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Abstract: - The covariance and the pseudo-covariance matrices characterize the complex signals. The
augmented or widely linear model, which takes into account these matrices, leads to the Augmented Complex
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corresponding dual bivariate real Kalman filters is addressed. The complex Kalman filters and the dual real
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1 Introduction

Kalman filter [1], [2] is the best-known estimation
and prediction algorithm and has been used with
success in a wide range of applications: temperature
prediction [3], object detection and tracking [4],
electric load estimation [5], short-term temperature
forecasts [6], autonomous orbit determination of
BeiDou Navigation Satellite System [7], vehicle
movement estimation [8], GPS position estimation
and prediction [9], cases prediction of Covid-19
[10], multi-observation fusion applications related to
timescale [11], structural parameter tracking [12],
applications with time-correlated measurement
errors [13], control effectiveness estimation on
airplanes [14], applications in aircraft state
estimation [15], vehicle location estimation [16],
estimation with unlimited sensing measurements
[17], multi-target localization [18], Kalman filter-
based tracking-by-detection (KFTBD) tracker [19],
ECG signal de-noising [20].

The conventional and the augmented complex
Kalman filters [21] are the most well-known
estimation algorithms that have been successfully
used in various applications where complex signals
are involved, such as applications in tracking,
oceanography, array processing, communications,
biomedicine [22], distribution state estimation [23],
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two-dimensional local navigation systems [24],
tracking for Global Navigation Satellite System
meta-signals [25].

Complex signals have two fundamental
statistical properties: the covariance matrix that has
to do with the total power of the signal and the
pseudo-covariance matrix that has to do with the
correlation between the real part and the imaginary
part of the signal [22]. The augmented model or
widely linear model [26] takes into account both the
covariance as well as the pseudo-covariance
matrices.

Using the augmented model or widely linear
model, the Augmented Complex Kalman Filter is
derived [21], [26]. In addition, it has been shown
[26], [27] that the Augmented Complex Kalman
Filter has a dual bivariate Real Kalman Filter. This
dual filter is faster than the Augmented Complex
Kalman Filter.

Furthermore, two variations of the Augmented
Complex Kalman Filter have been proposed: the
Augmented Complex Information Kalman Filter
[28] that uses the information matrices (the inverses
of the covariance and pseudo-covariance matrices)
and the Augmented Complex Kalman Filter Gain
Elimination [29] that eliminates the Kalman filter
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gain. These variations may be faster than the
Augmented Complex Kalman Filter.

Motivated by reducing the computational
complexity and consequently minimizing the
computational time, in this paper we address the
duality of these wvariations of the Augmented
Complex Kalman Filter with dual bivariate real-
valued Kalman filters. In fact, using the two
variations of Augmented Complex Kalman Filter we
prove the derivation of the corresponding dual
Kalman filters. Simulation results confirm that the
three complex Kalman filters and the corresponding
dual Kalman filters are equivalent to each other
since they compute the same estimates.
Furthermore, we determine the computational
requirements of the complex and dual Kalman
filters. Finally, we detect the fastest filter by only
taking into account the state and measurement
dimensions.

2 Problem Formulation
Consider the augmented or widely linear model
[26] described by the state space equations:

x2(k) = FA(k)x3(k — 1) + w?(k) (1)

z2(k) = H2(k)x?(k) + v3(k) )
. x(K)1 .

In this model, x2(k) = L_( (K) is the 2nx1

)
)

1 augmented measurement vector, w?(k) = [

is the 2m X
w(k)
w(k)
augmented state noise vector,

z
augmented state vector, z?(k) = [Z

is the 2nx1

v(k)

va(k) = [\_, (k)] is the 2mx1 augmented

measurement noise vector; note that X denotes the
complex conjugate of the complex variable x. Also,
the augmented initial state x?(0) is non-circular

X

Gaussian with known mean Xy = [)—(2] and known
Po no]

Moy Pl

The model parameters, which are assumed to be

known, are: the 2n X 2n augmented transition

matrix  F2(k) = [;\(k) A(k)

covariance Py® = [

the 2m X 2n

(9 FeoF H(k) B(k)
. rasia
augmented output matrix H?(k) = B H (k)]’
the augmented covariance matrix Q¥(k) =

209009
Uty Q)

mean state noise process, the augmented covariance

R(k) V(k
matrix R3(Kk) = ngi ﬁgk%

] of the non-circular Gaussian zero

] of the non-circular
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Gaussian zero mean measurement noise process;
note that Q(k),R(k) are Hermitian covariance
matrices (M is a Hermitian matrix when it is equal
to its conjugate transpose M* = M), while
U(k),V(k) are symmetric pseudo-covariance
matrices (M is a symmetric matrix when it is equal
to its transpose MT = M). The model becomes time
invariant in the special case where all the model
parameters are constant in time: F23(k) =
F2,H*(k) = H?,Q*(k) = Q% R*(k) = R?.

The pair (F2, H?) is observable if the associated
observability matrix is full rank [27]. There is no
discussion about controllability as there is no input
matrix in this model.

The Augmented Complex Kalman Filters have
been derived from the above augmented or widely
linear model. Given the measurements till time Kk,
the Augmented Complex Kalman Filters compute
iteratively the augmented state estimation x?(k|k) =
x(K|Kk)
L‘((klk)
estimation error covariance matrix P2a(k|k) =

P(klk) TI(k|k)
[ﬁ(klk) P(k|k)

with the corresponding augmented

as well as the augmented state

. a _[xk+ 1|k)] :
prediction x?(k+ 1]k) = [i (k+ 1[k) with the
corresponding  augmented  prediction  error
covariance matrix Pa(k+ 11k) =

[P(k+ 1lk) TM(k+ 1]k)
Nk+1lk) Pk+ 1K)

The Augmented Complex Kalman Filter
(ACKF) [21], [26] uses the augmented Kalman

filt in K2(k) = Kk G(k)] The ti i
ilter gain K#(k) = G Rl e time varying
ACKF (ACKFtv) has the form:

ACKFtv

initial conditions

x?(0]-1) = x¢°

P2(0|—1) = B,?

iterationsk = 0,1, ...

K2(k)

= P3(k|k — 1)H?"(K)[H3(k)P3(k|k — 1)H?" (k)
+R* (KT

x3(klk) = x%(klk—1)

+ K2(k)[z? (k)
—H*(Rx*(klk—1) ]
Pa(k|k) = P2(k|k — 1) — K2(k)H2(k)P? (k|k — 1)
X (k + 1]k) = FA(k)x(k|k)
Pa(k + 1]k) = Q3(k) + F2(k)P?(k|k)F2" (k)

For time invariant model, the time invariant ACKF
(ACKFti) is derived.
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The augmented steady-state complex Kalman
filter is derived for complex augmented or widely
linear systems [29]; then the solution of the
augmented complex Riccati equation is required as
a necessary prerequisite in order to determine the
steady-state parameters of the augmented steady-
state complex Kalman filter before observing any
measurements.

