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1 Introduction 
Kalman filter [1], [2] is the best-known estimation 
and prediction algorithm and has been used with 
success in a wide range of applications: temperature 
prediction [3], object detection and tracking [4], 
electric load estimation [5], short-term temperature 
forecasts [6], autonomous orbit determination of 
BeiDou Navigation Satellite System [7], vehicle 
movement estimation [8], GPS position estimation 
and prediction [9], cases prediction of Covid-19 
[10], multi-observation fusion applications related to 
timescale [11], structural parameter tracking [12], 
applications with time-correlated measurement 
errors [13], control effectiveness estimation on 
airplanes [14], applications in aircraft state 
estimation [15], vehicle location estimation [16], 
estimation with unlimited sensing measurements 
[17], multi-target localization [18], Kalman filter-
based tracking-by-detection (KFTBD) tracker [19], 
ECG signal de-noising [20]. 

The conventional and the augmented complex 
Kalman filters [21] are the most well-known 
estimation algorithms that have been successfully 
used in various applications where complex signals 
are involved, such as applications in tracking, 
oceanography, array processing, communications, 
biomedicine [22], distribution state estimation [23], 

two-dimensional local navigation systems [24], 
tracking for Global Navigation Satellite System 
meta-signals [25].  

Complex signals have two fundamental 
statistical properties: the covariance matrix that has 
to do with the total power of the signal and the 
pseudo-covariance matrix that has to do with the 
correlation between the real part and the imaginary 
part of the signal [22]. The augmented model or 
widely linear model [26] takes into account both the 
covariance as well as the pseudo-covariance 
matrices.  

Using the augmented model or widely linear 
model, the Augmented Complex Kalman Filter is 
derived [21], [26]. In addition, it has been shown 
[26], [27] that the Augmented Complex Kalman 
Filter has a dual bivariate Real Kalman Filter. This 
dual filter is faster than the Augmented Complex 
Kalman Filter. 

Furthermore, two variations of the Augmented 
Complex Kalman Filter have been proposed: the 
Augmented Complex Information Kalman Filter 
[28] that uses the information matrices (the inverses 
of the covariance and pseudo-covariance matrices) 
and the Augmented Complex Kalman Filter Gain 
Elimination [29] that eliminates the Kalman filter 
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gain. These variations may be faster than the 
Augmented Complex Kalman Filter. 

Motivated by reducing the computational 
complexity and consequently minimizing the 
computational time, in this paper we address the 
duality of these variations of the Augmented 
Complex Kalman Filter with dual bivariate real-
valued Kalman filters. In fact, using the two 
variations of Augmented Complex Kalman Filter we 
prove the derivation of the corresponding dual 
Kalman filters. Simulation results confirm that the 
three complex Kalman filters and the corresponding 
dual Kalman filters are equivalent to each other 
since they compute the same estimates. 
Furthermore, we determine the computational 
requirements of the complex and dual Kalman 
filters. Finally, we detect the fastest filter by only 
taking into account the state and measurement 
dimensions. 
 

 

2 Problem Formulation 
Consider the augmented or widely linear model 
[26] described by the state space equations: 
xa(k) = Fa(k)xa(k − 1) + wa(k)   (1) 
za(k) = Ha(k)xa(k) + va(k)                (2) 

In this model, xa(k) = [
x(k)
x̅(k)

] is the 2n × 1  

augmented state vector, za(k) = [
z(k)
z̅(k)

] is the 2m ×

1  augmented measurement vector, wa(k) = [
w(k)
w̅(k)

] 

is the 2n × 1  augmented state noise vector, 

va(k) = [
v(k)
v̅(k)

] is the 2m × 1  augmented 

measurement noise vector; note that x̅ denotes the 
complex conjugate of the complex variable x. Also, 
the augmented initial state xa(0) is non-circular 
Gaussian with known mean x0

a = [
x0

x̅0
] and known 

covariance P0
a = [

P0 Π0

Π̅0 P̅0
]. 

The model parameters, which are assumed to be 
known, are: the 2n × 2n augmented transition 

matrix Fa(k) = [
F(k) A(k)

A̅(k) F̅(k)
], the 2m × 2n 

augmented output matrix Ha(k) = [
H(k) B(k)

B̅(k) H̅(k)
], 

the augmented covariance matrix Qa(k) =

[
Q(k) U(k)

U̅(k) Q̅(k)
] of the non-circular Gaussian zero 

mean state noise process, the augmented covariance 

matrix Ra(k) = [
R(k) V(k)

V̅(k) R̅(k)
] of the non-circular 

Gaussian zero mean measurement noise process; 
note that Q(k), R(k) are Hermitian covariance 
matrices (M is a Hermitian matrix when it is equal 
to its  conjugate transpose M∗ = M), while 
U(k), V(k) are symmetric pseudo-covariance 
matrices (M is a symmetric matrix when it is equal 
to its transpose MT = M). The model becomes time 
invariant in the special case where all the model 
parameters are constant in time: Fa(k) =
Fa, Ha(k) = Ha, Qa(k) = Qa, Ra(k) = Ra. 

The pair (Fa, Ha) is observable if the associated 
observability matrix is full rank [27]. There is no 
discussion about controllability as there is no input 
matrix in this model. 

 
The Augmented Complex Kalman Filters have 

been derived from the above augmented or widely 
linear model. Given the measurements till time k, 
the Augmented Complex Kalman Filters compute 
iteratively the augmented state estimation xa(k|k) =

[
x(k|k)

x̅(k|k)
] with the corresponding augmented 

estimation error covariance matrix Pa(k|k) =

[
P(k|k) Π(k|k)

Π̅(k|k) P̅(k|k)
] as well as the augmented state 

prediction xa(k + 1|k) = [
x(k + 1|k)

x̅(k + 1|k)
] with the 

corresponding augmented prediction error 
covariance matrix Pa(k + 1|k) =

[
P(k + 1|k) Π(k + 1|k)

Π̅(k + 1|k) P̅(k + 1|k)
]. 

