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1 “Railway Vehicle-Track” System 
The Railway Vehicle and the Railway Track, on 
which the Vehicle is running, constitute a unified 
system which functions (with actions and reactions 
between these two “elements”) and oscillates as an 
ensemble.  This system with its dashpots and 
springs is depicted -in a simplified form- in Fig. 1.  

Fig. 1 The system “Railway Vehicle-Track”. 

The motion of a railway vehicle on the rail running 
table/surface or the motion of a road vehicle on the 
road, the response of the structures to earthquakes, 
etc, is a forced oscillation with a forcing excitation 
(force), and damping expressed by a random, non-
periodic function.  

In the railway vehicle there are two levels of 
suspension, the primary and the secondary, which 
define the Non-Suspended/Unsprung and the 
Suspended/Sprung Masses. The simulation 
technique, the implied differential equation and the 
computing of the variance of the vertical 
accelerations due to the Non-Suspended Masses 
(located under the primary suspension of the 
vehicle) was presented in [1], [2]. The present paper 
presents a simulation technique, the implied 
differential equation and the computing of the 
variance of the vertical accelerations due to the 
Suspended Masses (located over the primary 
suspension of the vehicle) [see relevantly [3]]. 

2 Simulation Technique 

2.1 Simulation of the System “Railway 
Vehicle-Railway Track” 
In Fig. 2 a schematic model of the system “Railway 
Vehicle-Track” is depicted; in practice it is an 
ensemble of springs and dashpots. The railway track 
is represented by the resultants of springs and 
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dashpots, as described in [1] and [2]. It has to be 
noted that a part of the track mass is also added to 
the Non-Suspended Masses, which participates in 
their motion ([4], [5]).  

The rail running table has the shape of a wave, 
that is not completely “rectilinear”, consequently it 
does not form a perfectly straight line but contains 
faults/defects, varying from a few fractions of a 
millimeter to a few millimeters, and imposes forced 
oscillation on the railway vehicles that circulate on 
it. The faults/defects are represented by the ordinate 
n in Fig. 2. Moreover, during the rolling of the 
wheel, a deflection y of the rail running table 
appears (see [6]), since the support (track) is not 
undeflected.  

Fig. 2 Model of a Vehicle running the Rail Running 
Table; the Non-Suspended Masses (NSM) and the 
Suspended Masses (SM), the primary and secondary 
suspensions are depicted. 

2.2 Differential Equation for the System 
“Railway Vehicle-Track” 
The simulation technique leads to the simplified 
depiction of the track as an elastic media with 
damping (Fig. 2) circulated -on the rail running 
table- by a wheel (see relevantly also [7]). This 
system “Wheel-Track” is subjected to a forced 
oscillation by the irregularities of the rail running 
table (like an input random signal) –which are 
represented by n–, in a gravitational field with 
acceleration g. If the random excitation is given, it is 
difficult to derive the response, unless the system is 
linear and invariable, where the input signal can be 
defined by its spectral density, which can lead to the 
computing of the spectral density of the response. 
The theoretical results confirm and explain the 
experimental verifications ([8], p.39, 71). The 

differential equation for the system “wheel-track” 
becomes ([1], [3], [6], [7]): 

                                                                       (1) 

where: mNSM the Non-Suspended Masses (NSM) 
of the vehicle in tonnes-mass, mTRACK the mass of 
the track that participates in the motion of the NSM 
(for its calculation see Ref. [4] and [5]), mSM the 
Suspended Masses (SM) of the vehicle, Γ damping 
constant of the track, hTRACK the total dynamic 
stiffness coefficient of the track (its calculation Eqn. 
3 below), n the fault ordinate of the rail running 
table, g the acceleration of gravity and y the total 
deflection of the track. Furthermore: 

                                                                             (2) 

where: ρi the static stiffness coefficients of the 
constitutive layers of the track, the quasi spring 
constants of the layers and ρtotal the resultant total 
static coefficient of the track and hTRACK the total 
dynamic stiffness coefficient of the track given by: 

                                                                       (3) 

with E, J the modulus of elasticity and the 
moment of inertia of the rail (steel) and ℓ the 
distance among the sleepers. 