It is worth to note that the use of the pseudo-
covariance matrix in ACKF can improve the
performance of CCKF (Conventional Complex
Kalman Filter) [27]. In fact, the analysis in [26] has
shown that the ACKF offers significant performance
gains over the CCKF for noncircular signals, and
the same performance as the CCKF for circular
signals.

The performances of ACKF and CCKF were
compared in [27] and the basic results were: a) the
mean squared error (MSE) of the ACKF is
significantly smaller than the MSE of a CCKF that
does not exploit non-zero complementary
covariance, b) the MSE of the ACKF converges in
the general case of improper noises.

The effect of signal non-circularity on the mean
square behavior of the CCKF was analyzed in [26]
and the Cramer—Rao lower bound (CRLB) for the
ACKEF was established.

The Augmented Complex Information
Kalman Filter (ACIKF) [28] uses the augmented
information state estimation y2(k|k) =
P2 (k|k)x2 (k|k) and  the corresponding
augmented information estimation error covariance
matrix  S2(k|k) = P2 '(k|[k) as well as the
augmented information state prediction
y3(k + 1|k) = P27 (k + 1|k)x?(k + 1|k) and the
corresponding augmented information prediction
error covariance matrix Sk +1lk) =
P2 '(k+ 1|k). The time ACIKF
(ACIKFtv) has the form:

varying

ACIKFtv

initial conditions

x2(0]-1) = x¢?

P2(0|-1) = By*

y2(0]-1) = P27 (0]-1)x*(0]=1) = P,® "x,?
S3(0]—1) = Pa~1(0|—-1) = P, "

iterationsk = 0,1, ...

y2(kl[k) = y2(klk — 1) + H2" (R ()22 (k)
sa(k|k) = S2(k|k — 1) + H**(k)R* ™! (K)H?(Kk)
PA(k|k) = S2 ' (k|k)

x?(klk) = P2 (k|k)y?(k|k)
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K2(k) = P2(k|K)H*" (K)R* " (k)

P2(k + 1]k) = Qa(k) + Fa(k)Pa(klk)Fa*(k)
Sa(k + 1|k) = P27 (k + 1]k)

y2(k + 1]k) = S2(k + 1[K)F? (k)P (k[k)y? (k|k)
x3(k + 1]k) = P2(k]k)y?(k + 1]k)

For time invariant model, the time invariant ACIKF
(ACIKFti) is derived, then

R2~* Ha"Ra™' H*R?™'H? are computed off-line.

It is worth to note that ACKF and ACIKF are
equivalent with respect to a) the derivation of the
state  estimations and predictions and the
corresponding error covariances, b) their stability
[28].

The Augmented Complex Kalman Filter Gain
Elimination (ACKFGE) [29] substitutes the
augmented Kalman filter gain by the matrix
A2(k) = P2(klk — 1)H?"(K)R®"*(k). The time
varying ACKFGE (ACKFGEtv) has the form:

ACKFGEtv

initial conditions

x2(0]—-1) = x,?

P3(0|—1) = P,?

iterationsk = 0,1, ...

A2(K) = P2(k|k — 1)H2"(K)R?™* (k)

x2(k|k) = [12 + A2(K)H2 (k)] {x?(k|k — 1)
+ A2(K)z3(k)}

Pa(k|k) = [I17 + A2(K)HA(K)]~*P3(k]k — 1)

x3(k + 1|k) = FA(k)x?(k|k)

Pa(k + 11k) = Q3(k) + F3(k)P3(k|k)F?" (k)

For time invariant model, the time invariant
ACKFGE (ACKFGEti)) is  derived; then

R2~* H2"R2™! are computed off-line.

It is worth to note that ACKF and ACKFGE are
equivalent with respect to the derivation of the state
estimations and predictions and the corresponding
error covariances.

3 Dual Augmented Complex Kalman
Filters

Consider the duality concept used in [26], [27],
where for a nx 1 complex vector x = xR + jx!
(where xR denotes its real part and x! denotes its
imaginary part), its 2n X 1 augmented vector x® =

X1 . ) d_ [xR
[i] is related to its 2n X 1 dual vector x% = |
X
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I jl
by the relation x? = J,x9, where ], = [ n Jn ] is
In _]In

of dimension 2n X 2n and [, is the n X n  identity
matrix. Note that the following property holds: J; =

[ [
2J5t, with Jit = %[_ﬁn jlr;]' Also, the 2m X 2n

augmented matrix M? is related to the 2m X 2n
dual matrix M4 by the relation M® = J,,M9J-1 and
the 2n X 2n augmented covariance matrix P? is
related to the 2n X 2n dual matrix P9 by the
relation P2 = J,PIJz.

Then, for the augmented or widely linear model we
have:

x2(K) = Jnx4(K), 22(K) = J;mz? (K), w3 (k) =
Jaw? (1), v3(K) = J;pv? (k) and

F(k) = JoFI ()" HA (k) =

JmHAIY QP (K) = J,Q (W], RA(K) =
JmRA -

Note that F4(k),H4(k),Q4(k),R4(k) are real
matrices and that Q4(k), R4(k) symmetric.

In fact,

Fa(k) = J5'F2 ()],

_ [FR(k) + AR(k) —Fl(k) + Al(k)

CLF) +A' (k) FR(k) — AR(K)

HI(K) = JR'HA R,

_ [HR(k) +BR(k) —H!(k)+ Bl(k)

~lH'(0) +B'(k)  HR(k) — BR(k)

QUK = I QM) = JJat QAW

_1 [QR(k) +UR) —Q'(l) + U‘(k)]

20Q' 0+ U QR -~ UR®

RAK) = Jm R T ™ = S 'R (K]

1 [RR(k) +VR(K) -RI(Kk)+ Vl(k)]
2RI+ VIk)  RR(k) — VR(k)

Furthermore, we have:

x2(k|k) = Jox4(k|k), x3(k + 1]k) = J,x9(k + 1]k)
and

PA(k|K) = J,P4(k[K)J5, PA(k + 1]k) =

JnP4(k + 1K)

Note that x4(k|k), x4(k + 1|k) are real vectors and
that P9(k|k),P4(k+ 1]k) are real symmetric
matrices.