The Augmented Complex Kalman Filter 

(ACKF) [21], [26] uses the augmented Kalman 

filter gain Ka(k) = [
K(k) G(k)

G̅(k) K̅(k)
]. The time varying 

ACKF (ACKFtv) has the form: 
 

ACKFtv 

initial conditions 

xa(0|−1) = x0
a 

Pa(0|−1) = P0
a 

iterations k = 0,1, … 
Ka(k)
= Pa(k|k − 1)Ha∗(k)[Ha(k)Pa(k|k − 1)Ha∗(k)
+ Ra(k)]−1 
xa(k|k) = xa(k|k − 1)

+ Ka(k)[za(k)
− Ha(k)xa(k|k − 1) ] 

Pa(k|k) = Pa(k|k − 1) − Ka(k)Ha(k)Pa(k|k − 1) 
xa(k + 1|k) = Fa(k)xa(k|k) 
Pa(k + 1|k) = Qa(k) + Fa(k)Pa(k|k)Fa∗(k) 
 
For time invariant model, the time invariant ACKF 
(ACKFti) is derived. 
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The augmented steady-state complex Kalman 

filter is derived for complex augmented or widely 
linear systems [29]; then the solution of the 
augmented complex Riccati equation is required as 
a necessary prerequisite in order to determine the 
steady-state parameters of the augmented steady-
state complex Kalman filter before observing any 
measurements. 

It is worth to note that the use of the pseudo-
covariance matrix in ACKF can improve the 
performance of CCKF (Conventional Complex 
Kalman Filter) [27]. In fact, the analysis in [26] has 
shown that the ACKF offers significant performance 
gains over the CCKF for noncircular signals, and 
the same performance as the CCKF for circular 
signals. 

The performances of ACKF and CCKF were 
compared in [27] and the basic results were: a) the 
mean squared error (MSE) of the ACKF is 
significantly smaller than the MSE of a CCKF that 
does not exploit non-zero complementary 
covariance, b) the MSE of the ACKF converges in 
the general case of improper noises. 

The effect of signal non-circularity on the mean 
square behavior of the CCKF was analyzed in [26] 
and the Cramer–Rao lower bound (CRLB) for the 
ACKF was established. 

 
The Augmented Complex Information 

Kalman Filter (ACIKF) [28] uses the augmented 
information state estimation ya(k|k) =

Pa−1(k|k)xa(k|k) and the corresponding 
augmented information estimation error covariance 
matrix Sa(k|k) = Pa−1(k|k) as well as the 
augmented information state prediction 
ya(k + 1|k) = Pa−1(k + 1|k)xa(k + 1|k) and the 
corresponding augmented information prediction 
error covariance matrix Sa(k + 1|k) =

Pa−1(k + 1|k). The time varying ACIKF 
(ACIKFtv) has the form: 

 
ACIKFtv 

initial conditions 

xa(0|−1) = x0
a 

Pa(0|−1) = P0
a 

ya(0|−1) = Pa−1(0|−1)xa(0|−1) = P0
a−1

x0
a 

Sa(0|−1) = Pa−1(0|−1) = P0
a−1 

iterations k = 0,1, … 
ya(k|k) = ya(k|k − 1) + Ha∗(k)Ra−1(k)za(k) 
Sa(k|k) = Sa(k|k − 1) + Ha∗(k)Ra−1(k)Ha(k) 
Pa(k|k) = Sa−1(k|k)         
xa(k|k) = Pa(k|k)ya(k|k) 

Ka(k) = Pa(k|k)Ha∗(k)Ra−1(k) 
Pa(k + 1|k) = Qa(k) + Fa(k)Pa(k|k)Fa∗

(k) 
Sa(k + 1|k) = Pa−1(k + 1|k) 
ya(k + 1|k) = Sa(k + 1|k)Fa(k)Pa(k|k)ya(k|k) 
xa(k + 1|k) = Pa(k|k)ya(k + 1|k) 
 
For time invariant model, the time invariant ACIKF 
(ACIKFti) is derived; then 
Ra−1

, Ha∗
Ra−1

, Ha∗
Ra−1

Ha are computed off-line. 
 

It is worth to note that ACKF and ACIKF are 
equivalent with respect to a) the derivation of the 
state estimations and predictions and the 
corresponding error covariances, b) their stability 
[28]. 

 
The Augmented Complex Kalman Filter Gain 

Elimination (ACKFGE) [29] substitutes the 
augmented Kalman filter gain by the matrix 
Λa(k) = Pa(k|k − 1)Ha∗(k)Ra−1(k). The time 
varying ACKFGE (ACKFGEtv) has the form: 

 
ACKFGEtv 
initial conditions 

xa(0|−1) = x0
a 

Pa(0|−1) = P0
a 

iterations k = 0,1, … 
Λa(k) = Pa(k|k − 1)Ha∗(k)Ra−1(k) 
xa(k|k) = [Ia + Λa(k)Ha(k)]−1{xa(k|k − 1)

+ Λa(k)za(k)} 
Pa(k|k) = [Ia + Λa(k)Ha(k)]−1Pa(k|k − 1) 
xa(k + 1|k) = Fa(k)xa(k|k) 
Pa(k + 1|k) = Qa(k) + Fa(k)Pa(k|k)Fa∗

(k) 
 
For time invariant model, the time invariant 
ACKFGE (ACKFGEti) is derived; then 
Ra−1, Ha∗Ra−1 are computed off-line. 
 

It is worth to note that ACKF and ACKFGE are 
equivalent with respect to the derivation of the state 
estimations and predictions and the corresponding 
error covariances. 
 
 
3 Dual Augmented Complex Kalman 

Filters 
Consider the duality concept used in [26], [27], 
where for a n × 1 complex vector x = xR + jxI 
(where xR denotes its real part and xI denotes its 
imaginary part), its 2n × 1  augmented vector xa =

[
x
x̅

] is related to its  2n × 1  dual vector xd = [xR

xI ] 
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by the relation xa = Jnxd, where Jn = [
In jIn

In −jIn
] is 

of dimension 2n × 2n and In is the n × n    identity 
matrix. Note that the following property holds: Jn

∗ =

2Jn
−1, with Jn

−1 = 1

2
[

In In

−jIn jIn
]. Also, the 2m × 2n  

augmented matrix Ma is related to the 2m × 2n  
dual matrix Md by the relation Ma = JmMdJn

−1 and 
the 2n × 2n  augmented covariance matrix Pa is 
related to the 2n × 2n  dual matrix Pd by the 
relation Pa = JnPdJn

∗ . 
Then, for the augmented or widely linear model we 
have: 
xa(k) = Jnxd(k), za(k) = Jmzd(k), wa(k) =
Jnwd(k), va(k) = Jmvd(k) and 
Fa(k) = JnFd(k)Jn

−1, Ha(k) =
JmHd(k)Jn

−1, Qa(k) = JnQd(k)Jn
∗ , Ra(k) =

JmRd(k)Jm
∗ . 