The phenomena of the wheel-rail contact and of 
the wheel hunting, particularly the equivalent 
conicity of the wheel and the forces of pseudo-glide, 
are non-linear. In any case the use of the linear 
system’s approach is valid for speeds lower than the 
Vcritical≈500 km/h. The integration for the non-linear 
model (wheel-rail contact, wheel-hunting and 
pseudoglide forces) is performed through the Runge 
Kutta method ([8], p.94-95, 80, [9], p.98, see also 
[10], p.171, 351). 

In Fig. 2 the rail running table depicts a 
longitudinal fault/defect of the rail surface. In the 
above equation, the oscillation of the axle is damped 
after its passage over the defect. Viscous damping, 
due to the ballast, enters the above equation under 
the condition that it is proportional to the variation 
of the deflection dy/dt. To simplify the 
investigation, if we ignore the track mass (for its 
calculation Ref. [4] and [5]) in relation to the much 
larger Vehicle’s Non-Suspended Mass and bearing 
in mind that y+n is the total subsidence of the wheel 
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during its motion (since the y and n are added 
algebraically).  

2.3 Applying the Fourier Transform on the 
Differential Equation of a Track Loaded by a 
Running Railway Vehicle 
We begin from the hypothesis of a cosine-form 
defect on the rail running table of the form: 

                                                                         (4) 

where: η the ordinate of the defect along the 
track (abscissa x), V the speed of the vehicle, t the 
time and λ the wavelength of the defect, so:  

                                                                             (5a)  

since the wheel overpasses the wavelength λ of 
the defect, in: 

                                                                        (5b) 

If we set:  

its second derivative will be: 

where the quantity                          represents 

the subsidence due to the static loads only, and z 

random (see [21]) due to the dynamic loads. Eqn (1) 

becomes: 

          (6a) 

            (6b) 

Since, in this case, we are examining the 
dynamic loads only (derived from the actions of the 
Suspended and Non-Suspended Masses) , in order to 
approach their effect, we could narrow the study of 
equation (6b), by changing the variable: 

Equation (6) becomes: 

                                                                                      (7a) 

                                                                                      (7b)        

where, u is the trajectory of the wheel over the 
vertical fault (of ordinate n) in the longitudinal 
profile of the rail.   

If we apply the Fourier transform to the equation 
(6a) (see relevantly Ref. [11] for solving second 
order differential equations with the Fourier 
transform): 

                                                                                      (8a) 

                                                                                      (8b) 

                                                                                (8c) 

H(ω) is a complex transfer function, called 
frequency response function [11], that makes it 
possible to pass from the fault n to the subsidence Z. 
If we apply the Fourier transform to equation (7a): 

                                                                               (9) 

G(ω) is a complex transfer function, the 
frequency response function, that makes it possible 
to pass from Z to Z+n. 

If we name U the Fourier transform of u, N the 
Fourier transform of n, p=2πiν=iω the variable of 
frequency and Δ̂Q the Fourier transform of ΔQ and 
apply the Fourier transform at equation (7b): 

                                                                            (10a) 

where: 

                                                                            (10b) 
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B(ω) is a complex transfer function, the 
frequency response function, that makes it possible 
to pass from the fault n to the u=n+Z. Practically it 
is verified also by the equation: 

                                                                            (10c) 

passing from n to Z through H(ω) and afterwards 
from Z to n+Z through G(ω). This is a formula that 
characterizes the transfer function between the wheel 
trajectory and the fault in the longitudinal level and 
enables, thereafter, the calculation of the transfer 
function between the dynamic load and the track 
defect (fault).  

The transfer function B(ω) allows us to calculate 
the effect of a spectrum of sinusoidal faults, like the 
undulatory wear. If we replace ω/ωn=ρ, where ωn= 
the circular eigenfrequency (or natural cyclic 
frequency) of the oscillation, and: 

where ζ is the damping coefficient. Eqn (10b) is 
transformed: 

                                                                  (10d) 

The transfer function C(ω) of the second 

derivative of (Z+n) in relation to time: 
 2

2

d Z n

dt
,    

–that is the acceleration γ–, will be equal to ω∙Β(ω): 

                                                                      (11a) 

that is:  

                                                                       (11b)   

The increase of the vertical load on the track due 
to the Non-Suspended Masses, according to the 
principle force = mass x acceleration, is given by: 

                                                                  (12) 

If we apply the Fourier transform to Eqn. (12): 

                                                                      (13a) 

                                                                     (13b) 

In [3] the solution of the differential Eq. (1) is 
presented as far as the input and output Variance of 
the vertical acceleration of the Suspended Masses of 
the vehicle.   