In fact,

) — =ty — [FRER
Kl = J e ) = [0
d i1.a _ xRk + 1|k)
x(k + 1K) = ;% + 1]K) = [xl(k+1|k)
PA(KIK) = J7PA(kIK)); T = JJatPA(kIK)],
_1 PR(k|k) + MR(k|k) —P'(k|k) + I'(k|k)

~ 2| pl(k|k) + '(k|k)  PR(k|k) — TR(k|k)
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PACk + 1[k) = J7 P (k + 1IRJ; 7 = J5 Pk + 1],
_1[PR(k+ 1]k) + IRk + 1]k) —Pl(k+ 1|k) + ' (k + 1]k)
2| PY(k+11k) + Mk + 11k)  PR(k+ 1]k) — IR(k + 1]k)
Also, we have:
xo? = x2(0|-1) =J,x%(0|-1) =J,x% and
Py® = P3(0|-1) = J,P4(0l-D)J; = JnPo s
= 2, P!
Finally,
12 = Jo 95"

The Dual Augmented Complex Kalman Filter
(DACKF) [26] is derived by the Augmented
Complex Kalman Filter using
K3(k) = Ju K ()"

Note that K4(k) is real. In fact
K4 = J7 " K2 (1))
_ KR + GR(k) —K!'(k) + G'(k)
KI(K) +Gl(k) KRk — GR(k)
The time varying Dual Augmented Complex
Kalman Filter (DACKFtv) has the form:

DACKFtv

initial conditions

x2(0]—-1) = x,?

P3(0|—1) = Py?

x4(0]-1) = %09 = J;1x2(0]-1) = J;'x,?

PA(0|-1) = Bd = J71PA(0|-DJ; T =R !
= Ja'Pn

iterationsk = 0,1, ...

FIK) = Ja FA(K)]y

HY(k) = Ja HA(K)],

Qi) =Jxt QI !

RAK) = JRtRAW); "

K9(k)

= pd(k|k — DHI (K) [ GO PA (il - DHI (1)

-1

+ Rd(k)]
x4(k|k) = xd(k|k — 1)

+ KK [z4(k)

— He(k)x4(klk — 1) |
PA(k|k) = P4(k|k — 1) — KY(K)HI(K)PI(k|k — 1)
x4(k + 1]k) = F4(k)x9(k|k)
PA(k + 1]K) = Q4(K) + FA(K)PA(k[K)F4" (k)

For time invariant model, the time invariant
DACKF (DACKFti) is derived; then F4,H4,Q4, R4
are computed off-line and once.

It is worth to note that the time varying Dual

Augmented Complex Kalman Filter and the time
invariant Dual Augmented Complex Kalman Filter
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have the same structure as the real time varying and
time invariant Kalman filters.

A theoretical bound for the performance
advantage of ACKF over CCKF was provided in
[26]; the analysis also has addressed the duality with
bivariate real-valued Kalman Filter. Moreover, due
to the duality between the bivariate real-valued
Kalman Filter and ACKF, the stability and
convergence analysis for real-valued Kalman Filter
also apply to the ACKF [26].

In the following, the Dual Augmented Complex
Information Kalman Filter (DAICKF) is derived
by the Augmented Complex Information Kalman
Filter.

Proof.

x3(0]-1) = x¢? = J,x4(0|-1)
= x4(0|-1) = x4 = J5'x(0|-1) = J5'x,?

P3(0]-1) = P, = J,P4(0|-D)J;;
= P4(0|-1) = Py = J7'P4(0|-D)J; "
= Ja P = Ja P

S0 = (%) ™" = (PA0I-D)

$3(0]-1) = So® = (P2(0]-1)) " = P> "
= (lnPYOI-DJR)
= (JuPo%2) = 7R IR
= Ja7So%at = JnSoIn?

S $9(01-1) = So° = 205807 = (Ui Ro%n)

= pod_1
Then
SA(kIk — 1) = JnS¢(klk — 1)J5?

d _ d, d
Yo© = So X

y2(0]—1) = (P2(0]-1)) ' x2(0]—1) = P,? 'x,?
= (JnPYOI-DJ3) Taxd(0l-1) =
= (nPo1) " T
= 157 () JaYnxod
= r*l_lsodxod = ;_IYOd

= y4(0|-1) = yo? = J5y*(0]-1) = J3yo?
= ];Soaxoa = ]ﬁpoa_lxoa

= JaJn T So Y %o = SUatxe? = Sox¢
_ Pod_lxod

Then

y*(klk = 1) = JJny(klk — 1)
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y(kIk) = 2Jny?(kIK)
y2(klk) = y2(klk — 1) + H** (k)R? ! (k)z2 (k)
= %]nyd(klk -D+

(TmHIOI7 YIRS} Tzt (K)

Inyd(klk — 1)

+ I HY QT R () Tz (K)

= JTny4(klk — 1)
+ 137 HY g R (9 mzd ()
= Jny4(klk — 1)
+ 02 0T TR (0] Uz ()
= JTny4(klk — 1)
+ .0 (R (029 (k)
= Jn [y elk— 1)
+H (R (929 (k)|
= [yl — 1)
+ 1 (R (924 (k)|
= Ty (kIK)
= yi(klk) = y4(klk — 1) + H (RY ()24 (k)

SA(KIK) = JnSA(kIK)J5?
S3(k|k) = S?(k|k — 1) + H** (K)R2 ™' (k)H?(K)
= JnSAklk = D] +

JmHEOI Y PRI} JmHAKIR 1}

= JInS4(klk — D)5

+ 1YY (R T R () HE 0O
= JTnS4(klk — D)

+ ;7Y R (R HIK))R?
= JaS4 Ik — D5

+ .0 (R QOHI (T
= Jn[sklk— 1)
+H GORT (OHAG0) |15
= s9(k|k) = S9(k|k — 1) + HY (ORI (l)H (k)

Pa(klk) = 52 (k[k) = (US4 (klK))51) " =
2J,5¢ " (k[K)J5
Pa(k|k) = S3 1 (k|k)

Volume 11, 2026



Athanasios Polyzos et al.

= 1PN = (UaSCklioft)
= 2,597 (kI
= 2J,5 (k)5
= JaS4 KT,

= Pd(Kk) = S (K|k)

x*(k[k) = PA(klky* (klk)
= Jnx 4 (klK) = JoP (k) 5]ny (k1K)

= P4 (kI 2J5 Jny? (k1K)
= x4(k|k) = P4 (K[k)y(k|K)

Ka(k) = Pa(k|k)H?"(K)R2™*(Kk)
= InKI )"

= JoPACk + 10T {Tm H GO} IR}
= TPk + 1RJF T HE (OT)in ' RE ()]

= P4k + 10JJ 7 HY (0T R ()
= K4(k) = PA(KIKH (RI ™ (k)

Pa(k+ 1|k) = Qa(k) + Fa(k)Pa(klk)Fa*(k)
= J,Pd(k + 1K)

= JnQ4 W5,

+ 1o FAO ) UnPA IO JnFA (0T

= Q4]
+ I FA T Un Pk FAR) T

=1 QAW
+ PRI U PAKIOT) T R (0T
= Pd(k + 1K) = Q4(K) + FA()PI(K|K)FI" (k)

Sk + 1[k) = JS¢(Klk — D)J7?