Note that Fd(k), Hd(k), Qd(k), Rd(k) are real 
matrices and that Qd(k), Rd(k) symmetric.  
In fact, 
Fd(k) = Jn

−1Fa(k)Jn

= [
FR(k) + AR(k) −FI(k) + AI(k)

FI(k) + AI(k) FR(k) − AR(k)
] 

Hd(k) = Jm
−1Ha(k)Jn

= [
HR(k) + BR(k) −HI(k) + BI(k)

HI(k) + BI(k) HR(k) − BR(k)
] 

Qd(k) = Jn
−1Qa(k)Jn

∗ −1 =
1

2
Jn

−1Qa(k)Jn

=
1

2
[
QR(k) + UR(k) −QI(k) + UI(k)

QI(k) + UI(k) QR(k) − UR(k)
] 

Rd(k) = Jm
−1Ra(k)Jm

∗ −1 =
1

2
Jn

−1Ra(k)Jn

=
1

2
[
RR(k) + VR(k) −RI(k) + VI(k)

RI(k) + VI(k) RR(k) − VR(k)
] 

Furthermore, we have:  
xa(k|k) = Jnxd(k|k), xa(k + 1|k) = Jnxd(k + 1|k) 
and 
Pa(k|k) = JnPd(k|k)Jn

∗ , Pa(k + 1|k) =
JnPd(k + 1|k)Jn

∗ . 
Note that xd(k|k), xd(k + 1|k) are real vectors and 
that Pd(k|k), Pd(k + 1|k) are real symmetric 
matrices.  
In fact, 

xd(k|k) = Jn
−1xa(k|k) = [

xR(k|k)

xI(k|k)
] 

xd(k + 1|k) = Jn
−1xa(k + 1|k) = [

xR(k + 1|k)

xI(k + 1|k)
] 

Pd(k|k) = Jn
−1Pa(k|k)Jn

∗ −1 =
1

2
Jn

−1Pa(k|k)Jn

=
1

2
[
PR(k|k) + ΠR(k|k) −PI(k|k) + ΠI(k|k)

PI(k|k) + ΠI(k|k) PR(k|k) − ΠR(k|k)
] 

Pd(k + 1|k) = Jn
−1Pa(k + 1|k)Jn

∗ −1 =
1

2
Jn

−1Pa(k + 1|k)Jn

=
1

2
[
PR(k + 1|k) + ΠR(k + 1|k) −PI(k + 1|k) + ΠI(k + 1|k)

PI(k + 1|k) + ΠI(k + 1|k) PR(k + 1|k) − ΠR(k + 1|k)
] 

Also, we have: 
x0

a = xa(0|−1) = Jnxd(0|−1) = Jnx0
d and 

P0
a = Pa(0|−1) = JnPd(0|−1)Jn

∗ = JnP0
dJn

∗

= 2JnP0
dJn

−1 
Finally,  
Ia = JnIdJn

−1 
 

The Dual Augmented Complex Kalman Filter 

(DACKF) [26] is derived by the Augmented 
Complex Kalman Filter using 
Ka(k) = JnKd(k)Jm

−1 
Note that Kd(k) is real. In fact 
Kd(k) = Jn

−1Ka(k)Jm

= [
KR(k) + GR(k) −KI(k) + GI(k)

KI(k) + GI(k) KR(k) − GR(k)
] 

The time varying Dual Augmented Complex 
Kalman Filter (DACKFtv) has the form: 
 
DACKFtv 

initial conditions 

xa(0|−1) = x0
a 

Pa(0|−1) = P0
a 

xd(0|−1) = x0
d = Jn

−1xa(0|−1) = Jn
−1x0

a 
Pd(0|−1) = P0

d = Jn
−1Pd(0|−1)Jn

∗ −1 = Jn
−1P0

aJn
∗ −1

=
1

2
Jn

−1P0
aJn 

iterations k = 0,1, … 

Fd(k) = Jn
−1Fa(k)Jn 

Hd(k) = Jm
−1Ha(k)Jn 

Qd(k) = Jn
−1Qa(k)Jn

∗ −1 
Rd(k) = Jm

−1Ra(k)Jm
∗ −1 

Kd(k)

= Pd(k|k − 1)HdT
(k) [Hd(k)Pd(k|k − 1)HdT

(k)

+ Rd(k)]
−1

 
xd(k|k) = xd(k|k − 1)

+ Kd(k)[zd(k)

− Hd(k)xd(k|k − 1) ] 
Pd(k|k) = Pd(k|k − 1) − Kd(k)Hd(k)Pd(k|k − 1) 
xd(k + 1|k) = Fd(k)xd(k|k) 
Pd(k + 1|k) = Qd(k) + Fd(k)Pd(k|k)FdT

(k) 

 
For time invariant model, the time invariant 
DACKF (DACKFti) is derived; then Fd, Hd, Qd, Rd 
are computed off-line and once. 
 

It is worth to note that the time varying Dual 
Augmented Complex Kalman Filter and the time 

invariant Dual Augmented Complex Kalman Filter 
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have the same structure as the real time varying and 
time invariant Kalman filters.  

A theoretical bound for the performance 
advantage of ACKF over CCKF was provided in 
[26]; the analysis also has addressed the duality with 
bivariate real-valued Kalman Filter. Moreover, due 
to the duality between the bivariate real-valued 
Kalman Filter and ACKF, the stability and 
convergence analysis for real-valued Kalman Filter 
also apply to the ACKF [26]. 