In order to pass from the defect n to n+Z [3]: 

                                                                       (14) 

where: sE(ω) is the power spectrum density of the 
excitation, ωn is always the eigenfrequency of the 
Non-Suspended Masses, ζ the damping coefficient 
of the track, sυ(ω) the spectrum of the excitation of 
the wheel due to the track defects/faults and 
│B(ω)│the modulus of the transfer function of the 
motion of the wheel.  

C(ω) is the transfer function of the second 

derivative of (Z+n) in relation to time:                     ,                    

that is the acceleration γ and it is equal to ω∙B(ω).  

In [12] the results of a sensitivity analysis are 
presented, specifically for the case of long wave-
length defects in relation to the vertical acceleration 
z´´(t) (as a percentage of the gravitational 
acceleration g) multiplied by a (constant) factor 
[(mNSM+mTRACK)/(mNSM ·a)]. In the case of the 
Suspended Masses │C(ω)│is the modulus of the 
transfer function of the accelerations of the car-body. 
For wavelengths inferring cyclic-frequencies higher 
than two times the eigenfrequency of the wheel [see 
12], the vertical acceleration of the NSM becomes 
very small, almost negligible (consequently the 
dynamic component of the load), compared to the 
results presented in [1], [2], for smaller values of 
ωn/ω1 (0.5 till 2). In the cases of the long wavelength 
defects, the influence of the SM should be examined. 

For the railway vehicles the eigenfrequencies ω′n
of the car-body are in the area of 1 Hz, since with the 
development of high-speeds it could arrive 10 Hz. 
For the damping coefficient of the car-body of the 
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railway vehicles two characteristic values of ζ′ could 
be used with reliability: 0,15 and 0,20 (see relevantly 
[13] and [8]).  

                                                                        (15) 

The variance of the accelerations of the car-body 
of the railway vehicles is given [12]:  

                                                                      (16) 

which converges for ω infinite. Consequently, the 
variance of the part of the dynamic component of 
the load due to the Suspended Masses of the vehicle 
is given by [12]: 

                                                                            (17)  

Finally, an approximation could be used for the 
calculation of the variance of this part of the 
dynamic component of the load (see [6], [7]): 

                                                                (18) 

where: Qwheel is the static wheel load, V is the 
operational speed, and the coefficient  NL is the 
mean standard deviation of the longitudinal level 
condition of the track, on a 300 m length 
approximately, for both rails is the mean standard 
deviation of the longitudinal level condition of the 
track, on a 300 m length fluctuating between 0,7–
1,5 mm or more (see [7]; [13], p. 335–336); for the 
Greek network NL is estimated to fluctuate                
–mainly– between 1 and 1,5 [6].  

In more details NL, the average of the brutal 
signal on a basis of approximately 300 m for the 
vertical and horizontal defects of the two rails, is the 
convolution: 

                                                                 (19) 

where ηl(x) is the value of the primary signal; in 
practice a weighted average index which “crashes” 
less the isolated defects than one classic average and 
simulates roughly the “memory” of the vehicle (see 
relevantly [13]). 