Sa(k + 1|k) = P2~ (k + 1]k)

= JuS(klk — DIt = Pk + 1R)]5}
=157 e+ LK)
= J,P47 (k+ 1K)

= sd(k + 1[k) = P4 (k + 1]k)

y2(k + 11K) = ZJnyd(k + 1]k)
y2(k + 1]k) = S2(k + 1[KF2(k)P? (k[K)y? (k|k)
= JTnyd(k + 11k) = JJnS4(k + 1[k)
Ja a PRI aPACk + 11K)J5 Ty (KIK)
= JInS4(k + 1[k)
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Ja UnFAR0IR Pk + 11K)2)5 )y (KIK)

= JnS e+ HIF AP (e + 1)y (klio)
= ya(k + 1|k)
= 540k + LRF (P (kl)y (k[ K)

x2(k + 11k) = P2(k|k)y?(k + 1]k)

= Jax4(k + 11k = [P kI3 Tnyd (k + 1[K)
= InPAKIK)2J5 2 Tny (k + 11K)
= JnPA(kIK)y? (k + 1]K)

= x4k + 1|k) = PA4k|IK)y4(k + 1]k)

Thus, the time varying Dual Augmented Complex
Information Kalman Filter (DACIKFtv) has the
form:

DACIKFtv
initial conditions
x2(0]—-1) = x,?
P3(0]—1) = P,2
x4(0]-1) = xo% = J5x2(0|-1) =J5'x,?
PAOI-1) = R = J5 ' PAOI-DIy T = Iy R
li-1p a

= Eln l:’0 ]n
y4(0|-1) = yo9 = Sodxocl = Pod_lxocl
$4(0]=1) = S,¢ = P4
iterationsk = 0,1, ...
FIK) = Ja FA(K)]y
HY(k) = Ja HA(K)],
Qi) = Jxt QI !
RAK) = Jm!R2(Im
yd(klk) = yd(klk — 1) + HY ()R (k)29 (k)
sd(k|k) = s4(k|k — 1) + HA" ()R (k)H (k)
Pd(Kk|k) = S (k|k)
x4(k|k) = P4(k|k)y? (k|k)
Kd(k) = PA(KIIOHE ()R (K)
Pd(k + 1]k) = Q4(K) + FA(K)PA(K|K)F4" (k)
Sd(k + 1|k) = P4 (k + 1]k)
ya(k + 1]k) = S4(k + 1|K)FI)PI(kIK)y9 (k|k)
x4(k + 1]k) = P4(k|K)y9d(k + 1]k)

For time invariant model, the time invariant
DACIKF  (DACIKFti) is  derived;  then
F4,HY9,Q4,RY are computed off-line and once and

Rd_l, HdTRd_l, HdTRG‘_lHGl are computed off-line.

It is worth to note that DACKF and DACIKF are
equivalent with respect to the derivation of the state
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estimations and predictions and the corresponding
error covariances.

In the following, the Dual Augmented Complex
Kalman Filter Gain Elimination (DACKFGE) is
derived by the Augmented Complex Kalman Filter
Gain Elimination.

Proof.
x2(0]-1) = x0® = Jox?(0]-1)
= x4(0]-1) = %o = J'x*(0]-1) = J5"x

P3(0]-1) = P, = J,P4(0|-DJ;;
= P4(0]-1) = Ry = J7tP4(0|- D))"

— = 1,—
=R = Ji R a

A2(k) = P2(klk — 1)H2" (K)R* ™ (k)
= InA ()"

= JoPA(kIk — DI {TmHI IR} R}
= TPk — DJJF T HE (OT)i R ()]

= JuPA(klk — DIl 7 HY (0T R ()
= Ad(K) = PA(kJk — DHY (ORI ()

x(k[k) = [12 + A2 (K)HA(K)] 2 {x3 (k]k — 1)
+ A2 (K)z2(K))

= x4 (KK

= [Jnl9)3?

+ A () T HAGKTR Y] {Jnx® (kK — 1)

+ In A (R mzd (K}

= [1a (19 + 200120 177 (wx ik - 1)
+JnA ()27 (K) }

= Ju[19 + AdGOHAK)] T X2 (KK — 1)

+ A4 (K)z4(k)}

= xd(k[k) = [19+ Ad(KHA(K)] ™ {xd K]k — 1)
+ A4 (K)zd(k)}

Pa(klk) = [I? + Aa(k)Ha(k)]_lPa(klk -1

= J,PA(kIK)];,

= [Jnl95?

+ A (T T HAKIE Y] T PA Ik — 1)

= [1n (1% + A%00H40) 17| PGl — D

= Jo[19 + AYQOHA )] 7P (kIK — D),
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= PA(kIK) = [19 + AU HAK)] T PA(klk — 1)

2 (k + 1]k) = FA(k + 1[k)x2(k[k)
= Jnxd(k + 11k) = J,FAK)I x4 (kIk)
= x9(k + 1]k) = F4(k)x9 (k|k)

Pa(k + 1]k) = Q2(k) + F2(k)P2(k|K)F2* (k)
= J,PA(k + 1|5

= 1,QI(K)J;

+ JnFA I n PN n FA (017

= JnQ4®)J;
+ JnF I UnPAKIR )R Y FAR) T,

= J,Q W5,
+ 1A T UnPA (kIR T) T R (K
= Pd(k + 1]k) = Q4(k) + FA()PI(k|K)FI" (k)

Thus, the time varying Dual Augmented Complex
Kalman Filter Gain Elimination (DACKFGEtv) has
the form:

DACKFGEtv

initial conditions

x2(0]—-1) = x,?

P2(0]-1) = Py?

x4(0]-1) = %% = J71x*(0]-1) =5 x,?

PA(0|-1) = Bd = J71PA(0|-DJ; " =t !
= Jn P

iterationsk = 0,1, ...

FI(K) = J7'FA(K)]n

HYK) = Jn HA )],

Qi) = Jxt QI !

RAK) = Jm!RR(Im

Ad(k) = PA(klk — DHA ()R (k)

x4 (K[K) = [19 + Ad(K)HI ()] {x(klk — 1)
+ Ad(K)z4(k)}

PA(kk) = [19 + AIQHAK)] PI(klk — 1)

x9(k + 1]k) = Fd(k)x94(k|k)

Pd(k + 1]k) = Q4(k) + Fd(k)Pd(klk)FdT(k)

For time invariant model, the time invariant
DACKFGE (DACKFGEti)) is derived; then
F9,HY,Q4,RY are computed off-line and once and

R4 1, HaTRd are computed off-line.

It is worth to note that ACKF and ACKFGE are
equivalent with respect to the derivation of the state
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estimations and predictions and the corresponding
error covariances.

