
Efficient 2D stress analysis of an isotropic bolted joint connection
with finite dimensions using the Airy stress function

MINH NGUYEN-HOANG, WILFRIED BECKER
Institute of Structural Mechanics
Technical University Darmstadt

Franziska-Braun-Straße 7, 64287 Darmstadt
GERMANY

nguyen-hoang@fsm.tu-darmstadt.de becker@fsm.tu-darmstadt.de

Abstract: Bolted joints are a common mean to connect safety critical parts in the aeronautical industry and therefore
require precise stress analysis, which can take place analytically enabling cost-efficient computation. Connections
with an even number of plates and a symmetrical setup with respect to the midplane can be modelled as a plate
under in-plane loading. The complexity further reduces to a pure plane problem if there is no bending extension
coupling. The flux of forces is directed from the bolt towards the clamp, which are both located at finite boundaries.
Therefore modelling must be performed within a finite domain. If the material is isotropic this plane boundary
value problem can be solved by means of the Airy stress function, which is the focus of the present paper. The
geometry is chosen in such a way that additional stress concentrations faded away. At first a solution for the infinite
dimensions bolted joint is derived, which is then mirrored in order to cancel stresses in load direction at the straight
edges of the finite joint. Thus the load is physically transferred and characteristic field quantities are accurately
modelled providing an efficient tool for 2D stress analysis and subsequent net tension failure assessment.
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1 Introduction
Bolted joints are widely used in the aeronautical in-
dustry for reasons like inexpensive manufacturing and
the ability to disassemble. Nevertheless drilling a hole
also introduces a stress raiser, which has to be as-
sessed in stress and subsequent failure analysis.

If the connection contains an even number of
plates and has a fully symmetrical setup with respect
to the midplane then the bolted joint connection can
be modelled as a plate under in-plane loading. This
pin-loaded hole problem with pin-plate contact ide-
alised as sinusoidal stress distribution has been treated
by many researchers with different levels of complex-
ity such as finite dimensions or material anisotropy. If
the material is anisotropic the stress field can be de-
termined by means of Lekhnitskii complex potentials
[5], which was solved for both infinite and finite ge-
ometry without bending extension coupling [2, 8] re-
ducing the complexity to a plane problem. Contrary in
[3] anisotropic problems involving bending extension
coupling were solved. If the material is isotropic the
stress field can be solved by means of the Airy stress
function, which is performed in [1] for infinite dimen-
sions. This solution satisfies the hole boundary con-
ditions and gives a good approximation of its circum-
ferential stresses. Since the stresses in load direction

within the net section area rapidly converge to an un-
physical value in compression they are not be suitable
to asses crack initiation. In [4] the stress field for both
infinite dimensions and finite width is developed. The
radial stress boundary conditions at the hole are ful-
filled whereas those in the shear stresses are unfortu-
nately slightly violated. As taking into account finite
width while neglecting effects of finite height a semi-
infinite problem is treated whose load transfer should
not be used for real problems with finite dimensions.

In the present paper the stress field for a pin-
loaded hole in an isotropic plate with finite dimen-
sions is analytically derived using the Airy stress func-
tion aiming to satisfy the boundary conditions both at
the hole and the straight edges. This is required to
physically model the flux of forces and the net sec-
tion stress decay vital for failure assessment. First,
a solution for a joint with infinite dimensions is de-
veloped. Afterwards the finite dimensions solution
is derived by mirroring the infinite geometry solution
in such a way, that stresses in load direction at the
straight edges are cancelled leading the flux of forces
towards the clamp. To the authors’ knowledge no fi-
nite dimensions problem has been treated using this
mirror technique. Eventually the finite dimensions so-
lution is verified using commercial FE software.
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2 Airy stress function

In plane strain or plane stress elasticity problems
equilibrium, Hooke’s law and compatibility can be
reduced to a single governing equation. If the mate-
rial behaviour is isotropic or quasi-isotropic this equa-
tion can be expressed by a single unknown F called
Airy stress function and the single governing equation
in case of plane stress with non existent body forces
reads

