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Abstract: - In the design of tuned mass dampers (TMDs), the mass of the TMD is an important performance 
factor. Generally, the best optimum performance is seen for the maximum mass which is restricted by the 
loading capacity of the main system. In the presented study, the optimum period and damping ratio of TMD for 
various single degree of freedom (SDOF) structures are investigated for different mass ratios. In the 
methodology, a metaheuristic algorithm called flower pollination algorithm is employed. The optimization 
objective is the minimization of maximum amplitude of the transfer function of the system, which is generally 
seen at the critical frequency of the structure. According to the results, the frequency or period ratio is generally 
only related to the mass ratio, but the main structure period plays a great role on the optimum damping ratio. 
 
Key-Words: Tuned mass dampers, mass factor, metaheuristic algorithms, flower pollination algorithm, frequency 
domain, transfer function.  
 
 
1 Introduction 
For the vibration of mechanical systems, a mass 
attached to a springlike element (stiffness element) 
and a damper is used to reduce undesired 
mechanical vibrations. This device is called tuned 
mass damper (TMD) and it is used with all 
mechanical systems including robots, vehicles, 
machines and civil structures.  
For example, TMDs can be used in structures for 
reduction of vibrations resulting from different 
sources such as wind, earthquake and traffic. For 
example, a TMD was added for comfort to Berlin 
TV Tower (Figure 1). For seismic safety, Los 
Angeles Theme Building-Lax Theme Building 
(Figure 2) was retrofitted with a TMD 20% mass 
ratio. 
Tuned mass dampers can only effective when the 
device is tuned according to the critical natural 
frequency of the structure. For that reason, several 
closed-form expressions were developed for single 
degree of freedom structures. These formulations 
are for the frequency ratio of TMD and structure 

and damping ratio of the TMD. These optimum 
tuning equations are only variable of the mass ratio 
of TMD and structure and the period of structure, 
the content of excitation and non-critical vibration 
modes are not considered. By considering the 
critical mode, these equations can be approximately 
used for multiple degrees of freedom systems [2-5].     

 
Figure 1 Berlin TV Tower 
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Figure 2 Lax Theme Building 

It is impossible to derive a formula by including the 
inherent damping of the main system. For that 
reason, numerical optimization techniques have 
been developed [6-9]. Also, the formulations of 
Sadek et al. [4] were found according to the 
numerical trial results to include damping in the 
optimization. The most popular methods in recent 
years are to use metaheuristic algorithm. Leung and 
Zhang derived their formulations according to 
Particle Swarm Optimization based methodology 
[5].  
The first metaheuristic based TMD optimization 
studies employed Genetic Algorithm (GA). The GA 
applications include regular structures [10-11], 
asymmetric plan structures [12-13] and active tuned 
mass dampers including fuzzy logic controller [14]. 
Another bio-inspired algorithm called bionic 
algorithm was employed by Steinbuch [15] for 
optimization of TMDs.  
The music inspired Harmony Search (HS) has been 
employed in many TMD optimization studies to 
investigate time domain optimum results [16], mass 
ratio factor [17], preventing brittle fracture [18] and 
frequency domain optimum results [19]. Bat 
algorithm (BA) based methodology has been 
proposed by Bekdaş et al. [20]. Also, soil-structure 
interaction was considered by Bekdaş and Nigdeli 
employing HS and BA [21]. Teaching Learning 
Based Optimization [22] and Flower Pollination 
Algorithm (FPA) [23] were also employed in the 
optimum TMD design. 
In the present study, the mass ratio factor is 
investigated on single degree of freedom systems. 
The optimum tuning of mass dampers was done by 
employing FPA using frequency domain analyses of 
the system.  
 
