same number of subdivisions 
along x and y directions. It is worth noting that for 
increasing β, the elements near the edges and 
corners of the discretized surface tend to be smaller 
and smaller, whereas, elements close to the origin 
tend to be bigger and bigger. Then, the exponent β 
in (13) has to be chosen in order to obtain accurate 
results both near surface edges and close to the 
origin. 
 
 

4 Numerical tests 
Several numerical tests are performed in order to 
evaluate the effectiveness and accuracy of the 
proposed numerical model. For instance, the 
problem of a rigid indenter on a 3D half-space is 
considered, together with the case of a uniform 
surface pressure. Results are compared with existing 
numeric and analytic solutions. 
 
 
4.1 Rigid rectangular indenter on elastic 
half-space 
A typical problem arising from (1) is related to the 
determination of the surface pressures generated by 
a well-defined displacement, namely a uniform rigid 
vertical displacement or a rigid rotation. Such a 
problem is also related to the determination of the 
translational and rotational stiffness of a rectangular 
foundation on the half-space. In the following sub-
paragraphs, only square indenters are considered. 
Further details on rectangular indenters and 
convergence tests can be found in [16]. 
 
4.1.1 Square indenter subjected to a vertical 
displacement 
An indenter subjected to a uniform vertical 
displacement is considered (Fig.3). This problem is 
frequently studied in soil-structure interaction 
analysis and it can be also defined as the uniform 
indentation of an elastic half-space by a smooth 
rigid rectangular footing. 
Many researchers had already studied this problem 
by adopting different solution methods [6], [7], [8], 
[9], [10], [11], [12], [21]. The determination of the 
solution of the integral equation considered in (1) is 
also a classical problem in physics and represents 
the charge density of a thin, electrified square or 
rectangular plate S loaded by a given potential [18], 

[22]. This problem is also related to the 
determination of the dynamic translational stiffness 
of rigid foundations on elastic half-space [11], [23], 
[24]. Then, starting from (10) and considering 
different surface discretizations (varying β and 
increasing n along each side of the square 
foundation), the problem is numerically solved by 
adopting the proposed method. Results in terms of 
surface pressures are presented and the resulting 
translational stiffness is evaluated. 

 
Fig.3 Rigid indenter on elastic half-space subjected 
to a uniform unitary vertical displacement 
 
Setting a uniform unitary displacement value, the 
corresponding vector q is defined by putting each 
vector element equal to 1, then, from (10), the 
surface pressure vector is obtained: 

r = G-1Hq (14) 

 

 
Fig.4 Dimensionless half-space surface pressures 
along x axis generated by a rigid square indenter 
with n=16 subdivisions along each side and varying 
β 
 
Considering the case of a square indenter over a 
square surface (L1=L2=L), Fig.4 shows 
dimensionless surface pressures p0/(E0L) along x 
axis, obtained with n=16 subdivisions and varying 
β. In Fig.5a,b,c, dimensionless surface pressures 
p0/(E0L) are shown by adopting a three-dimensional 
representation. It can be noted that surface pressures 
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assume an almost constant value quite close to the 
origin, whereas their absolute value increases 
rapidly in proximity of surface edges and corners. 
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Fig.5 Dimensionless surface pressures generated by 
a unitary vertical displacement of a square surface 
subdivided with a power graded mesh having 16 
subdivisions along each side and β=1 (a), 2 (b) and 
3 (c) 
 
As expected, results obtained with the uniform 
surface discretization are not able to represent 
correctly the behaviour at surface edges and corners, 
whereas increasing β, the pressure near surface 
edges and corners is able to better represent the 
singular behaviour typical of rigid stamps on elastic 
half-space. 

The proposed numerical model is also able to 
evaluate the resultant of surface pressures r in order 
to determine the vertical translational stiffness kv of 
a rigid square foundation on the half-space. 
Assuming an accurate surface discretization by 
adopting a power-graded mesh with β=4 and n=27, 
the proposed numerical model allows to obtain 
kv=1.1523E0L, which is in excellent agreement with 
existing numerical solutions (Table 1). 
 
Table 1 Vertical translational stiffness value for a 
rigid square foundation. 