 
In the following, the Dual Augmented Complex 

Information Kalman Filter (DAICKF) is derived 
by the Augmented Complex Information Kalman 
Filter. 
Proof. 
xa(0|−1) = x0

a = Jnxd(0|−1) 
⇒ xd(0|−1) = x0

d = Jn
−1xa(0|−1) = Jn

−1x0
a 

 
Pa(0|−1) = P0

a = JnPd(0|−1)Jn
∗  

⇒ Pd(0|−1) = P0
d = Jn

−1Pd(0|−1)Jn
∗ −1

= Jn
−1P0

aJn
∗ −1 =

1

2
Jn

−1P0
aJn 

 

S0
d = (P0

d)
−1

= (Pd(0|−1))
−1

 

Sa(0|−1) = S0
a = (Pa(0|−1))

−1
= P0

a−1

= (JnPd(0|−1)Jn
∗ )

−1

= (JnP0
dJn

∗ )
−1

= Jn
∗ −1(P0

d)
−1

Jn
−1

= Jn
∗ −1S0

dJn
−1 =

1

2
JnS0

dJn
−1 

⇒ Sd(0|−1) = S0
d = 2Jn

−1S0
aJn = (

1

2
Jn

−1P0
aJn)

−1

= P0
d−1

 
Then 
Sa(k|k − 1) =

1

2
JnSd(k|k − 1)Jn

−1 
 
 
y0

d = S0
dx0

d 
ya(0|−1) = (Pa(0|−1))

−1
xa(0|−1) = P0

a−1
x0

a

= (JnPd(0|−1)Jn
∗ )

−1
Jnxd(0|−1) =

= (JnP0
dJn

∗ )
−1

Jnx0
d

= Jn
∗ −1(P0

d)
−1

Jn
−1Jnx0

d

= Jn
∗ −1S0

dx0
d = Jn

∗ −1y0
d 

⇒ yd(0|−1) = y0
d = Jn

∗ ya(0|−1) = Jn
∗ y0

a

= Jn
∗ S0

ax0
a = Jn

∗ P0
a−1

x0
a 

= Jn
∗ Jn

∗ −1S0
dJn

−1x0
a = S0

dJn
−1x0

a = S0
dx0

d

= P0
d−1

x0
d 

Then 
ya(k|k − 1) =

1

2
Jnyd(k|k − 1) 

 

ya(k|k) =
1

2
Jnyd(k|k) 

ya(k|k) = ya(k|k − 1) + Ha∗
(k)Ra−1

(k)za(k) 
              = 1

2
Jnyd(k|k − 1) +

{JmHd(k)Jn
−1}

∗
{JmRd(k)Jm

∗ }
−1

Jmzd(k) 
                

=
1

2
Jnyd(k|k − 1)

+ Jn
−1∗

HdT
(k)Jm

∗ Jm
∗ −1Rd−1

(k)Jm
−1Jmzd(k) 

                

=
1

2
Jnyd(k|k − 1)

+ Jn
∗ −1HdT

(k)Jm
∗ Jm

∗ −1Rd−1
(k)Jm

−1Jmzd(k) 
=

1

2
Jnyd(k|k − 1)

+
1

2
JnHdT

(k)Jm
∗ Jm

∗ −1Rd−1
(k)Jm

−1Jmzd(k) 

                =
1

2
Jnyd(k|k − 1)

+
1

2
JnHdT

(k)Rd−1
(k)zd(k) 

                 =
1

2
Jn [yd(k|k − 1)

+ HdT
(k)Rd−1

(k)zd(k)] 

                 =
1

2
Jn [yd(k|k − 1)

+ HdT
(k)Rd−1

(k)zd(k)] 

                 =
1

2
Jnyd(k|k) 

⇒ yd(k|k) = yd(k|k − 1) + HdT
(k)Rd−1

(k)zd(k) 
 

Sa(k|k) =
1

2
JnSd(k|k)Jn

−1 
Sa(k|k) = Sa(k|k − 1) + Ha∗(k)Ra−1(k)Ha(k) 
             = 1

2
JnSd(k|k − 1)Jn

−1 +

{JmHd(k)Jn
−1}

∗
{JmRd(k)Jm

∗ }
−1

{JmHd(k)Jn
−1} 

                

=
1

2
JnSd(k|k − 1)Jn

−1

+ Jn
−1∗

HdT
(k)Jm

∗ Jm
∗ −1Rd−1

(k)Jm
−1JmHd(k)Jn

−1 
                =

1

2
JnSd(k|k − 1)Jn

−1

+ Jn
∗ −1HdT

(k)Rd−1
(k)Hd(k)Jn

−1 
                =

1

2
JnSd(k|k − 1)Jn

−1

+
1

2
JnHdT

(k)Rd−1
(k)Hd(k)Jn

−1 

                 =
1

2
Jn [Sd(k|k − 1)

+ HdT
(k)Rd−1

(k)Hd(k)] Jn
−1 

⇒ Sd(k|k) = Sd(k|k − 1) + HdT
(k)Rd−1

(k)Hd(k) 

 

Pa(k|k) = Sa−1(k|k) = (1

2
JnSd(k|k)Jn

−1)
−1

=

2JnSd−1
(k|k)Jn

−1         
Pa(k|k) = Sa−1(k|k)         
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⇒ JnPd(k|k)Jn
∗ = (

1

2
JnSd(k|k)Jn

−1)
−1

= 2JnSd−1
(k|k)Jn

−1

= 2JnSd−1
(k|k)

1

2
Jn

∗

= JnSd−1
(k|k)Jn

∗  

⇒ Pd(k|k) = Sd−1
(k|k) 

 
xa(k|k) = Pa(k|k)ya(k|k) 
⇒ Jnxd(k|k) = JnPd(k|k)Jn

∗ 1

2
Jnyd(k|k)

= JnPd(k|k)2Jn
−11

2
Jnyd(k|k) 

⇒ xd(k|k) = Pd(k|k)yd(k|k) 
 
Ka(k) = Pa(k|k)Ha∗

(k)Ra−1
(k) 

⇒ JnKd(k)Jm
−1

= JnPd(k + 1|k)Jn
∗ {JmHd(k)Jn

−1}
∗
{JmRd(k)Jm

∗ }
−1

 
                           

