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Abstract: - The steady viscous flow with heat transfer over a permeable exponential shrinking sheet with partial 
slip at the boundary is stu died. Similarity equations are ob tained using similarity transformation in exponential 
form, which are then solved numerically using MATLAB routine boundary value problem solver based on finite 
difference method. Numerical results show that dual solutions exist for a certain range of mass suction. A stability 
analysis has been performed to show that first solution branch is stable while the other is always unstable. 
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1 Introduction 
The boundary layer flow on a stretching/shrinking 
sheet with heat transfer has many practical 
applications in ind ustrial manufacturing processes 
such as in the polymer industry, where one deals with 
production of plastic sheet. The main aim is to 
generate better quality sheet, which depends upon the 
rate of cooling. The stretching sheet flow problem 
was first i nvestigated by Crane [1] and reported an 
exact analytical solution to the Navier-Stokes 
equations. Following this study, the problem was 
then extended by other researchers [2-9].  

Wang [10] was the first to investigate the unsteady 
shrinking sheet film and gave only little information 
on this type of flow. Later, shrinking sheet proble m 
was investigated by Miklavcic and Wang [11] and 
established the existence and uniqueness criteria that 
there may be similarity solutions for this problem, if 
adequate suction on the surface is applied to confine 
vorticity, Further, this problem was investigated by 
Fang and Zhang [12], Cortell [13], Merkinand 
Kumaran [14], Sharma et al. [15] and many others. 
Sharma et al. [16] have investigated the stagnation 
point flow of a micropolar fluid ov er a 
stretching/shrinking sheet with second-order velocity 
slip. Recently, Fauzi et al. [17] have studied the flow 
and heat transfer over a st retching and shrinking 
sheet with slip and convective boundary condition. 

In most of circumstances, fluid normally sticks to 
the boundary and no slip condition is consistent with 

the flow problem. Many fluids with particulates, such 
as emulsions, suspensions, foams, polymer solution, 
rarefied gas etc., where there may be a slip  between 
the fluid and the boundary [18]. In the present article, 
we have investigated the boundary layer flow and 
heat transfer over an e xponentially shrinking sheet 
with velocity and thermal slip effects as proposed by 
Beavers and Joseph [19]. The mathematical model of 
the problem is non-linear whose analytical solution is 
very hard to find out. Therefore, in this study, 
MATLAB routine boundary value problem (BVP) 
solver is used as a too l for the numerical simulation 
and the flow characteristics are discussed.  
 
 

2 Problem formulation 
Consider the two-dimensional boundary layer flow 

of a v iscous and incompressible fluid past a 
permeable exponentially shrinking sheet coinciding 
with the plane y 0 , the flow being confined in the 
region y 0  as shown in Fig. 1. Two equal and 
opposite forces are applied along the x  axis towards 
the origin O  of the coordinate system, so that the 
wall shrinks keeping the origin fixed. It is assumed 
that the mass flux velocity is wv (x)  with wv (x) 0  
for suction and wv (x) 0  for injection or withdrawal 
of the fluid.  

Under the assumption of bo undary layer 
approximation, the go verning equations of 
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continuity, motion and energy are.  
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where t  is the time, u  and v  are the co mponents 
of velocity in the x  and y  directions, T  is the fluid 
temperature,   is th e thermal diffusivity,   is the 
kinematic viscosity.  

 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 1: Physical Model and Coordinate System 

We assume that the initial boundary conditions of 
these equations are given by 
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(4) 
where 0U U exp(x / L)   is the shrinking velocity, 

w 0T T exp(x / 2L)  is the varia ble temperature at the 
sheet and w 0v (x) V exp(x / 2L) . Here 0 0L, U , T  and 0V  
are the length, velocity, temperature and mass flux 
velocity characteristics, respectively, with 0V 0  for 
suction and 0V 0  for injection or withdrawal of the 
fluid. Further, we assume that the slip velocity factor 
N  and the thermal slip factor D  change with x  and 
are given by 1N N exp( x / 2L)   and 1D D exp ( x / 2 L)  , 
where 1N  is the initial value ofvelocity slip factor and 

1D  is the initial value of the thermal slipfactor (see 

Mukhopadhyay and Andersson [20]). The n o-slip 
case is recovered for N D 0  . 