4 Simulation Example

Consider the constant velocity movement with the
position and the velocity assumed to be complex
(concerning the movement in two dimensions),
which is described by an augmented or widely linear
model with model parameters [30]:

() 1 T 0 O
F(k 0 01 0 0
arl,) — —_

F(k)‘[o F(k)]_o 01 T
0O 0 0 1

(where T is the sampling interval)
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position estimation

100
Re(X)

Fig. 1. Position estimation

A subject of future research is to investigate the
applicability of the presented filters to estimation
applications where complex signals are involved,

especially for multidimensional cases.

ans — [HE® BXI]_r1 0 0 0

sy _[Q0O UM _[0 02 0 o
"% [’ 8ol b
2o R VO] [ 02  0.1+0.1]
R0 = V(k) R(k) ‘[0.1—0.1]' 0.2

We assumed a movement with constant velocity (2,
3) m/s. We have implemented the augmented as
well the dual filters taking sampling interval T =1 s
and initial conditions

0
_X0_2+3j
Xoa_[)_io]_ 0o |
2 — 3
1 0 0 O
pa [Eo 1]0]_0 1 0 0
°© T [, B 0 010
0 0 0 1

The simulation results confirm that the three
complex Kalman filters and the corresponding dual
Kalman filters are equivalent to each other since
they compute the same position estimates, as it is
shown in Fig. 1. All the algorithms present Mean
Absolute Error (MAE) 0.3777 and % Root Mean
Square Error (%RMSE) 0.4209.

ISSN: 2367-8984

5 Selection of the Faster Filter

It is obvious that all the augmented as well as the
dual Kalman filters are iterative algorithms. Hence,
their computational time depends on their per-
iteration calculation burden required for the on-line
calculations; the calculation burden of the off-line
calculations (initialization process) is not taken into
account.

The calculation burdens of the augmented and dual
filters are given in the Appendix and summarized in
Table 1.

Table 1. Calculation burdens of complex Kalman

filters
ACKFtv 64n® — 4n? + 2n + 64n*m + 8nm + 64nm? + %(208m3 —120m? + 20m)
ACKFti 64n® — 4n% 4+ 2n + 64n’m + 8nm + 64nm? + %(208m3 —120m? + 20m)
ACIKFty 2(800n® + 72n2 — 80n) + 64n’m — 8nm + 32nm? + 2(208m? — 96m? + 8m)
ACIKFti 2(800n® + 108n? — 86n) + 32n’m + 4nm
ACKFGEtv 2(784n® — 108n? + 8n) + 64n’m — 8nm + 32nm? + 2(208m? — 96m? + 8m)
ACKFGEti 2(784n° — 108n? + 8n) + 64n’m + 4nm
DACKFtv é(l‘l—‘l—n3 +87n? — 9n) + 24n’m + 20nm + 24nm? +%(56m3 + 15m? 4+ m)
DACKFti 24n® 4 8n% — 2n + 24n’m + 16nm + 24nm? + %(Sém3 —2m)
DACIKFty 2(256n® + 231n2 — 37n) + 24n’m + 8nm + 16nm? + 3(56m® + 15m? — 11m)
DACIKFti %(256n3 +204n? — 34n) + 16n’m + 4nm — 2m
DACKFGEtv %(248n3 +123n? — 17n) + 32n’m + 4nm + 16nm? + %(Sﬁm3 + 15m? + m)
DACKFGEti 2(248n° + 84n2 — 20n) + 32n°m + 4nm

Fig. 2-5 depict the faster filter with respect to the
model dimensions. The faster filter depends on the
model dimensions, namely the state vector
dimension n and the measurement vector dimension
m.
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Augmented Kalman Filters - time varying

Faster Augmented Kalman Filter - time varying

dinension n

ACKFGE

ACKF

dinension n

Fig. 2. The faster augmented filter — tv model

Augmented Kalman Filters - time invariant

Faster Augmented Kalman Filter - time invariant

ACIKF

ACKF

dinension n

Fig. 3. The faster augmented filter — ti model
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Dual Augmented Complex Kalman Filters

time varying DACIKEF faster than DACKF

m/n>1.55

DACKFGE faster than DACKF m/n>1.9
DACIKEF faster than DACKFGE m/n>0.4

fastest filter

DACKF
DACIKF

when m/n<1.55
when 1.55<m/n

time invariant DACIKF faster than DACKF m/n>0.7
DACKFGE faster than DACKF m/n>0.85
DACIKF faster than DACKFGE m/n>0.2

fastest filter

DACKF
DACIKF

when m/n<0.7
when 0.7<m/n

Table 2 presents the % cases of fastest filter for
model dimensions n=1:10 and m=1:10.

Table 2. % cases of fastest filter for model
dimensions n=1:10 and m=1:10

Dual Augmented Kalman Filters - time varying

KFVsIKF
KFVSKFGE
- IKFusKFGE

o 1 2 3 4 5 & 7 8 9 10
nnnnnnnnn

Faster Dual Augmented Kalman Filter - time varying

ACIKF

ACKF

dinen:

Fig. 4. The faster dual filter — tv model

Augmented

Complex AKF/
Kalman ACKF ACIKF ACKFGE ACKFGE
Filters

time varying 64 0 35 1
time invariant 36 64 0

Dual

Augmented DACKF | DACIKF | DAKFGE

Complex

Kalman Filters

time varying 70 29 1

time invariant 33 66 1

Dual Augmented Kalman Filters - time

Faster Dual Augmented Kalman Filter - time invariant

ACIKF

ACKE

Furthermore, the Dual Augmented Complex
Kalman Filters are faster than the Augmented
Complex Kalman Filters for both time varying as
well as for time invariant models.

Fig. 6-8 depict the speedup form the augmented
filters to the dual filters. The following rule of
thumb arises: dual filters are 3 times faster than
augmented filters.

Fig. 5. The faster dual filter — ti model

The following rules of thumb are derived:

Augmented Complex Kalman Filters

time varying ACIKF faster than ACKF m/n>1.5
ACKFGE faster than ACKF m/n>1.4
ACKFGE faster than ACIKF always
fastest filter
ACKF when m/n<1.4
ACKFGE  when 1.4<m/n
time invariant ACIKF faster than ACKF m/n>0.75
ACKFGE faster than ACKF m/n>0.85
ACIKF faster than ACKFGE m/n>0.2

fastest filter
ACKF
ACIKF

when m/n<0.75
when 0.75<m/n

ISSN: 2367-8984

speedup(ACKFTV/DACKFTV) - time varying

il d

‘Specdup(ACKFTVIDACKFTV) - time invariant

Fig. 6. Speedup — ACKF filters

Speedup(ACIKFTVIDACIKFTV) - time varying ‘speedup(ACIKFTIDACIKFTI) - time invariant

Fig. 7. Speedup — ACIKF filters
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Fig. 8. Speedup — ACKFGE filters

6 Conclusion

Complex signals, which arise in many applications,
are characterizes by the covariance and the pseudo-
covariance matrices. These matrices are taken into
account in the augmented or widely linear model,
form where the Augmented Complex Kalman Filter
is derived. There are also derived its variations,
namely the Augmented Complex Information
Kalman Filter that uses the information matrices
(the inverses of the covariance and pseudo-
covariance matrices) and the Augmented Complex
Kalman Filter Gain Elimination that eliminates the
Kalman filter gain. All these complex filters
compute the state estimation using noised
measurements.