= JnPd(k + 1|k)Jn
∗ Jn

−1∗
HdT

(k)Jm
∗ Jm

∗ −1Rd−1
(k)Jm

−1 
                           

= JnPd(k + 1|k)Jn
∗ Jn

∗ −1HdT
(k)Jm

∗ Jm
∗ −1Rd−1

(k)Jm
−1 

⇒ Kd(k) = Pd(k|k)HdT
(k)Rd−1

(k) 
 
Pa(k + 1|k) = Qa(k) + Fa(k)Pa(k|k)Fa∗(k) 
⇒ JnPd(k + 1|k)Jn

∗

= JnQd(k)Jn
∗

+ JnFd(k)Jn
−1JnPd(k|k)Jn

∗ {JnFd(k)Jn
−1}

∗
 

                                     
= JnQd(k)Jn

∗

+ JnFd(k)Jn
−1JnPd(k|k)Jn

∗ Jn
−1∗

Fd(k)∗Jn
∗  

                                     
= JnQd(k)Jn

∗

+ JnFd(k)Jn
−1JnPd(k|k)Jn

∗ Jn
∗ −1FdT

(k)Jn
∗  

⇒ Pd(k + 1|k) = Qd(k) + Fd(k)Pd(k|k)FdT
(k) 

 

Sa(k + 1|k) =
1

2
JnSd(k|k − 1)Jn

−1 

Sa(k + 1|k) = Pa−1(k + 1|k) 
⇒

1

2
JnSd(k|k − 1)Jn

−1 = {JnPd(k + 1|k)Jn
∗ }

−1

= Jn
∗ −1Pd−1

(k + 1|k)Jn
−1

=
1

2
JnPd−1

(k + 1|k)Jn
−1 

⇒ Sd(k + 1|k) = Pd−1
(k + 1|k) 

 

ya(k + 1|k) =
1

2
Jnyd(k + 1|k) 

ya(k + 1|k) = Sa(k + 1|k)Fa(k)Pa(k|k)ya(k|k) 
⇒

1

2
Jnyd(k + 1|k) =

1

2
JnSd(k + 1|k) 

Jn
−1JnFd(k)Jn

−1JnPd(k + 1|k)Jn
∗ 1

2
Jnyd(k|k) 

                                   =
1

2
JnSd(k + 1|k) 

Jn
−1JnFd(k)Jn

−1JnPd(k + 1|k)2Jn
−11

2
Jnyd(k|k) 

                                   

=
1

2
JnSd(k + 1|k)Fd(k)Pd(k + 1|k)yd(k|k) 

⇒ yd(k + 1|k)

= Sd(k + 1|k)Fd(k)Pd(k|k)yd(k|k) 
 

xa(k + 1|k) = Pa(k|k)ya(k + 1|k) 
⇒ Jnxd(k + 1|k) = JnPd(k|k)Jn

∗ 1

2
Jnyd(k + 1|k)

= JnPd(k|k)2Jn
−11

2
Jnyd(k + 1|k)

= JnPd(k|k)yd(k + 1|k) 
⇒ xd(k + 1|k) = Pd(k|k)yd(k + 1|k) 

 
Thus, the time varying Dual Augmented Complex 
Information Kalman Filter (DACIKFtv) has the 
form: 
 
DACIKFtv 

initial conditions 

xa(0|−1) = x0
a 

Pa(0|−1) = P0
a 

xd(0|−1) = x0
d = Jn

−1xa(0|−1) = Jn
−1x0

a 
Pd(0|−1) = P0

d = Jn
−1Pd(0|−1)Jn

∗ −1 = Jn
−1P0

aJn
∗ −1

=
1

2
Jn

−1P0
aJn 

yd(0|−1) = y0
d = S0

dx0
d = P0

d−1
x0

d 
Sd(0|−1) = S0

d = P0
d−1

 

iterations k = 0,1, … 
Fd(k) = Jn

−1Fa(k)Jn 
Hd(k) = Jm

−1Ha(k)Jn 

Qd(k) = Jn
−1Qa(k)Jn

∗ −1 
Rd(k) = Jm

−1Ra(k)Jm
∗ −1 

yd(k|k) = yd(k|k − 1) + HdT
(k)Rd−1

(k)zd(k) 
Sd(k|k) = Sd(k|k − 1) + HdT

(k)Rd−1
(k)Hd(k) 

Pd(k|k) = Sd−1
(k|k) 

xd(k|k) = Pd(k|k)yd(k|k) 
Kd(k) = Pd(k|k)HdT

(k)Rd−1
(k) 

Pd(k + 1|k) = Qd(k) + Fd(k)Pd(k|k)FdT
(k) 

Sd(k + 1|k) = Pd−1
(k + 1|k) 

yd(k + 1|k) = Sd(k + 1|k)Fd(k)Pd(k|k)yd(k|k) 
xd(k + 1|k) = Pd(k|k)yd(k + 1|k) 
 
For time invariant model, the time invariant 
DACIKF (DACIKFti) is derived; then 
Fd, Hd, Qd, Rd are computed off-line and once and 
Rd−1

, HdT
Rd−1

, HdT
Rd−1

Hd are computed off-line. 
 

It is worth to note that DACKF and DACIKF are 
equivalent with respect to the derivation of the state 
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estimations and predictions and the corresponding 
error covariances. 
 

In the following, the Dual Augmented Complex 

Kalman Filter Gain Elimination (DACKFGE) is 
derived by the Augmented Complex Kalman Filter 
Gain Elimination. 
Proof. 
xa(0|−1) = x0

a = Jnxd(0|−1) 
⇒ xd(0|−1) = x0

d = Jn
−1xa(0|−1) = Jn

−1x0
a 

 
Pa(0|−1) = P0

a = JnPd(0|−1)Jn
∗  

⇒ Pd(0|−1) = P0
d = Jn

−1Pd(0|−1)Jn
∗ −1

= Jn
−1P0

aJn
∗ −1 =

1

2
Jn

−1P0
aJn 

 
Λa(k) = Pa(k|k − 1)Ha∗

(k)Ra−1
(k) 

⇒ JnΛd(k)Jm
−1

= JnPd(k|k − 1)Jn
∗ {JmHd(k)Jn

−1}
∗
{JmRd(k)Jm

∗ }
−1

 
                           