Author method kv/E0L
present analysis BEM 1.152 

Guzina et al. [24] BEM 1.152 

Bosakov [12] 
orthogonal 

polynomials 
1.146 

Erwin et al. [22] BEM 1.152 

Dempsey and Li [11] 
numerical 
integration 

1.152 

Pais and Kausel [23] - 1.175 
Whitman and Richart [25] - 1.080 
Gorbunov and Posadov [7] power series 1.095 

 
4.1.2 Square indenter subjected to a rigid 
rotation 

 
Fig.6 Rigid indenter on elastic half-space subjected 
to a unitary rotation with respect to x axis 
 
Another problem arising from Eq.1, which is similar 
to the one described in the previous paragraph, 
consists in the determination of the rotational 
stiffness of a rigid indenter on the half-space with 
respect, for instance, to the x axis. 
For this purpose, a unitary rotation value φ with 
respect to x axis is defined (Fig.6) and the 
corresponding displacement vector qφx is generated 
by multiplying the rigid rotation value for the 
distance of the centre of each surface portion with 
respect to x axis. The surface pressures caused by 
qφx are evaluated with (14) and the corresponding 
resultant bending moment with respect to x axis is 
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determined in order to obtain the rotational stiffness 
of the foundation. 
Considering for simplicity a square foundation 
having L1=L2=L and adopting the accurate surface 
discretization already used in the previous 
paragraph, the rotational stiffness turns out to be 
kφx=0.2601E0L2. 
 
4.1.2 Rectangular indenters 
The numerical results obtained in the previous 
paragraphs can be extended by considering 
rectangular indenters with varying L1/L2 ratio. In 
this case, the contact surface is discretized with a 
power graded mesh characterized by β=3 and 
nx=ny=26 is adopted. Results in terms of vertical 
translational stiffness and rotational stiffness with 
respect to x axis are shown in Fig.7 with crosses, by 
adopting the notation defined in the following 
expressions: 

1 20

1v
v

k
E L L

  , (15) 

2
1 20

1k
E L L


  , (16) 

in order to compare results with the data determined 
in [25] and [26]. Similar results adopting power 
series were obtained also in [7]. The present model 
turns out to be effective also for rectangular surfaces 
and the power graded mesh with β=3 turns out to be 
sufficient for obtaining accurate results. 

 
Fig.7 Vertical translational stiffness βv and 
rotational stiffness βφ of a rigid rectangular indenter 
on an elastic half space, varying L1/L2 ratio. Crosses 
for the present analysis, continuous lines for 
Whitman and Richart data [25] 
 
 
4.2 Uniform pressure over a rectangular 
surface 
Another problem arising from Eq. 1 consists in the 
determination of the vertical surface displacement 

generated by a uniform pressure p applied to a 
generic rectangular area of the half-space surface 
(Fig.8). 

 
Fig.8 Elastic half-space loaded by a uniform vertical 
pressure over a rectangular area 
 
The analytic solution of this problem was obtained 
by Love [5]. Here, the proposed numerical model 
allows to obtain the vector of surface vertical 
displacements generated by the vector of uniform 
surface pressures r=p as follows: 

q = H-1Gp (17) 

Numerical results are compared with analytic results 
in terms of vertical surface displacements (Fig.9) 
evaluated at surface corner (C), center (O), and 
edges midpoint (M, N). By adopting a loaded 
surface discretization characterized by β=3 and 
nx=ny=26, numerical results for varying L1/L2 turn 
out to be in excellent agreement with analytic 
solutions. 

 
Fig.9 Vertical surface displacements under a 
rectangular area due to a uniform pressure, 
continuous lines for present analysis, crosses for 
Love solution [5] 
 
 

5 Conclusion 
In this work, a simple and effective numerical 
model has been proposed for applying the Galerkin 
Boundary Element Method to the solution of 

Daniele Baraldi
International Journal of Theoretical and Applied Mechanics 

http://www.iaras.org/iaras/journals/ijtam

ISSN: 2367-8992 6 Volume 5, 2020



problems related to half-space surface subjected to 
vertical displacements and pressures. The numerical 
model is based on the discretization of both surface 
vertical displacements and pressures by means of a 
piecewise constant function. For this purpose, the 
half-space surface area subjected to pressures or 
displacements has been discretized successfully by 
means of a power graded mesh with rectangular 
subdivisions, instead of adopting a regular 
discretization, in order to better approximate the 
pressure values near corners and edges in case of 
rigid indenters on half-space. Several numerical 
tests have been performed in order to evaluate the 
effectiveness of the numerical model proposed. 
Results in terms of vertical translational stiffness of 
a square foundation turned out to be in excellent 
agreement with existing results, and, similarly, 
vertical displacements generated by a uniform 
pressure over a rectangular area turned out to be in 
excellent agreement with the existing analytic 
solution [5]. The effectiveness of the model, which 
has been already used for studying elastic beams on 
3D half-space [15], will allow to numerically study 
other problems related to the interaction of shallow 
foundations with the elastic media. 
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