The duality between the augmented complex
Kalman filters and the corresponding dual bivariate
real Kalman filters is addressed. The complex
Kalman filters and the dual real Kalman filters
compute the same estimates. This results from the
proofs of the dual filters and is confirmed by a
simulation example.

It is important to note that, due to the duality
between the bivariate real-valued Kalman Filter and
ACKF, the stability and convergence analysis for
real-valued Kalman Filter also apply to the ACKF
[26]; then, ACKF, like the bivariate real-valued
Kalman Filter, achieves the Cramer—Rao lower
bound (CRLB) [26]. Also, the mean squared error
(MSE) of ACKF converges in the general case of
improper noises [27]. In addition, the three
augmented complex Kalman filters and the
corresponding dual augmented Kalman filters are
equivalent to each other since they compute the
same estimations and predictions and the
corresponding error covariances at every time
iteration. Also, the Dual Augmented Complex
Kalman Filters have the same structure as the real
Kalman filters. Hence, stability and convergence
analysis for real-valued Kalman Filter also apply to
the proposed algorithms.

The computational requirements of the complex
and dual real Kalman filters are presented. The

ISSN: 2367-8984
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knowledge of the computational requirements of the
filters is the basis of determining the fastest complex
filter and the fastest dual real filter. The dual real
filters are 3 times faster than the complex filters.
The ability to determine the fastest filter depends on
the state and measurement dimensions. This is a
useful result, since the fastest filter can be a-priori
selected, i.e. before its implementation.

References:
[1] R.E. Kalman, A new approach to linear
filtering and prediction problems, J. Bas. Eng.,
Trans. ASME, Ser D, vol. 8, no 1, pp. 34-45,
1960.
B.D.O. Anderson and J.B. Moore, Optimal
filtering, New York: Dover Publications, 2005.
G. Galanis, P. Louka, P. Katsafados, I
Pytharoulis, and G. Kallos, Applications of
Kalman filters based on non-linear functions to
numerical weather predictions, Ann. Geophys.,
vol. 24, pp. 2451-2460, 2006.
A. Ali, K. Terada, Object detection and
tracking using Kalman filter and fast mean shift
algorithm, Proceedings of the Fourth
International Conference on Computer Vision
Theory and Applications, pages 585-589, 2009,
doi: 10.5220/0001787705850589
R. Shankar, K. Chatterjee, T. K. Chatterjee, A
Very Short-Term Load forecasting using
Kalman filter for Load Frequency Control with
Economic Load Dispatch, Journal of
Engineering Science and Technology Review,
vol. 5, no 1, pp. 97-103, 2012, doi:
10.25103/jestr.051.17
G. Giunta, R. Vernazza, R. Salerno, A. Ceppi,
G. Ercolani, M. Mancini, Hourly weather
forecasts for gasturbine power generation,
Meteorol. Z., vol. 26, pp.307-317, 2017.
Y. Li, Q. Gui, S. Han, Y. Gu, Tikhonov
Regularized Kalman Filter and its Applications
in Autonomous Orbit Determination of BDS,
WSEAS Transactions on Mathematics, (16), pp.
187-196, 2017.
Y. Kim, H. Bang, Introduction to Kalman Filter
and Its Applications, InTechOpen, 2018, doi:
10.5772/intechopen.80600
R. Verma, L. Shrinivasan and K. Shreedarshan,
GPS/INS integration during GPS outages using
machine learning augmented with Kalman
filter, WSEAS Transactions on Systems and
Control (16), pp. 294-301, 2021, doi:
10.37394/23203.2021.16.25, (Accessed Date:
September 10, 2025).
[10] V. C. S. Rao, B. G. Devi, S. Pratapagiri, C.
Srinivas, S. Venkatramulu, D. Raghavakumari,

[2]
[3]

[5]

[6]

[7]

[9]

Volume 11, 2026


https://doi.org/10.37394/23203.2021.16.25

Athanasios Polyzos et al.

Prediction of Covid-19 using Kalman filter
algorithm, AIP Conference Proceedings, vol.
2418, issue 1, 2022, id.030067, 8 pp., doi:
10.1063/5.0081995.

[11] X. Wang, Y. Yang, B. Wang, Y. Lin, C. Han,
Resilient timekeeping algorithm with multi-
observation fusion Kalman filter, Satellite
Navigation, vol. 4, 2023.

[12] M. Diaz, P.-E. Charbonnel, L. Chamoin, A new
Kalman filter approach for structural parameter
tracking: Application to the monitoring of
damaging structures tested on shaking-tables,
Mechanical Systems and Signal Processing,
vol. 182, 2023.

[13] C. Hajiyev and U. Hacizade, A Covariance
Matching-Based =~ Adaptive =~ Measurement
Differencing Kalman Filter for INS’s Error
Compensation, WSEAS Transactions on
Systems and Control, vol. 18, 2023, pp. 478-
486, doi: 10.37394/23203.2023.18.51,
(Accessed Date: September 10, 2025).

[14] A. Guven and C. Hajiyev, Two-Stage Kalman
Filter Based Estimation of Boeing 747
Actuator/Control Surface Stuck Faults, WSEAS
Transactions on Signal Processing, vol. 19, pp.
32-40, 2023, doi: 10.37394/232014.2023.19.4,
(Accessed Date: September 10, 2025).

[15] M. Sever, T.Y. Erkeg¢, C. Hajiyev, Comparison
of Adaptive Kalman Filters in Aircraft State
Estimation, WSEAS Transactions on Signal
Processing, vol. 19, pp. 128-138, 2023.

[16] A. Becker, Kalman filter from the ground up,
Second edition, September 2023,
https://www.kalmanfilter.net/book.html

[171H. Wang, X. Zheng and H. Li, Kalman
Filtering With Unlimited Sensing, ICASSP
2024 - 2024 IEEE International Conference on
Acoustics, Speech and Signal Processing
(ICASSP), Seoul, Korea, Republic of, 2024, pp.
9826-9830, doi:
10.1109/ICASSP48485.2024.10448298.

[18] Q. Luo, S. Li, X. Yan, C. Wang, Z. Zhou, G.
Jia, An improved two-phase robust distributed
Kalman filter, Signal Processing, vol. 220,
2024.

[19] H. Jung, S. Kang, T. Kim, H. Kim, ConfTrack:
Kalman Filter-based Multi-Person Tracking by
Utilizing Confidence Score of Detection Box,
IEEE/CVF Winter Conference on Applications
of Computer Vision (WACV), 2024, pp. 6583-
6592

[20] H. D. Hesar, H., A. D. Hesar, Adaptive dual
augmented extended Kalman filtering of ECG
signals, Measurement, vol. 239, 2025, doi:
10.1016/j.measurement.2024.115457.