∆∆F =
∂4F

∂x4
+ 2

∂2F

∂x2∂y2
+
∂4F

∂y4
= 0 (1)

in cartesian coordinates,

∆∆F =

(
∂2

∂r2
+

1

r

∂

∂r
+

1

r2
∂2

∂ϕ2

)2

F = 0 (2)

in polar coordinates [6, 10, 11]. These equations
(1), (2) are called biharmonic equation. All func-
tions obeying the biharmonic equation are called bi-
harmonic functions and were addressed by Michell [7]
but can be also found in [11]. The plane stresses are
derived using the relations

σx =
∂2F

∂y2
, σy =

∂2F

∂x2
, τxy = −
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, (3)
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1

r

∂F

∂r
+

1

r2
∂2F

∂ϕ2
, σϕ =

∂2F

∂r2
,
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(
1

r

∂F

∂ϕ

)
.

(4)

Biharmonic functions are now to be chosen in such a
way that the derived stresses fulfil the boundary con-
ditions for a given plane elasticity problem.

3 Stress analysis for an isotropic sin-
gle hole bolted joint connection

The Airy stress function for an isotropic single hole
bolted joint connection under in-plane loading as
shown in Fig. 1 is developed. The parameters width
w, end distance e, diameter d of the circular hole and
the Poisson’s ratio ν are required to develop the an-
alytical solution. The dimensions are chosen so that
stress concentrations due to finite width effects faded
away. Their values can be taken from Tab. 1.

Fy

w

e

x

y
r

y
ϕ

∅ d

Fig. 1: Geometry of bolted joint

property d w/d e/d ν Fy
value 2 mm 20 10 0.3 2 N

Tab. 1: Structural properties

3.1 Idealisation of the bolt plate contact
problem

The bolt plate contact problem is approximated by a
sinusoidal contact stress distribution over the upper
half of the hole boundary as in [12]. Hence, the ra-
dial stress at the hole boundary can be written as

σr(R,ϕ) = −σ̂r sinϕ for 0 ≤ ϕ ≤ π (5)

where σ̂r denotes the amplitude of the stress distri-
bution. Assuming no friction the vertical equilibrium
between the load Fy and the radial contact stresses
σr(R,ϕ) at the bolt boundary r = R requires

R

∫ π

0
σr(R,ϕ) sinϕdϕ = −Fy

⇔ R

∫ π

0
−σ̂r sin2 ϕdϕ = −Rπ

2
σ̂r = −Fy

⇔ σ̂r =
2

π

Fy
R
.

(6)

The complete boundary conditions on the hole edge
are expressed by

σr(R,ϕ) =


− 2

π

Fy
R

sin(ϕ) for 0 ≤ ϕ ≤ π

0 for π ≤ ϕ ≤ 2π,

τrϕ(R,ϕ) = 0 for 0 ≤ ϕ ≤ 2π.
(7)
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At first a solution for the problem of a bolted joint
with infinite dimensions is developed. This task in-
volves finding a stress field satisfying the boundary
stress conditions at the hole. To implement a finite
geometry joint the solution for infinite dimensions is
then mirrored in such a way that all stresses in load
direction at the location of the straight edges are can-
celled. Thus the flux of forces is led towards the clamp
at the bottom providing a correct load transfer.

3.2 Stress field for a joint with infinite di-
mensions

To model the sinusoidal radial stresses at the hole
boundary an approach similar to [4] is used. The so-
lution for the Airy stress function contains two parts,
F∞ = F∞1 + F∞2 . At the hole boundary F∞1 rep-
resents a full sinusoidal radial stress distribution in
compression within the contact area (0 ≤ ϕ ≤ π)
and in tension in the no contact area (π ≤ ϕ ≤ 2π).
F∞1 is calibrated so that its radial stresses at the up-
per hole boundary are transferring half of the outer
load. F∞2 is a Fourier series describing a sinusoidal
pressure in both areas carrying the remaining half of
Fy at the upper hole boundary. Therefore both partial
solutions superimposed provide transfer of the whole
load Fy at the contact area whereas at the no contact
area the radial stresses are cancelled. Refer to Fig. 2
for details.

The stress function F∞1 according to [1] is

F∞1 (r, ϕ) = a15 rϕ cosϕ+b12 r ln r sinϕ+b13
1

r
sinϕ.

