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Abstract: - In civil engineering, the sizing optimization of truss structures is a widely used practice. The aim of 
the optimization is to minimize the total weight of truss members by considering the constraints of several 
members and nodes. Two types of constraints are important in design and these constraints are stress and 
displacement limitations. In the recent study, a non-linear programming tool employing the interior-point 
algorithm was integrated with the analyses of truss structures. As numerical examples, two space structures and 
a plane structure were optimized. The results were compared with the documented methods. As a conclusion 
the proposed method is more effective on computation time compared to other methods.         
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1 Introduction 
In optimization theory, optimum sizing design of 
truss structures is an important engineering practice. 
This problem has non-linear constraints. Firstly, the 
stress of the members of the truss structures must 
not exceed the fracture limits. For the calculation of 
the stress, the area of truss members must be defined 
and the analyses of internal forces must be done. 
These analyses can be only done after the cross-
sectional areas of the structural members are known. 
These areas are the design variables and the problem 
is non-linear. Also, the nodal displacements can be 
only calculated after the assignment of design 
variables. In that case, numerical algorithms are 

used in the optimum design. Another option is to 
use non-linear programming tools.  
In the documented methods, several algorithms have 
been modified for the optimum design of truss 
structures. In the Table 1, the employed algorithms 
and references presented. 
In the recent study, a non-linear programming tool 
is proposed for the sizing optimization of truss 
structures. The fmincon function of Matlab [24] was 
integrated into the analyses of truss structures. The 
function employs the interior point algorithm 
developed by Fiacco and McCornick [25]. The 
proposed method was tested on space and plane 
truss structures.       
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TABLE I.  THE DOCUMENET METHODS FOR THE 
TRUSS OPTIMIZATION 

Method Reference 
A dual simplex algorithm (DSA) [1] 
Genetic algorithm (GA) [2-4] 
Ant colony optimization (ACO) [5] 
Big bang-big crunch (BB-BC) [6] 
Particle Swarm optimizer with 
passive congregation  (HPSO) 

[7] 

Particle swarm optimization (PSO) [8] 
Simulated annealing (SA) [9] 
Hybrid of BB-BC and PSO (HBB-
BC) 

[10] 

Artificial bee colony (ABC) [11] 
Harmony search (HS) [12-13] 
Teaching learning based optimization 
(TLBO)  

[14-16] 

Hybrid particle swallow optimization 
(HPSO) 

[17] 

Chaotic swarming of particle (CSP) [18] 
Colliding bodies optimization  
(CBO) 

[19-20] 

Flower pollination algorithm (FPA)  [21] 
Ray Optimization [22] 
Hybrid of PSO, ACO and HS 
(HPSACO) 

[23] 

 
 

2 The Optimization Problem 

The number of degrees of freedom of truss structure 
(n) is defined as   

sdNn −=                                              (1)  

if N>2 nodes and s≥0 fixed nodal coordinate 
directions. The number of nodal freedoms (d) is 2 
for planar trusses and 3 for space trusses. In that 
case, the number of bars (m) is defined as follows 
since long bars overlapping small bars must be 
prevented; 

nm ≥ and
2

)1( −
≤

NNm .                                        (2)  

The normalized weight of ith bar (λi) can be shown 
as λi≥0 for i∈ (1,....,m). If the material properties of 
bars are equal, 

ii ALi γ=λ , ( ∈iA ℝ) .                                            (3)  

The density of the bars is shown with γ while Li≥0 
is the length of the ith bar. The cross-sectional area 
of the ith bar is shown with Ai. The design variables 

of the optimization problem are A1,..., Ai,....,Am for 
i=1,....,m. The elastic equation of equilibrium can be 
written as 

PuAK A =)( ,                                             (4)  

where ∈Au ℝ𝑛𝑛 , ∈)(AK ℝ𝑛𝑛𝑛𝑛𝑛𝑛  and ∈P ℝ𝑛𝑛  are the 
displacement vector of nodes in global reduced 
coordinates , the stiffness matrix of the truss and 
external force vector, respectively. The stiffness 
matrix of the truss is obtained by merging the 
element stiffness matrix in global coordinates 
          ( ∈)(AKi ℝ2𝑑𝑑𝑛𝑛2𝑑𝑑). For a space truss structure, 
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where,  
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i

yi

i

xi

L
Lc

L
L

b
L
La === and, .                                (6)  

After the truss stiffness matrix is generated, the 
corresponding rows and columns of the fixed nodes 
are eliminated. Lxi, Lyi, and Lzi are the length ith bar 
in global x,y and z coordinates, respectively. E is the 
modulus of elasticity. 