ISSN: 2367-8984

11

International Journal of Signal Processing
http://iaras.org/iaras/journals/ijsp

[21] Wang, G. Ge, S.S., Xue, R., Zhao, J., Li, C,,
Complex-valued Kalman filters based on
Gaussian entropy, Signal Processing vol.160,
pp- 178-189, 2019, doi:
10.1016/j.sigpro.2019.02.024

[22] Mohammadi, A., Plataniotis, K.N., Structure-
induced complex Kalman filter for
decentralized sequential Bayesian estimation,
IEEE Signal Process. Lett. 22 (9), 1419-1423,
2015, doi:10.1109/LSP.2015.2407196.

[23] Shafiei, M., Ledwich, G., Nourbakhsh, G.,
Arefi, A., Pezeshki, H.: Layered Based
Augmented Complex Kalman Filter for Fast
Forecasting-Aided  State  Estimation  of
Distribution Networks: arXiv: Applications,
2018,
https://api.semanticscholar.org/CorpusID:8852
3677

[24] Petukhov, N., Zamolodchikov, V., Zakharova,
E., Shamina, A., Synthesis and Comparative
Analysis of Characteristics of Complex Kalman
Filter and Particle Filter in Two-dimensional
Local  Navigation  System, 2019  Ural
Symposium on Biomedical Engineering,
Radioelectronics and Information Technology
(USBEREIT), Yekaterinburg, Russia, pp. 225-
228, 2019, doi:
10.1109/USBEREIT.2019.8736595.

[25] Borio, D., Susi, M., Bicomplex Kalman Filter
Tracking for GNSS Meta-Signals, In
Proceedings of the 36th International
Technical Meeting of the Satellite Division of
The Institute of Navigation (ION GNSS+
2023), Denver, Colorado, pp. 3353-3373, 2023,
doi:10.33012/2023.19233.

[26] Dini, D.H., Mandic, D.P., Class of widely
linear complex Kalman filters, IEEE
Transactions on Neural Networks and
Learning Systems 23(5), 775-786, 2012. doi:
10.1109/TNNLS.2012.2189893.

[27] Dang, W., Scharf, L.L., Extensions to the
theory of widely linear complex Kalman
filtering, IEEE Transactions on Signal
Processing, 60(12), pp. 6669-6674, 2012,
doi:10.1109/TSP.2012.2214213.

[28] Polyzos A., Tsinos C., Adam M., Assimakis
N., Complex Information Filter and Complex
Kalman Filter Comparison: Selection of the
Faster Filter, WSEAS Transactions on Systems
and Control, vol. 19, pp. 324-333, 2024.

[29] Polyzos A., Tsinos C., Adam M., Gkonis P.,
Assimakis N., Complex Kalman Filter Gain

Elimination,  Proceedings of the 2nd
International Conference on Frontiers of
Artificial Intelligence, Ethics, and

Volume 11, 2026


https://doi.org/10.37394/23203.2023.18.51
https://doi.org/10.1016/j.sigpro.2019.02.024
https://doi.org/10.1016/j.sigpro.2019.02.024
http://dx.doi.org/10.1109/LSP.2015.2407196
https://api.semanticscholar.org/CorpusID:88523677
https://api.semanticscholar.org/CorpusID:88523677
http://dx.doi.org/10.33012/2023.19233
https://doi.org/10.1109/TNNLS.2012.2189893
https://doi.org/10.1109/TNNLS.2012.2189893
http://dx.doi.org/10.1109/TSP.2012.2214213

Athanasios Polyzos et al.

Multidisciplinary Applications, pp. 545-582,
Athens, Greece, 2024, doi: 10.1007/978-981-

96-7945-4 33.

[30] Dini, D.H., Kanna,

Mandic, D.P,,

Distributed Widely Linear Complex Kalman

Filtering, arXiv:1311.4369v1 [cs.SY], 2013.
[31] Polyzos A., Tsinos C., Adam M., Assimakis

N., Selection of the Fastest Solution of the

Complex Riccati

Equation,

WSEAS

Transactions on Systems and Control, vol. 19,

pp. 436-454, 2024,

Appendix

Calculation Burdens of the Augmented and Dual

Filters
The calculation burdens
operations are given in [28].

of complex matrices

ACKFtv and ACKFti

Matrix Operation

Calculation Burden

HA(k)P?(k|k — 1)

32n’m — 12nm

H2(k)P? (k|k — 1)H" (k)

32nm? — 6m? + m

Ha(k)P2 (k|k — 1)H" (k) + R*(K)

2m? +m

[H2(K)P? (klk — DH" (k) + R* (k)]

(208m? — 96m? + 8m)/6
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ACKFGEtv and ACKFGEti

Matrix Operation Calculation Burden

R (k) (208m?® — 96m? + 8m) /6

H (R (K) 32nm? — 12nm
A (k) = P(klk — DH* (R (k)

A (K)HA(k)

32n’m — 12nm

32n’m — 4n?

I3 + A2 (K)HA (k) n

[1 + A (RHA (k)] (20803 — 960 + 8n)/6

A (K)z? (k) 16nm — 2n
x(klk — 1) + A2z (k) 2n
x3(k|k) = [1* + A (KH(K)]"H{x*(klk — 1) + A*(k)z*(k)} 16n? — 2n

P2(klk) = [I* + A*(KH?(K)]~*P2(klk — 1) 32n® —14n% +n

x2(k + 1]1k) = FA(k)x?(klk) 16n% — 2n
F2 (k)P (kk) 32n3 — 12n°
F2 ()P (kK F*" (k) 32n° —6n® + n
Pa(k + 1]k) = Q2(k) + F*(k)P?(k|k)F** (k) 2n% +n

The calculation burdens of real matrix operations
are summarized in Table 3. The calculation burden
of the inverse of a real symmetric matrix is given in
[31].

Table 3. Calculation Burden of real matrices
operations

Matrices Operation

Matrices Dimensions

Calculation Burden

M1+M2=M (d, x dy) + (d; x dy) d,d
K2(k) = P2(k|k — 1)H?" (k) [H2(k)P*(k|k — 1)H*"(k) + R*(K)]* 32nm? — 12nm M1 + M2 = S symmetric (dxd)+(dxd) d? +1d
S ~ 1+M1=M (dxd)+(dxd d
HEOx (klk — 1) 16nm — 2m ML-MZ=M (d; x dy) - (dy X dy) 2d,d,d, — d,d;
z3(K) — HA(R)x2(k|k — 1) 2m M1 -M2 = S symmetric (d; x dy) * (d, x d,) d,*d, +d,d, — d,* — 1d,
K2 () [z2(k) — HA()xa(k[k — 1) ] 16nm — 2n M~! symmetric (dxd) (7d* - d)/6
x(k[K) = x*(klk — 1) + K*(K)[z*(k) = H*(K)x*(k[k — 1) | 2n
K2(0H? ()P (dlk — 1) 32n’m — 60’ +n The calculation burden of the dual model

Pa(k|k) = Pa(k|k — 1) — K*(k)H*(k)P?(k|k — 1) 2n? +n
x2(k + 11k) = F2(k)x*(k|k) 16n? — 2n
F2(K)P2(klk) 32n° — 12n?