 

2 Methodology  
In this section, the equation of a single degree of 
freedom structural system combined with a TMD is 
presented. Then, the methodology is briefly 
explained.  
In the Figure 3, a two degree of freedom system 
with the freedom of main system and TMD is 
shown.  
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Figure 3 The structure-TMD model 

Under a ground excitation, the equation of structure 
can be written as Eq. (1).  
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The M, C and K are the mass, damping and stiffness 
matrices multiplied by the acceleration( )t(x ), 
velocity ( )t(x ) and displacement vectors (x(t)), 
respectively. The acceleration and velocity are 
derivative of displacements respect to time. The 
matrices are as follows:  
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m, c, k and x are the mass, stiffness, damping 
coefficient and displacement of the main 
structure. The parameters and displacement of 
TMD denoted with a subscript, d. The ground 
excitation is shown with )(txg . 
During the optimization the mass of TMD (md) is 
taken as a constant, because it is optimum in 
maximum values. The other optimized parameters 
are the period (Td) and damping ratio (ξd) which are 
formulated as follows: 

d

d
d k

mT π= 2                          (6)  

d

d
ddd m

kmc2=ξ                          (7)  

The optimization objective is to minimize the 
transfer function (TF) value of the acceleration of 
structure which the ratio of Laplace transforms of  
and )(txg . It is calculated as given in Eq. (8) in 
frequency domain.  
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TF has imaginary (j) and real part. The amplitude is 
considered as objective function (f) and it is given 
in Eq. (9) in decibel (dB).  

))(max(TFLog20f N10 ω=      (8)  

The main goal of the optimization is to minimize the 
value of f. For that reason, an iterative analysis is 
done according to the rules of FPA developed by 
Yang [24].  
The algorithm inspired from the pollination process 
of flowering plants uses two types of phases called 
global and local pollination. In global, the rules of 
Lévy flight are considered to express the pollen 
transfer process of pollinators. In local pollination, 
the existing results are used with linear random 
distribution to express the self-pollination process of 
flowering plants.  
A switch probability is used to choose the type in 
each iteration and this value is taken as 0.5 to give 
an equal probability for two types of optimization. 
The steps of the methodology can be generalized in 
the following topics.  
 
1- Define structural parameters and design variable 
ranges.  
2- Generate initial solutions randomly 

3- Choose a type according to probability 
4- Generate and update existing solutions 
5- Continue 3 and 4 until maximum iteration 
number.  
 
3 Numerical examples  
As the numerical investigations, 10 different SDOF 
structure with periods from 0.1s and 5s were 
investigated. The optimum results are found for 10 
mass ratio value for all structures. The investigated 
mass ratio values are between 1% and 40%. The 
inherent damping of structures was taken as 5%. 
The maximum allowed damping ratio of TMD is 
50%. The optimizations of all TMDs were done 104 
maximum iterations.  
In the Table I, the optimum results are presented for 
different structure periods (T) and mass ratio (µ). 
The maximum transfer function value of the 
structure without TMD is 20 dB and it reduced with 
68.3% for TMD with 40% mass. 
In Figure 4, TMD vs. structure period is plotted. By 
the increase of the mass ratio, the period of TMD is 
also increasing. For different periods of structure, 
the period ratio of TMD and structures are close to 
each other and these values are changing between 
1.0066 and 1.2850 according to the mass ratio 
values.  
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Figure 4. Td vs T plot 

In the Figure 5, the optimum ratio of TMD vs. the 
period of structure is plotted. As seen, the optimum 
damping ratio is similar for structure periods lower 
than 1s, but it is complex for the other structures. 
Lastly, the objective function vs. the structure 
period is plotted in Figure 6 and the values are 
nearly same as mass ratios and the performance 
increases by the increase of the mass ratio. 
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TABLE I.  THE OPTIMUM RESULTS 