= JnPd(k|k − 1)Jn
∗ Jn

−1∗
HdT

(k)Jm
∗ Jm

∗ −1Rd−1
(k)Jm

−1 
                           

= JnPd(k|k − 1)Jn
∗ Jn

∗ −1HdT
(k)Jm

∗ Jm
∗ −1Rd−1

(k)Jm
−1 

⇒ Λd(k) = Pd(k|k − 1)HdT
(k)Rd−1

(k) 
 

xa(k|k) = [Ia + Λa(k)Ha(k)]−1{xa(k|k − 1)
+ Λa(k)za(k)} 

⇒ Jnxd(k|k)

= [JnIdJn
−1

+ JnΛd(k)Jm
−1JmHd(k)Jn

−1]
−1

{Jnxa(k|k − 1)

+ JnΛd(k)Jm
−1Jmzd(k)} 

                         

= [Jn (Id + Λd(k)Hd(k)) Jn
−1]

−1
{Jnxa(k|k − 1)

+ JnΛd(k)zd(k)} 
                         

= Jn[Id + Λd(k)Hd(k)]
−1

Jn
−1Jn{xa(k|k − 1)

+ Λd(k)zd(k)} 
⇒ xd(k|k) = [Id + Λd(k)Hd(k)]

−1
{xd(k|k − 1)

+ Λd(k)zd(k)} 
 

Pa(k|k) = [Ia + Λa(k)Ha(k)]−1Pa(k|k − 1) 
⇒ JnPd(k|k)Jn

∗

= [JnIdJn
−1

+ JnΛd(k)Jm
−1JmHd(k)Jn

−1]
−1

JnPd(k|k − 1)Jn
∗  

                             

= [Jn (Id + Λd(k)Hd(k)) Jn
−1]

−1
JnPd(k|k − 1)Jn

∗  
                             

= Jn[Id + Λd(k)Hd(k)]
−1

Jn
−1JnPd(k|k − 1)Jn

∗  

⇒ Pd(k|k) = [Id + Λd(k)Hd(k)]
−1

Pd(k|k − 1) 
 

xa(k + 1|k) = Fa(k + 1|k)xa(k|k) 
⇒ Jnxd(k + 1|k) = JnFd(k)Jn

−1Jnxd(k|k) 
⇒ xd(k + 1|k) = Fd(k)xd(k|k) 
 

Pa(k + 1|k) = Qa(k) + Fa(k)Pa(k|k)Fa∗
(k) 

⇒ JnPd(k + 1|k)Jn
∗

= JnQd(k)Jn
∗

+ JnFd(k)Jn
−1JnPd(k|k)Jn

∗ {JnFd(k)Jn
−1}

∗
 

                                     
= JnQd(k)Jn

∗

+ JnFd(k)Jn
−1JnPd(k|k)Jn

∗ Jn
−1∗

Fd(k)∗Jn
∗  

                                     

= JnQd(k)Jn
∗

+ JnFd(k)Jn
−1JnPd(k|k)Jn

∗ Jn
∗ −1FdT

(k)Jn
∗  

⇒ Pd(k + 1|k) = Qd(k) + Fd(k)Pd(k|k)FdT
(k) 

 
Thus, the time varying Dual Augmented Complex 
Kalman Filter Gain Elimination (DACKFGEtv) has 
the form: 
 
DACKFGEtv  

initial conditions 

xa(0|−1) = x0
a 

Pa(0|−1) = P0
a 

xd(0|−1) = x0
d = Jn

−1xa(0|−1) = Jn
−1x0

a 
Pd(0|−1) = P0

d = Jn
−1Pd(0|−1)Jn

∗ −1 = Jn
−1P0

aJn
∗ −1

=
1

2
Jn

−1P0
aJn 

iterations k = 0,1, … 

Fd(k) = Jn
−1Fa(k)Jn 

Hd(k) = Jm
−1Ha(k)Jn 

Qd(k) = Jn
−1Qa(k)Jn

∗ −1 
Rd(k) = Jm

−1Ra(k)Jm
∗ −1 

Λd(k) = Pd(k|k − 1)HdT
(k)Rd−1

(k) 
xd(k|k) = [Id + Λd(k)Hd(k)]

−1
{xd(k|k − 1)

+ Λd(k)zd(k)} 
Pd(k|k) = [Id + Λd(k)Hd(k)]

−1
Pd(k|k − 1) 

xd(k + 1|k) = Fd(k)xd(k|k) 
Pd(k + 1|k) = Qd(k) + Fd(k)Pd(k|k)FdT

(k) 
 
For time invariant model, the time invariant 
DACKFGE (DACKFGEti) is derived; then 
Fd, Hd, Qd, Rd are computed off-line and once and 
Rd−1

, HdT
Rd−1

 are computed off-line. 
 

It is worth to note that ACKF and ACKFGE are 
equivalent with respect to the derivation of the state 
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estimations and predictions and the corresponding 
error covariances. 
 

 

4 Simulation Example 
Consider the constant velocity movement with the 
position and the velocity assumed to be complex 
(concerning the movement in two dimensions), 
which is described by an augmented or widely linear 
model with model parameters [30]: 

Fa(k) = [
F(k) 0

0 F̅(k)
] = [

1 T
0 1

0 0
0 0

0 0
0 0

1 T
0 1

]  

(where T is the sampling interval) 

Ha(k) = [
H(k) B(k)

B̅(k) H̅(k)
] = [

1 0 0 0
0 0 1 0

] 

Qa(k) = [
Q(k) U(k)

U̅(k) Q̅(k)
] = [

0.5 0
0 0.2

0 0
0 0

0 0
0 0

0.5 0
0 0.2

] 

Ra(k) = [
R(k) V(k)

V̅(k) R̅(k)
] = [

0.2 0.1 + 0.1j
0.1 − 0.1j 0.2

] 

 
We assumed a movement with constant velocity (2, 
3) m/s. We have implemented the augmented as 
well the dual filters taking sampling interval T = 1 s 
and initial conditions 

x0
a = [

x0

x̅0
] = [

0
2 + 3j

0
2 − 3j

], 

P0
a = [

P0 Π0

Π̅0 P̅0
] = [

1 0
0 1

0 0
0 0

0 0
0 0

1 0
0 1

]. 