F2 (k)P (KIK)F?* (k)

32n® —6n%+n

Pk + 11K) = Q*(K) + F* ()P (kIF** (K)

2n®+n

ACIKFtv and ACIKFti

parameters derivation, which is required in each
iteration of the dual algorithms, is given in Table 4.

Table 4. Calculation Burden of dual model
parameters derivation

ISSN: 2367-8984

m real+complex adds

Matrices Operation scalar operations Calculation
Burden
Matrix Operation Calculation Burden F(k) + A(k) n? complex+complex adds 2n?
= 7 . 7 F(k) — A(k) n? complex+complex adds 2n?
R (k) g(208m — 96m? + 8m) ( Fi(k) =)];1Fa(k)]‘a ; )
. - Real(F(k)) + A(k)) —Imag(F(k)) —A(k) 4n
H¥* ()R* ™ (K 32nm? — 12 =
(R (k) i o Imag(F(K)) + A(K)) _ Real(F(K)) — A(K))
H2* (k)R (K)H? (k) 32n’m—6n%+n H(k) + B(k) nm complex-+complex 2nm
adds
H* (IR (1)2°(K) 16nm —2n H(k) — B(k) nm complex+complex 2nm
a a* - a dds
y2(klk) = y*(klk — 1) + H* (RR* ™" (k)z* (K) 2n a
T HI(K) = J5'HA ()],
S2(kJk) = S2(klk — 1) + H** ()R (<) H2(k) 2n% +n _ [Rea](H(k)) +B(K) —Imag(H(K)) — B(K)) 4nm
Pa(klk) = $271 (k|k) %(20&13 —96n? + 8n) Imag(H(k)) + B(k))  Real(H(k)) — B(k)) — —
3
x2(k|k) = P2(k|k)y?(k|k) 16n% — 6n Q(k) + UK complex+complex adds
n real+complex adds
Ka(k) = P (kIH™ (R (k) 32n%m — 12nm FRva =
F2(k)P2(k|k) 3213 — 12n? Q) - U(k) complex+complex adds
n real+complex adds
Fa(k)P?(k[k)F2" (k) 32n® — 6n? +n 4102 (K)), In® + In real*real mults n?/2+n/2
Pa(k + 1|K) = Q(k) + F2 (k)P (KIK)F** (k) 2n% +n QK = 7'M = Jat QA K), —
. Real(Q(K)) + U(k)) —Imag(Q(k)) — U(k)) n
Sk + 1K) = P (k + 1]k) 5(2080° — 960’ + 8n) = & [Imag(Q) + UGY) _ Real(Q() — V() 2
Fa(k)P?(k|k)y? (kIk) 16n% — 2n im* —m m?
R(K) + V(k) complex+complex adds
ya(k + 1]k) = S?(k + 1|k)FA(k)P?(k|k)y? (k|k) 16n% — 6n m real+complex adds
171 7
2(k + 1]k) = Pa(kIk)y? (k + 1]k 16n%—6 i m
*( 1o L 1o n n R(K) — V(k) complczx+complcx adds
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;]alR“(k)]m im? + Im real*real mults Tzn/lz2 HA" (GORE™ (k)24 (k) INM — M
ya(kIk) = yd(klk — 1) + HI ()RS (k)z4 (k) N
SA(klK) = SA(klk — 1) + HY (R (K)H (k) N?/2+N/2
FA(K), HY(K), Q4(K), R4 (k) 13n?/2 + n/2 + 4nm + 5m?/2 + m/2 Pd(k|k) =S4 (k|k) (7N* =N)/6
x94(klk) = P4(kIKk)y? (k|k) 2N —N
The calculation burdens of complex matrices K4 = PACKIOH (R () 2N’M — NM
operations are given in [28]. Dual algorithms use the FAGOPI K0 2N - N
matrices dimensions N = 2nand M = 2m. POPAGIOF () NP N2 N72
Pa(k + 1]k) = QU (K) + FA(k)PI (kI F4" (k) N2/2 +N/2
. Sd(k + 1]K) = P47 (k + 1]K) (7N* = N)/6
DACKFtv and DACKFti
FAPI(KIK)y“ (k) 2N2 —N
Matrix Operation Calculation Burden yi(k + 1]k) = S4(k + 1[K)F(k)P (k|K)y< (kIk) 2N2-N
HI0QP ik - 1) M N x4k + 1]k) = PAKIKy (k + 1]k) 2N? =N
HI(K)PA(kIk — DHY (k) NMZ + NM — M2/2 — M/2
HARPA(klk — DHA (k) + R4(K) _ M?/2 +M/2 DACKFGEtv and DACKGEFti
[HeG0OP elk — DH" () + RUW)] (7M? = M)/6
K4(k) = P4(k|k — 1H" (k) . INM? — NM Matrix Operation Calculation Burden
[Hd(k)Pd(ka —DH ) + Rd(k)]
HIxI(klk — 1) 2NM — M
29(K) — HAx(k[k — 1) M
K@ [2° (0 — HAK)x (kk— D] ZNM— N
x9(klk) = x (klk — 1) + KI(k) N T ——
[29(k) — HA@Rx4(klk — 1) ] A(K) = PA(kIk — DHYT (R (k) 2N2M — NM
KGO H (0P (klk — 1) N2M + NM — N?/2 — N/2 AR 2N2M — N2
PACkIK) = PU(klk— 1) — KS(OHI (P (klk — 1) N2/2+N/2
x4k + 1]k) = FIR)xI(k[k) 2NZ — N 14+ A (K H (k) N
F (Pl k) ZN° — N® [ + ASGOHI )] (N —N)/6
FA P (kIOF (k) N3+ N2/2 —N/2 —
P(k + 1]k) = Q4(K) + FA()PA(kIF (k) N2/2 +N/2 At (k)z¢ (k) 2NM - N
x4 (klk — 1) + A ()z% (k) N
i x4(klk) = [19+ A4 H ()]~ 2
DACIKFtv and DACIKFti 1) o e INZ—N
Pa(k[K) = [1¢ + AY(K)HA(K)] P4 (k|k — 1) N3 +N2/2 —N/2
Matrix Operation Calculation Burden Wk + 116 = F(ox (kIK) NN
Fd (k)P4 (k|k) 2N3 — N2
Fa)P (kI F (k) N3 + N2/2 — N/2
Pd(k + 1]k) = QU(k) + FA(k)PA(kIK)F4" (k) N2/2 4+ N/2
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