T(s) 0.1 0.3 0.5 0.7 1 1.5 2 3 4 5 
µ 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 
Td(s) 0.1007 0.3020 0.5034 0.7043 1.0068 1.5102 2.0136 3.0204 4.0613 5.0512 
xd 0.0677 0.0677 0.0696 0.0649 0.0713 0.0713 0.0713 0.0713 0.0578 0.0500 
f(dB) 15.8968 15.8948 15.8931 15.8836 15.8926 15.8926 15.8926 15.8926 15.4080 15.7146 
µ 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 
Td(s) 0.1022 0.3067 0.5112 0.7155 1.0224 1.5307 2.0469 3.0696 4.0407 5.1058 
xd 0.1120 0.1120 0.1125 0.1074 0.1074 0.1028 0.1161 0.1068 0.0985 0.1061 
f(dB) 13.5845 13.5828 13.5813 13.5826 13.5768 13.5623 13.5430 13.4209 13.2848 13.0512 
µ 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 
Td(s) 0.1038 0.3112 0.5187 0.7263 1.0369 1.5565 2.0719 3.1199 4.1381 5.1590 
xd 0.1411 0.1398 0.1424 0.1393 0.1362 0.1391 0.1458 0.1503 0.1584 0.1466 
f(dB) 12.3010 12.3009 12.2981 12.2974 12.2873 12.2744 12.2625 12.2575 12.2450 11.9544 
µ 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 
Td(s) 0.1060 0.3180 0.5301 0.7421 1.0603 1.5879 2.1167 3.1705 4.2300 5.3186 
xd 0.1743 0.1741 0.1778 0.1751 0.1778 0.1656 0.1711 0.1799 0.1567 0.1933 
f(dB) 11.0246 11.0238 11.0242 11.0210 11.0242 11.0066 10.9744 10.9561 10.8581 10.9625 
µ 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 
Td(s) 0.1075 0.3225 0.5375 0.7525 1.0751 1.6125 2.1517 3.2241 4.2806 5.3386 
xd 0.1930 0.1929 0.1951 0.1950 0.1923 0.1880 0.1999 0.1756 0.1852 0.1660 
f(dB) 10.3931 10.3921 10.3915 10.3901 10.3878 10.3850 10.3771 10.3813 10.1939 10.3503 
µ 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 
Td(s) 0.1112 0.3334 0.5558 0.7779 1.1113 1.6642 2.2220 3.3271 4.4553 5.5042 
xd 0.2297 0.2291 0.2307 0.2295 0.2267 0.2185 0.2218 0.2338 0.2337 0.2268 
f(dB) 9.2162 9.2159 9.2146 9.2117 9.2138 9.2101 9.2135 9.1532 9.1643 9.0548 
µ 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 
Td(s) 0.1147 0.3442 0.5738 0.8029 1.1469 1.7190 2.2945 3.4468 4.5460 5.7350 
xd 0.2584 0.2595 0.2613 0.2568 0.2591 0.2539 0.2576 0.2645 0.2378 0.2370 
f(dB) 8.3681 8.3679 8.3678 8.3673 8.3629 8.3536 8.3540 8.3473 8.2971 8.3492 
µ 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 
Td(s) 0.1182 0.3548 0.5913 0.8282 1.1822 1.7739 2.3610 3.5427 4.7249 5.8912 
xd 0.2834 0.2841 0.2848 0.2876 0.2812 0.2848 0.2813 0.2910 0.2991 0.2666 
f(dB) 7.7091 7.7087 7.7087 7.7088 7.7074 7.7017 7.6892 7.6681 7.6526 7.6235 
µ 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 
Td(s) 0.1217 0.3652 0.6085 0.8518 1.2160 1.8240 2.4321 3.6481 4.8641 6.0402 
xd 0.3049 0.3063 0.3050 0.3036 0.3007 0.3007 0.3007 0.3007 0.3007 0.2950 
f(dB) 7.1736 7.1735 7.1725 7.1727 7.1717 7.1717 7.1717 7.1717 7.1717 7.0430 
µ 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 
Td(s) 0.1284 0.3852 0.6421 0.8985 1.2839 1.9271 2.5617 3.8608 5.1180 6.4254 
xd 0.3382 0.3380 0.3382 0.3355 0.3388 0.3444 0.3282 0.3583 0.3449 0.3349 
f(dB) 6.3407 6.3405 6.3404 6.3404 6.3372 6.3353 6.3298 6.3320 6.2951 6.3068 
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Figure 4. ξd vs T plot 
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Figure 4. TF vs T plot 

    
 
4 Conclusions 
According to the results, the frequency or the period 
ratios of the TMD and structure is not related to the 
period of the main structure. In that case, the closed 
form formulations of the optimum frequency ratio 
[2-5] are useful in optimum tuning. A perfect 
optimum value can be only found with numerical 
optimization because the optimum damping values 
of TMD are different and related with the period of 
the structure. In that case, closed form equations are 
not a perfect optimum for the damping ratio.  
By using a mass ratio between 1% and 40%, it is 
possible to reduce the TF value by 20.5% and 
63.8%, respectively.  
In the future studies, the study can be widened with 
different inherent damping ratios of the main 
structure.   
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