We introduce now the following similarity 
variables (see Mukhopadhyayand Gorla [21]),      
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where prime denotes differentiation with respect to 
. Substituting (5) into Eq s. (2) and (3), we obtain 
the following ordinary differential equations 
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and the boundary conditions (4) become 
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Here 1 0N U / 2L ( 0)     is the velocity slip 

parameter, 1 0D U / 2 L ( 0)     is the thermal slip 
parameter, Pr /    is the Pran dtl number and 

0 0s V U / 2 L    is the suction (s 0)  or blowing 
(s 0)  parameter. 
 
 

3 Steady flow Solution 
Taking the steady flow situation 0  and 0    

in Eqs. (6) and (7), we obtain 
                  2f ''' f f '' 2 f ' 0                                 (9) 

             
1 '' (f ' f ' ) 0
Pr

                                 (10) 

with boundary conditions  

 

f (0) s, f '(0) 1 f ''(0), (0) 1
f '( ) 0, ( ) 0 as

      
     

             (11) 

The set of coupled nonlinear differential Eqs. (9 ) 
and (10), along with the boundary conditions (11) 
form a two point boundary value problem and is 
solved numerically using MATLAB routine BVP 

O x
           Shrinking 

Shrinking sheet 

y,

 Viscous fluid  
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solver based on finite difference method with fourth 
order accuracy.  

 
 

4 Results and discussion 
Numerical solutions to the go verning ordinary 

differential equations (9) and (10), along with the 
boundary conditions (11) are obtained using 
MATLAB routine solver for various values of the  
velocity slip parameter, thermal slip parameter and 
suction parameter. To solve this BVP with MATLAB 
routine BVP solver, we need the initial guess values. 
It is found that with different initial guess will result 
in different two solutions. Duality nature of the 
solution is c onsistent with the previous analysis for 
the shrinking sheet case (Miklavcic and Wang [11]; 
Bhattacharyya [16]).  

The Variation of the  reduced skin friction 
coefficient (or the surface shear stress) f (0) and the 
reduced local Nusselt number (0)  with s  for 
different values of the velocity slip parameter   and 
thermal slip parameter   are pre sented in Figs. 2-3 
and Fig. 4. It is ob served that when s  is equal to a 
certain cs ( 0) , there is on ly one solution and when 

cs s , there is no solution. Based on our 
computations, the value of cs decreases as   
increases and does not depend upon the values of   . 
Hence, velocity slip parameters widen the range of s  
for which the solution exists. 
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Fig. 2: Variation of f (0)  with s  for various values 

of   
In Figs. 2-3, for the first solution, f (0)  decreases 

but (0) increases with increasing  . Thus, the 
surface shear stress decreases but the heat transfer at 
the surface increases with  . The se cond solution 
shows complicated and quite different behaviors 

compared with the first solution. For the se cond 
solution, with the increase in  , both (0)f   and 

(0)   decrease, while for 2.54s   the pattern is 
reversed. In Figs. 4 , it is seen that for the first 
solution branch, the va lue of (0)  is con sistently 
higher with lower values of  , while reverse pattern 
is observed for the second solution branch. 
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Fig. 3: Variation of (0)  with s  for various values 

of   
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Fig. 4: Variation of (0)  with s  for various values 

of   
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Fig. 5: Variation of   with s  for various values of   

Following Merkin [22], we have test the linear 
stability of the steady flow solution. According to 
Merkin [22], stability is determined by the sign of the 
smallest eigenvalue. The positive minimum 
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eigenvalue determines the stable flow. Based on this 
approach, we h ave converted the problem to 
eigenvalue problem and find out the minimum 
eigenvalue for both the solution shown in figure 5 & 
6. For first solutions, the eigenvalues are always 
positive, while negative for second solutions. Thus, 
we conclude that first solutions are linearly  stable, 
while the second solutions are linearly unstable for 
these particular parameter values. It is also observed 
from Figs. 5 & 6 that stability of first solution branch 
increases with the increase of  and s , while   has 
no effect on flow stability.  
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Fig. 6: Variation of   with s  for various values of   
 
 
5 Conclusions 
In summary, the slip v iscous flow and heat transfer 
over an exponentially shrinking sheet with wall mass 
transfer has been solved numerically using MATLAB 
BVP solver to exhibit the effects of velocity slip 
parameter  , thermal slip parameter   and mass 
suction parameter s . It is found that multiple 
solutions exist in a c ertain range of mass suction 
parameter and the rang e of mass suction parameter 
for which the soluti on exists expands with the 
velocity slip parameter. It is obse rved that first 
solution is linearly stable while second solution is 
unstable. The flow stability increases with increasing 
velocity slip parameter   and mass suction parameter 
s . 
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