(8)
The corresponding stresses σ∞r1 , σ

∞
ϕ1, τ

∞
rϕ1 are de-

rived using relation (4). Furthermore the coefficients
a15, b12, b13 are determined by

b12
a15

= 1
2(1− ν) (9)

ensuring single valued circumferential displacements
uϕ(R,ϕ) [1, 10],

σ∞r1(R, π/2) = −
1

π

Fy
R

(10)

transferring Fy/2 and eventually

τ∞rϕ1(R,ϕ) = 0 (11)

ensuring vanishing shear stresses at the hole boundary.
Let us express all stress functions using a reference

stress value σ0 =
Fy

d . F∞1 then reads

F∞1 (r, ϕ) =
R

π

[
rϕ cosϕ+

+
1

2
(1− ν) r ln r sinϕ+

1

4
(1− ν)R2 1

r
sinϕ

]
σ0.

(12)
The general form of F∞2 is

F∞2 (r, ϕ) = R2

[
e0 ln

r

R
+

+
N∑
n=1
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(
R

r

)2n
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(
R

r
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]
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(13)
The stresses determined by F∞2 are
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(14)
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(
R
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(
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(15)

τ∞rϕ2(r, ϕ) = −2
[ N∑
n=1

{
n(2n+ 1)Dn

(
R

r

)2n+2

+

+ n(2n− 1)En

(
R

r

)2n}
sin 2nϕ

]
σ0.

(16)
The coefficients Dn and En are calculated by repre-
senting σ∞r1(R,ϕ) as a Fourier series while contrary
to [4] simultaneously maintaining shear stresses zero
at the hole boundary. In particular

σ∞r2(R,ϕ)/σ0 =
a0
2

+

N∗∑
n=1

an cosnϕ (17)

with

an =
2

π

1

σ0

∫ π

0
σ∞r1(R,ϕ) cosnϕdϕ

= − 4

π2

∫ π

0
sinϕ cosnϕdϕ n = 0, 1, ...,∞.

(18)
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Equating the dimensionless radial stresses using
Eq. (14) with the Fourier series representation in rela-
tion (17) and taking into account that uneven Fourier
coefficients an are zero,

an = 0 for n = 1, 3, ...,∞, (19)

yields

σ∞r2(R,ϕ)/σ0 = e0 − 2
N∑
n=1

{
n(2n+ 1)Dn+

+ (n+ 1)(2n− 1)En

}
cos 2nϕ

=
a0
2

+
N∑
n=1

a2n cos 2nϕ.

(20)
Equating each coefficient leads to

e0 =
a0
2
, (21)

−2{n(2n+ 1)Dn + (n+ 1)(2n− 1)En} = a2n.
(22)

To ensure vanishing shear stresses at r = R we set
Eq. (16) to zero,

τ∞rϕ2(R,ϕ)/σ0 = −2
N∑
n=1

{
n(2n+ 1)Dn+

+ n(2n− 1)En

}
sin 2nϕ = 0

(23)

⇔ (2n+ 1)Dn + (2n− 1)En = 0 (24)

With Eq. (22) and (24) Dn, En can be calculated by

Dn = −2n− 1

2n+ 1
En, (25)

En =
1

2

a2n
n(2n− 1)− (n+ 1)(2n− 1)

. (26)

The resulting stresses at the hole boundary were
calculated using MATHEMATICA and are presented in
Fig. 2 and 3.
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Fig. 2: Radial stresses of infinite dimensions solution
using N = 9 Fourier coefficients
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Fig. 3: Circumferential stresses of infinite dimensions
solution using N = 9 Fourier coefficients

3.3 Stress field for a joint with finite dimen-
sions by using a mirror technique

Let us denote the solution of infinite dimensions by
F∞11 and investigate its stresses in load direction where
the straight boundaries of the joint of finite dimen-
sions would be located. Their signs are shown in
Fig. 4 obviously violating stress free boundary condi-
tions of a finite dimensions joint. If using so called
auxiliary functions or auxiliary plates by mirroring
the infinite geometry solution F∞11 as shown in this
schematic those remaining stresses are cancelled.
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Fig. 4: Schematic how to mirror the infinite geometry
solution F∞ = F∞11 . C =̂ Compression, T =̂ Tension

To fully eliminate the remaining normal stresses σ−y at
the horizontal edge of F∞11 the original solution needs
to be vertically shifted, its sign reversed and lastly the
outer sinusoidal load shifted by 180◦. This is imple-
mented by the corresponding solution F∞21 .