The design variables are searched between upper 
(AU) and lower (AL) bounds, 

 U
i

L AAA ≤≤ mi ,......1= .                                       
(7)  

 One of the two design constraints is g1(A)≤0. It 
related to the limitation of stress of the ith bar (σi) 
with tensile limit (σL) and compression limitation 
(σU) as seen in (8). 

U
i

LAg σ≤σ≤σ:)(1 mi ,......1=                             (8)  

The stress on the global coordinates are found 
according to (9). 

mi
A

uAK

i

iiG
i ,.....,1

)(
==σ                             (9)  

The other constraint is related with the limitation of 
displacements defined in a nodal displacement 
vector of ith bar (ui). It is shown as  

U
i

L uuuAg ≤≤:)(2 Ni ,......1= ,                         (10)  
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 where uL and uU are limit of ranges defined as; 

0,0; >≤= ULUL uuuu .  (11) 

The objective function (f(A)) can be written as 
follows; 

∑
=

λ=
m

i
iAf

1

)(min .  (12) 

The aim of the optimization is to minimize the total 
weight of the bars. In the proposed method, the code 
provided for the analyses of the design constraints 
were integrated to the fmincon function of Matlab 
[24]. The results with the comparison with the other 
methods are presented in the following section.  

 

3 Numerical Example 
The numerical studies cover three truss structures; 
two space (25 bar and 72 bar) and a planar (200 bar) 
[21].  

3.1 25 bar truss structure 

The model of the structure is shown in Figure 1. The 
loading cases are shown in Table 2. The elasticity 
modulus and density are taken as 10 Msi and 0.1 
lb/in3. The ranges of design variables are between 
0.01 and 3.4 in2. The constraints of bars are 
presented in Table 3 for tensile and compressive 
stresses. The displacement is limited to 0.35 in. The 
optimum results are given in Table 4 with the results 
of other methods.  
 
 

 
Figure 1 25-bar truss structure. 

 

 

TABLE II.  THE LOADING CASES OF 25-BAR STRUCTURE 
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Case Node Px (kips) Py (kips) Pz (kips) 

1 

1 1.0 10.0 -5.0 

2 0.0 10.0 -5.0 

3 0.5 0.0 0.0 

6 0.0 0.0 0.0 

2 
1 0.0 20.0 -5.0 

2 0.0 -20.0 -5.0 
 

TABLE III.  THE DESIGN CONSTRAINT LIMITS OF 25-BAR STRUCTURE 

Element 
group Members 

Compression 
(ksi) Tension (ksi) 

1 1 35.092 35 

2 2-5 11.590 35 

3 6-9 17.305 35 

4 10,11 35.092 35 

5 12,13 35.092 35 

6 14-17 6.759 35 

7 18-21 6.959 35 

8 22-25 11.082 35 

 

TABLE IV.  THE OPTIMUM RESULTS OF THE 25-BAR STRUCTURE 

Group GA [2] ACO 
[5] 

HPSO 
[7] 

BB-BC 
[6] SA [9] 

HBB-
BC 

[10] 

ABC 
[11] 

TLBO 
[14] 

HPSO 
[17] 

CBO 
[19] 

FPA 
[21] 

Present 
study 

1 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0110 0.0100 0.0100 0.0100 0.0100 0.0100 

2 2.0119 2.0000 1.9700 2.0920 1.9870 1.9930 1.9790 1.9878 1.9907 2.1297 1.8308 1.9891 

3 2.9493 2.9660 3.0160 2.9640 2.9935 3.0560 3.0030 2.9914 2.9881 2.8865 3.1834 2.9905 

4 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0102 0.0100 0.0100 0.0100 0.0100 

5 0.0295 0.0120 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 

6 0.6838 0.6890 0.6940 0.6890 0.6840 0.6650 0.6900 0.6828 0.6824 0.6792 0.7017 0.6835 

7 1.6798 1.6790 1.6810 1.6010 1.6769 1.6420 1.6790 1.6775 1.6764 1.6077 1.7266 1.6766 

8 2.6759 2.6680 2.6430 2.6860 2.6621 2.6790 2.6520 2.6640 2.6656 2.6927 2.5713 2.6635 

Best Weight 
(lb) 545.80 545.53 545.19 545.38 545.16 545.16 545.19 545.18 545.16 544.31 545.16 545.16 

Number of 
structural 
analyses 

- 16500 125000 20566 400 12500 500000 12199 13326 9090 8149 
Duration

2.69s 

3.2 72 bar truss structure  
The second example (Figure 2) is a 72 bar truss 
structure. The loading cases of 72 bar truss structure 
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can be seen in Table 5. The material properties are 
the same as the first numerical example, but the 
maximum displacement is 0.25 and the stress limits 

∓25 ksi for all members. The cross sectional areas 
must be between 0.1 and 3.0 in2. The optimum 
results with design groups are presented in Table 6. 

 

Figure 2 72-bar truss structure. 