 
The simulation results confirm that the three 
complex Kalman filters and the corresponding dual 
Kalman filters are equivalent to each other since 
they compute the same position estimates, as it is 
shown in Fig. 1. All the algorithms present Mean 
Absolute Error (MAE) 0.3777 and % Root Mean 
Square Error (%RMSE) 0.4209. 

 
Fig. 1. Position estimation 

 
A subject of future research is to investigate the 

applicability of the presented filters to estimation 
applications where complex signals are involved, 
especially for multidimensional cases. 
 

 

5 Selection of the Faster Filter 
It is obvious that all the augmented as well as the 
dual Kalman filters are iterative algorithms. Hence, 
their computational time depends on their per-
iteration calculation burden required for the on-line 
calculations; the calculation burden of the off-line 
calculations (initialization process) is not taken into 
account. 
The calculation burdens of the augmented and dual 
filters are given in the Appendix and summarized in 
Table 1.  
 

Table 1. Calculation burdens of complex Kalman 
filters 

 
ACKFtv 64n3 − 4n2 + 2n + 64n2m + 8nm + 64nm2 +

1

6
(208m3 − 120m2 + 20m) 

ACKFti 64n3 − 4n2 + 2n + 64n2m + 8nm + 64nm2 +
1

6
(208m3 − 120m2 + 20m) 

ACIKFtv 1

6
(800n3 + 72n2 − 80n) + 64n2m − 8nm + 32nm2 +

1

6
(208m3 − 96m2 + 8m) 

ACIKFti 1

6
(800n3 + 108n2 − 86n) + 32n2m + 4nm 

ACKFGEtv 1

6
(784n3 − 108n2 + 8n) + 64n2m − 8nm + 32nm2 +

1

6
(208m3 − 96m2 + 8m) 

ACKFGEti 1

6
(784n3 − 108n2 + 8n) + 64n2m + 4nm 

DACKFtv 1

6
(144n3 + 87n2 − 9n) + 24n2m + 20nm + 24nm2 +

1

6
(56m3 + 15m2 + m) 

DACKFti 24n3 + 8n2 − 2n + 24n2m + 16nm + 24nm2 +
1

6
(56m3 − 2m) 

DACIKFtv 1

6
(256n3 + 231n2 − 37n) + 24n2m + 8nm + 16nm2 +

1

6
(56m3 + 15m2 − 11m) 

DACIKFti 1

6
(256n3 + 204n2 − 34n) + 16n2m + 4nm − 2m 

DACKFGEtv 1

6
(248n3 + 123n2 − 17n) + 32n2m + 4nm + 16nm2 +

1

6
(56m3 + 15m2 + m) 

DACKFGEti 1

6
(248n3 + 84n2 − 20n) + 32n2m + 4nm 

 
Fig. 2-5 depict the faster filter with respect to the 

model dimensions. The faster filter depends on the 
model dimensions, namely the state vector 
dimension n and the measurement vector dimension 
m. 
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Fig. 2. The faster augmented filter – tv model 

 

  
Fig. 3. The faster augmented filter – ti model 

 

  
Fig. 4. The faster dual filter – tv model 

 

  
Fig. 5. The faster dual filter – ti model 

 
 

The following rules of thumb are derived: 
Augmented Complex Kalman Filters 

time varying    ACIKF faster than ACKF m/n>1.5 
         ACKFGE faster than ACKF m/n>1.4 
         ACKFGE faster than ACIKF always 

                        fastest filter 

                        ACKF  when m/n<1.4 

                        ACKFGE when 1.4<m/n 

time invariant   ACIKF faster than ACKF m/n>0.75 
          ACKFGE faster than ACKF m/n>0.85 
          ACIKF faster than ACKFGE  m/n>0.2 

                         fastest filter 

                         ACKF  when m/n<0.75 

                         ACIKF when 0.75<m/n 

 

Dual Augmented Complex Kalman Filters 

time varying    DACIKF faster than DACKF m/n>1.55 
         DACKFGE faster than DACKF m/n>1.9 
         DACIKF faster than DACKFGE m/n>0.4 

                        fastest filter 

                        DACKF  when m/n<1.55 

                        DACIKF  when 1.55<m/n 

time invariant   DACIKF faster than DACKF m/n>0.7 
          DACKFGE faster than DACKF m/n>0.85 
          DACIKF faster than DACKFGE  m/n>0.2 

                        fastest filter 

                        DACKF  when m/n<0.7 

                        DACIKF  when 0.7<m/n 

 
Table 2 presents the % cases of fastest filter for 
model dimensions n=1:10 and m=1:10. 
 

Table 2. % cases of fastest filter for model 
dimensions n=1:10 and m=1:10 

 
Augmented  

Complex  

Kalman  

Filters 

ACKF ACIKF ACKFGE AKF/ 
ACKFGE 

time varying 64 0 35 1 
time invariant 36 64 0 - 
Dual  

Augmented  

Complex  

Kalman Filters 

DACKF DACIKF DAKFGE  

time varying 70 29 1  
time invariant 33 66 1  
 

Furthermore, the Dual Augmented Complex 
Kalman Filters are faster than the Augmented 
Complex Kalman Filters for both time varying as 
well as for time invariant models. 
Fig. 6-8 depict the speedup form the augmented 
filters to the dual filters. The following rule of 
thumb arises: dual filters are 3 times faster than 
augmented filters. 
 

  
Fig. 6. Speedup – ACKF filters 

 

  
Fig. 7. Speedup – ACIKF filters 
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Fig. 8. Speedup – ACKFGE filters 

 
6 Conclusion 
Complex signals, which arise in many applications, 
are characterizes by the covariance and the pseudo-
covariance matrices. These matrices are taken into 
account in the augmented or widely linear model, 
form where the Augmented Complex Kalman Filter 
is derived. There are also derived its variations, 
namely the Augmented Complex Information 
Kalman Filter that uses the information matrices 
(the inverses of the covariance and pseudo-
covariance matrices) and the Augmented Complex 
Kalman Filter Gain Elimination that eliminates the 
Kalman filter gain. All these complex filters 
compute the state estimation using noised 
measurements.  