To cancel the remaining shear stresses at the verti-
cal edges F∞11 has to be horizontally mirrored without
changing its sign. This is incorporated by F∞12 , F

∞
13 ,

etc. The shear stresses of F∞11 at the right vertical
edge denoted by τ∞11

xy (w/2, y) are fully eliminated
by just superimposing the directly opposite auxiliary
plate F∞12 . Elimination of the shear stresses at the
left hand side edge requires an auxiliary plate solu-
tion F∞13 inducing a remaining rest in τ∞11

xy (w/2, y).
The same applies for cancelling shear stress at the left
hand side edge. If a periodic row of horizontal aux-
iliary plates are used the superimposed shear stresses
at the vertical boundaries will vanish. Since the shear
stress cancelling auxiliary plates F∞1,j |j 6=1 also induce
normal stresses σ−y they require the upper auxiliary
functions F∞2,j |j 6=1 ensuring zero normal stresses.

Let us store all stress functions of the infinite ge-
ometry in a matrix [F∞ij ]

[F∞ij ] =

[
F∞11 F∞12 F∞13 ...
F∞21 F∞22 F∞23 ...

]
(27)

where F∞11 = F∞ denotes the original Airy stress
function and F∞ij |i,j 6=1 the auxiliary stress functions,
then F∞ij is eventually obtained by

F∞ij (x, y) = (−1)i+1F∞
(
(−1)i+1xj , (−1)i+1yi

)
(28)

with

[xj ] =


x1
x2
x3
x4
...

 =


x

x− w
x+ w
x− 2w
...

 , [yi] =
[
y1
y2

]
=

[
y

y − 2e

]

(29)
enabling the translation of F∞. The finite dimensions
solution is then built by

F fd
∣∣∣
nx|ny=2

=

nx∑
j=1,2,...

(F∞1j + F∞2j ) (30)

where nx denotes the total number of horizontally, ny
the total number of vertically aligned plates.

Residual shear stresses at the vertical edges of
the finite dimensions solution raise the question how
many horizontally mirrored plates are required to
model the load transfer accurately. To asses this mat-
ter let us investigate the stresses of the free body
sketch in Fig. 6. If all stress boundary conditions are
ideally fulfilled the outer load Fy must be fully trans-
ferred by the net section stresses σy(x, 0). Let χσy be
the load transfer ratio by those net section stresses,

χσy =
2

Fy

∫ w/2

R
σ
fd,ny |nx
y (x, 0) dx, (31)

where σ
fd,ny |nx
y represents the corresponding stress

components of the superimposed finite geometry so-
lution containing nx, ny = 2 plates in total. χσy is
plotted with respect to nx in Fig. 5 and ideally would
reach 1.

0 20 40 60 80 100 120 140
0.7

0.8

0.9

1

nx [−] −→

χ
σ
y
[−

]
− →

Fig. 5: Load transfer ratio for N = 9, ny = 2

A load transfer value of at least 95 % is consid-
ered as sufficiently accurate which is reached for
nx ≥ 9, ny = 2. The lack of arriving at χσy = 1 is due
to the auxiliary plates apart from cancelling stresses at
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the straight edges to a value near zero also slightly
interfering with the hole boundary stresses, which
becomes evident in the superimposed radial stresses
plotted in Fig. 11 as well as in the load transfer ratios
of the stresses corresponding to the free form body. In
particular

χσr =
R

Fy

∣∣∣∣ ∫ π

0
σfd,2|9r (R,ϕ) sinϕdϕ

∣∣∣∣ = 0.96 6= 1,

(32)

χτrϕ =
R

Fy

∣∣∣∣ ∫ π

0
τ fd,2|9rϕ (r, ϕ) cosϕ dϕ

∣∣∣∣ = 0, (33)

χτxy =
1

Fy

∣∣∣∣ ∫ e

0
τ fd,2|9xy (w/2, y)−

− τ fd,2|9xy (−w/2, y) dy
∣∣∣∣ = 0.03 6= 0 (34)

meaning that in the hole boundary conditions the ra-
dial stresses show the strongest deviation.