TABLE V.  THE LOADING CASES OF 72-BAR STRUCTURE 

Case Node Px 
(kips) 

Py 
(kips) 

Pz 
(kips) 

1 17-20 -5.0 -5.0 -5.0 
2 17 5.0 5.0 -5.0 

 

3.3 200 bar truss structure  

The last problem is a large planar truss structure. As 
seen in Figure 3, the structure has 200 elements and 
77 nodes. The material properties such as the 
elasticity modulus and density of the material are 

taken as 30 Msi and 0.283 lb/in3, respectively. The 
problem has no displacement constraint. The stress 
constraints are 10 ksi for all members and 
directions. The range of design variables is between 
0.1 and 20 in2. The members are grouped in 29 
sizing variables as seen in Table 7.  
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The structure is subject to three loading cases. In the 
first case, +1 kip load is applied in X-direction at 
nodes 1, 6, 15, 20, 29, 34, 43, 48, 57, 62 and 71. 
Secondly, -10 kips load is applied in Y-direction at 
nodes 1-6, 8, 10, 12, 14-20, 22, 24, 26, 28-34, 36, 
38, 40, 42-48, 50, 52, 54, 56-62, 64, 66, 68, 70-75. 
The final case is the combination of first and second 
loading cases. The optimum design must be suitable 
for all cases. The optimum results are presented in 
Table 8. 
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Figure 3 200-bar truss structure. 

TABLE VII.  THE MEMBER GROUPING OF THE 200-BAR STRUCTURE 

Element 
group 

Members  Element 
group 

Members  

1 1, 2, 3, 4  16 
82, 83, 85, 86, 88, 89, 91, 92, 
103, 104, 106, 107, 109, 110, 
112, 113 

2 5, 8, 11, 14, 17 17 115, 116, 117, 118 

3 19, 20, 21, 22, 23, 24 18 119, 122, 125, 128, 131 

4 18, 25, 56, 63, 94, 101, 132, 
139, 170, 177 19 133, 134, 135, 136, 137, 138 

5 26, 29, 32, 35, 38 20 140, 143, 146, 149, 152 

6 6, 7, 9, 10, 12, 13, 15, 16, 27, 
28, 30, 31, 33, 34, 36, 37 21 

120, 121, 123, 124, 126, 127, 
129, 130, 141, 142, 144, 145, 
147, 148, 150, 151 

7 39, 40, 41, 42 22 153, 154, 155, 156 

8 43, 46, 49, 52, 55 23 157, 160, 163, 166, 169 
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9 57, 58, 59, 60, 61, 62 24 171, 172, 173, 174, 175, 176 

10 64, 67, 70, 73, 76 25 178, 181, 184, 187, 190 

11 44, 45, 47, 48, 50, 51, 53, 54, 
65, 66, 68, 69, 71, 72, 74, 75 26 

158, 159, 161, 162, 164, 165, 
167, 168, 179, 180, 182, 183, 
185, 186, 188, 189 

12 77, 78, 79, 80 27 191, 192, 193, 194 

13 81, 84, 87, 90, 93 28 195, 17, 198, 200 

14 95, 96, 97, 98, 99, 100 29 196, 199 

15 102, 105, 108, 111, 114   
 
 4 Conclusions 
According to the results of the proposed method 
integrated with analyses of truss structures, the 
proposal is a comparative method according to the 
other documented methods. Comparing to the other 
methods using metaheuristic algorithms, the 
method is effective in the computational effort.  
For example, the total optimization period is only 
2.69 s for the proposed method. At the same 
computer system, a structural analysis in 
metaheuristic based methods is 0.1512 s long. In 
that case, the FPA based method [21] is effective to 
find the similar optimum value in 1232.13 s. 
Similarly, the optimum result of the second 
example is found in 11.64 s while FPA [21] is 
effective to find an optimum value in 1067.23 s by 
using the same equipment. It must be noted that the 
other methods need more analyses than the FPA 
based method.  

 
For the last example, the duration of the 
optimization is 550.99 s which is significantly more 
than the other examples for the proposed method. 
Since the problem is big, the duration of an analysis 
(0.2138 s) is nearly two times of the second 
example. In that case, the FPA based method [21] 
is effective to find the optimum value in 2284.453 
s. For this example, several methods may be 
effective in reduction of optimum weight, but 
minor constraint violations may occur in the 
metaheuristic algorithm based methods.  
As a conclusion, the proposed strategy for the 
optimum sizing of truss structures is a quick and 
effective tool. By using this rapid method, it will be 
possible to find better member grouping options 
than the proposed ones in the documented methods. 
In that case, economical and practical solutions can 
be found. This issue will be considered in the future 
studies. 