3 Approximants 
This computing technique is complicated in practice 
for every-day use -especially- on work-sites. There 
is a need for the use of approximation methods -in 
simpler computers- with mathematical equations 

which could be compared to the measured values on 
real systems “railway vehicles-tracks”. 
The findings of an investigation, performed during a 
research program of the Greek railways in 
collaboration with the French state railways 
(SNCF), with the author as Coordinator and further 
research performed by the author, included the 
presented in Fig. 3 below data. In real conditions, 
according to measurements of the French State 
Railways (SNCF), the standard deviation σ(γ) of the 
vertical accelerations [as a percentage of the 
gravitational acceleration g] due to the Suspended 
Masses of the vehicles, in relation to the running 
speed is depicted in Fig. 3, as presented by professor 
J. Alias(†) [8] and A. Prud’Homme(†) [13]. The 
measurements were performed in tracks under 
operation in the French network (SNCF) and 
obviously, the measured values of σ(γ) have been 
influenced by the variation of the real values of 
ρsubgrade and ρtrack, as it existed along the measured 
tracks (consequently, the values of ρ were not 
constant), since the variability of the track stiffness 
e.g. due to imperfect sleeper support and 
inhomogeneities of the track structure is an inherent 
property. Fig.3 is the final product of the 
measurements performed along the tracks of the 
French network, and it is given in the publications 
above, as of general validity.  

Fig. 3 Measured values of the standard deviation of 
the vertical accelerations σ(γ) [of railway vehicles] 
in relation to the running speed and the 
eigenfrequencies of the railway vehicles (see [8], 
[13], [12]). 
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Six curves are presented for eigenfrequencies of the 
car-body 1 to 6 Hz. More analytically, the coupled 
system car-body-bogie-axles (a two-floor system) 
[Fig. 1] presents an eigenfrequency, that of the axle 
on the track, approximately 30-40 Hz, in an 
attenuated form, corresponding to the track defects 
which will become much more important when the 
speed in consideration will provoke a frequency 
very close to the coupled frequency of the car-body 
with the axles. This coupled low frequency of the 
car-body-bogie-axles, which mainly affects the car-
body and it is specifically interesting to us in this 
analysis, is approximately 1 Hz for the passenger 
wagons and higher for the freight wagons (see 
relevantly [8, p. 47]). This implies that the curve for 
1Hz eigenfrequency represents the passenger 
wagons and the higher frequencies the freight 
wagons, running at lower speeds. 
According to the analysis cited above –about the 
coupled system car-body-bogie-axles– it is clear that 
finally in this coupled motion (of 1 Hz frequency) 
all the parts of the vehicle participate, so we can 
approach the equations using the total Qwheel instead 
of mSM. 

Fig. 4 Comparison of (1) the measured values of the 
standard deviation of the vertical accelerations σ(γ) 
[of railway vehicles] in relation to the running speed 
and the eigenfrequencies of the railway vehicles 
(see [8], [13]) and (2) the values of the empiric Eqn 
(18) for four values of the coefficient NL=0.25, 0.50, 
1.00 and 1.50. 

This Figure is used for verification and comparison 
of the empiric Eqn (18) presented in [6] and the real 
conditions of the system “Railway Vehicle-Track”. 

In Fig.4 the curves of the eigenfrequencies of the 
vehicles as measured by the SNCF are depicted and, 
also, the Eqn (18) for four values of NL: 0.25, 0.5, 1 
and 1.5. The approximation is close enough.  
Some first remarks lead to the conclusion that small 
values of NL approach the passenger vehicles (with 
small eigenfrequencies) since larger values of NL

approach the freight vehicles (with larger 
eigenfrequencies). 
We must underline that the system “Railway 
Vehicle-Track” is subjected to random excitations 
and responses along the track and the derived 
approximants according to Eqn (18) have been 
based on Railway Track’s approaches and data 
since the measured values of the eigenfrequencies of 
the Railway Vehicles -on which this approximation 
is based- are derived from the domain of the 
Vehicles’ proper motion. Therefor a further 
research and sensitivity analysis should be 
performed in the future. 

4 Conclusions

In this paper, after the application of the Fourier 
Transform on the second order differential equation 
of motion -formulated for the system “Railway 
Vehicle-Track”- led to the solution of the 
differential equation for the case of the 
Suspended/Sprung Masses of the railway vehicle.  
The approximants of the standard deviation of the 
vertical acceleration which appears on the vehicle’s 
car-body have been investigated through a 
sensitivity analysis in relation to the railway 
vehicles’ eigenfrequencies and the operational 
speed. A real Railway Track with defects/faults 
have been taken into account. The solution is 
verified from findings from a research program 
performed by the Greek railways in collaboration 
with the French state railways (SNCF) and further 
research performed by the author. 
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