σy(x, e) = 0

τxy(−w/2, y) τxy(w/2, y)

σy(x, 0)

σr(R,ϕ)

x

y

Fig. 6: Free form body - only with stresses relevant
for equilibrium in load direction

To further investigate how the flux of forces is
changed by mirroring the infinite geometry solution
the stream plots of the stress vector

~ty =

[
σx τxy
τxy σy

]
·
[
0
−1

]
= −

[
τxy
σy

]
(35)

in Fig. 7, 8 and 9 shall serve.

~ty
only τxy
only σy

Fig. 7: Stress vectors ~ty for the infinite geometry so-
lution

~ty

only τxy
only σy

Fig. 8: Stress vectors ~ty for the finite geometry solu-
tion with nx = 2, ny = 21

~ty

only τxy
only σy

Fig. 9: Stress vectors ~ty for the FE solution
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Mirroring the infinite solution leads to stress vectors
~ty tangent to the straight edges like those in the FE
reference thus providing an accurate load transfer.

4 Comparison to Finite Element
results

To verify the analytically derived stress field a two-
dimensional bolted joint model is built using the
FE software ABAQUS as shown in Fig. 10. The mesh
contains CPS8 continuum plane stress elements with
eight nodes. Furthermore a contact algorithm in be-
tween plate and bolt as well as a sinusoidal contact
stress distribution are implemented providing justifi-
cation of this contact problem idealisation. Conver-
gence of the stresses at the hole boundary is assumed
if an increase of the number of the elements leads
to unnoticeable changes in those stresses. This is
reached for at least 72 elements at the hole bound-
ary. The plate is modelled as a quasi-isotropic com-
posite laminate of T300/Epoxy with effective stiffness
parameters E, ν. The bolt material is titanium char-
acterised by EB, νB. Tab. 2 shows the implemented
effective stiffness values.

property E [MPa] ν [-] EB [MPa] νB [-]
value 57 890 0.3 110 000 0.3

Tab. 2: Stiffness properties

Fy

net section path

ξ

Fig. 10: Finite element model
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x: FE contact model
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Fig. 11: Comparison to FE results: radial stresses
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Fig. 12: Comparison to FE results: Circumferential
stresses
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Fig. 13: Comparison to FE results: stresses in load
direction at net section
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The net section stresses are plotted with respect
to the dimensionless coordinate

ξ =
x−R
w/2−R

(36)

shown in Fig. 10 with ξ = 0 at the hole boundary and
ξ = 1 at the right vertical edge.

The radial stresses and tangential stresses in
Fig. 11 and 12 at the hole boundary as well as the net
section stress in Fig. 13 show that the bolt plate con-
tact idealisation as sinusoidal stress distribution and
therefore the reduction of the nonlinear contact prob-
lem to a linear problem is acceptable for the given
isotropic configuration with quasi infinite dimensions.

The present solution provides a good approxima-
tion of the tangential stresses although not hitting the
peaks at the net section area ϕ = {0, π}. Since
in net section failure assessment by common means
like Theory of Critical Distances [9] or Finite Frac-
ture Mechanics [13] stresses at or within a certain dis-
tance d0 but not only directly at the hole boundary
play a role this drawback can be considered as toler-
able. Moreover the very good agreement of the net
section stresses in Fig. 13 shows that the present solu-
tion provides an adequate means for 2D stress analysis
and subsequent net tension failure assessment.

5 Conclusion

A closed-form analytical solution for a pin-loaded
hole in an isotropic plate with finite dimensions has
been developed by means of the Airy stress function.
The geometry is chosen in such a way that additional
stress concentrations due to finite dimensions faded
away. The pin-plate contact problem is idealised by
a sinusoidal distribution in the radial stresses. Firstly
a solution for the infinite geometry fulfilling the hole
boundary conditions is derived. Afterwards the finite
geometry problem is treated by mirroring the infinite
dimensions solution in such a way that stresses in load
direction at the straight edges of the plate are can-
celled. Unfortunately superimposed mirrored stress
fields also slightly change the hole boundary con-
ditions. Nevertheless the comparison to FE results
shows that the present finite geometry solution still
accurately models the load transfer towards the clamp
as well as characteristic field quantities and therefore
provides an efficient tool for 2D stress analysis.
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