TABLE VIII.  THE OPTIMUM RESULTS OF THE 200-BAR STRUCTURE 

Element 
group 

HS 

[13] 

GA 

[4] 
SA [9] HPSAC

O [23] HS [12] TLBO 
[15] 

CSP 

[18] 
HPSO 

[17] 
TLBO 

[16] 
FPA 
[21] 

Present 
study 

1 0.1253 0.3469 0.1468 0.1033 0.1540 0.1460 0.1480 0.1213 0.1135 0.1425 0.1069 

2 1.0157 1.0810 0.9400 0.9184 0.9410 0.9410 0.9460 0.9426 0.9484 0.9637 0.9154 

3 0.1069 0.1000 0.1000 0.1202 0.1000 0.1000 0.1010 0.1220 0.1078 0.1005 0.2094 

4 0.1096 0.1000 0.1000 0.1009 0.1000 0.1010 0.1010 0.1000 0.1000 0.1000 0.1000 

5 1.9369 2.1421 1.9400 1.8664 1.9420 1.9410 1.9461 2.0143 1.9345 1.9514 1.9154 

6 0.2686 0.3470 0.2962 0.2826 0.3010 0.2960 0.2979 0.2800 0.2889 0.2957 0.3175 

7 0.1042 0.1000 0.1000 0.1000 0.1000 0.1000 0.1010 0.1589 0.2116 0.1156 0.1006 

8 2.9731 3.5650 3.1042 2.9683 3.1080 3.1210 3.1072 3.0666 3.0903 3.1133 3.1105 

9 0.1309 0.3470 0.1000 0.1000 0.1000 0.1000 0.1010 0.1002 0.1031 0.1006 0.1007 

10 4.1831 4.8050 4.1042 3.9456 4.1060 4.1730 4.1062 4.0418 4.0903 4.1100 4.1138 

11 0.3967 0.4400 0.4034 0.3742 0.4090 0.4010 0.4049 0.4142 0.4502 0.4165 0.4102 
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12 0.4416 0.4400 0.1912 0.4501 0.1910 0.1810 0.1944 0.4852 0.1007 0.1843 0.1571 

13 5.1873 5.9520 5.4284 4.9603 5.4280 5.4230 5.4299 5.4196 5.4798 5.4567 5.4243 

14 0.1912 0.3470 0.1000 1.0738 0.1000 0.1000 0.1010 0.1000 0.1011 0.1000 0.1000 

15 6.2410 6.5720 6.4284 5.9785 6.4270 6.4220 6.4299 6.3749 6.4798 6.4559 6.4332 

16 0.6994 0.9540 0.5734 0.7863 0.5810 0.5710 0.5755 0.6813 0.5329 0.5800 0.5759 

17 0.1158 0.3470 0.1327 0.7374 0.1510 0.1560 0.1349 0.1576 0.1325 0.1547 0.2940 

18 7.7643 8.5250 7.9717 7.3809 7.9730 7.9580 7.9747 8.1447 7.9445 8.0132 7.9988 

19 0.1000 0.1000 0.1000 0.6674 0.1000 0.1000 0.1010 0.1000 0.1005 0.1000 0.1000 

20 8.8279 9.3000 8.9717 8.3000 8.9740 8.9580 8.9747 9.0920 8.9444 9.0135 9.0063 

21 0.6986 0.9540 0.7049 1.1967 0.7190 0.7200 0.7065 0.7462 0.7011 0.7391 0.8194 

22 1.5563 1.7639 0.4196 1.0000 0.4220 0.4780 0.4225 0.2114 1.3777 0.7870 0.4748 

23 10.9806 13.3006 10.8636 10.8262 10.8920 10.8970 10.8685 10.9587 11.2394 11.1795 11.1442 

24 0.1317 0.3470 0.1000 0.1000 0.1000 0.1000 0.1010 0.1000 0.2287 0.1462 0.1279 

25 12.1492 13.3006 11.8606 11.6976 11.8870 11.8970 11.8684 11.9832 12.2394 12.1799 12.1455 

26 1.6373 2.1421 1.0339 1.3880 1.0400 1.0800 1.0360 0.9241 1.6849 1.3424 1.1763 

27 5.0032 4.8050 6.6818 4.9523 6.6460 6.4620 6.6859 6.7676 4.9136 5.4844 5.9177 

28 9.3545 9.3000 10.8113 8.8000 10.8040 10.7990 10.8111 10.9639 9.7190 10.1372 10.3697 

29 15.0919 17.1740 13.8404 14.6645 13.8700 13.9220 13.8465 13.8186 15.0219 14.5262 14.2756 

Best Weight 
(lb) 25447.1 28544.0 25445.6 25156.5 25491.9 25488.2 25467.9 25698.9 25664.0 25521.8 25542.98 

Number of 
structural 
analyses 

48000 - 9650 9875 19670 28059 31700 14406 - 10685 Duration
550.99 s  
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