The duality between the augmented complex 
Kalman filters and the corresponding dual bivariate 
real Kalman filters is addressed. The complex 
Kalman filters and the dual real Kalman filters 
compute the same estimates. This results from the 
proofs of the dual filters and is confirmed by a 
simulation example. 

It is important to note that, due to the duality 
between the bivariate real-valued Kalman Filter and 
ACKF, the stability and convergence analysis for 
real-valued Kalman Filter also apply to the ACKF 
[26]; then, ACKF, like the bivariate real-valued 
Kalman Filter, achieves the Cramer–Rao lower 
bound (CRLB) [26]. Also, the mean squared error 
(MSE) of ACKF converges in the general case of 
improper noises [27]. In addition, the three 
augmented complex Kalman filters and the 
corresponding dual augmented Kalman filters are 
equivalent to each other since they compute the 
same estimations and predictions and the 
corresponding error covariances at every time 
iteration. Also, the Dual Augmented Complex 
Kalman Filters have the same structure as the real 
Kalman filters. Hence, stability and convergence 
analysis for real-valued Kalman Filter also apply to 
the proposed algorithms. 

The computational requirements of the complex 
and dual real Kalman filters are presented. The 

knowledge of the computational requirements of the 
filters is the basis of determining the fastest complex 
filter and the fastest dual real filter. The dual real 
filters are 3 times faster than the complex filters. 
The ability to determine the fastest filter depends on 
the state and measurement dimensions. This is a 
useful result, since the fastest filter can be a-priori 
selected, i.e. before its implementation. 

 
References: 

[1] R.E. Kalman, A new approach to linear 
filtering and prediction problems, J. Bas. Eng., 

Trans. ASME, Ser  D, vol. 8, no 1, pp. 34-45, 
1960. 

[2] B.D.O. Anderson and J.B. Moore, Optimal 

filtering, New York: Dover Publications, 2005. 
[3] G. Galanis, P. Louka, P. Katsafados, I. 

Pytharoulis, and G. Kallos, Applications of 
Kalman filters based on non-linear functions to 
numerical weather predictions, Ann. Geophys., 
vol. 24, pp. 2451–2460, 2006. 

[4] A. Ali, K. Terada, Object detection and 
tracking using Kalman filter and fast mean shift 
algorithm, Proceedings of the Fourth 

International Conference on Computer Vision 

Theory and Applications, pages 585-589, 2009, 
doi: 10.5220/0001787705850589 

[5] R. Shankar,  K. Chatterjee, T. K. Chatterjee, A 
Very Short-Term Load forecasting using 
Kalman filter for Load Frequency Control with 
Economic Load Dispatch, Journal of 

Engineering Science and Technology Review, 
vol. 5, no 1, pp. 97-103, 2012, doi: 
10.25103/jestr.051.17 

[6] G. Giunta, R. Vernazza, R. Salerno, A. Ceppi, 
G. Ercolani, M. Mancini, Hourly weather 
forecasts for gasturbine power generation, 
Meteorol. Z., vol. 26, pp.307–317, 2017. 

[7] Y. Li, Q. Gui, S. Han, Y. Gu, Tikhonov 
Regularized Kalman Filter and its Applications 
in Autonomous Orbit Determination of BDS, 
WSEAS Transactions on Mathematics, (16), pp. 
187-196, 2017. 

[8] Y. Kim, H. Bang, Introduction to Kalman Filter 
and Its Applications, InTechOpen, 2018, doi: 
10.5772/intechopen.80600 

[9] R. Verma, L. Shrinivasan and K. Shreedarshan, 
GPS/INS integration during GPS outages using 
machine learning augmented with Kalman 
filter, WSEAS Transactions on Systems and 

Control (16), pp. 294-301, 2021, doi: 
10.37394/23203.2021.16.25, (Accessed Date: 
September 10, 2025). 

[10] V. C. S. Rao, B. G. Devi, S. Pratapagiri, C. 
Srinivas, S. Venkatramulu, D. Raghavakumari, 

Athanasios Polyzos et al.
International Journal of Signal Processing 

http://iaras.org/iaras/journals/ijsp

ISSN: 2367-8984 10 Volume 11, 2026

https://doi.org/10.37394/23203.2021.16.25


Prediction of Covid-19 using Kalman filter 
algorithm, AIP Conference Proceedings, vol. 
2418, issue 1, 2022, id.030067, 8 pp., doi: 
10.1063/5.0081995. 

[11] X. Wang, Y. Yang, B. Wang, Y. Lin, C. Han, 
Resilient timekeeping algorithm with multi-
observation fusion Kalman filter, Satellite 

Navigation, vol. 4, 2023. 
[12] M. Diaz, P.-É. Charbonnel, L. Chamoin, A new 

Kalman filter approach for structural parameter 
tracking: Application to the monitoring of 
damaging structures tested on shaking-tables, 
Mechanical Systems and Signal Processing, 
vol. 182, 2023. 

[13] C. Hajiyev and U. Hacizade, A Covariance 
Matching-Based Adaptive Measurement 
Differencing Kalman Filter for INS’s Error 
Compensation, WSEAS Transactions on 

Systems and Control, vol. 18, 2023, pp. 478-
486, doi: 10.37394/23203.2023.18.51, 
(Accessed Date: September 10, 2025). 

[14] A. Guven and C. Hajiyev, Two-Stage Kalman 
Filter Based Estimation of Boeing 747 
Actuator/Control Surface Stuck Faults, WSEAS 

Transactions on Signal Processing, vol. 19, pp. 
32-40, 2023, doi: 10.37394/232014.2023.19.4, 
(Accessed Date: September 10, 2025). 

[15] M. Sever, T.Y. Erkeç, C. Hajiyev, Comparison 
of Adaptive Kalman Filters in Aircraft State 
Estimation, WSEAS Transactions on Signal 

Processing, vol. 19, pp. 128-138, 2023. 
[16] A. Becker, Kalman filter from the ground up, 

Second edition, September 2023, 
https://www.kalmanfilter.net/book.html 

[17] H. Wang, X. Zheng and H. Li, Kalman 
Filtering With Unlimited Sensing, ICASSP 

2024 - 2024 IEEE International Conference on 

Acoustics, Speech and Signal Processing 

(ICASSP), Seoul, Korea, Republic of, 2024, pp. 
9826-9830, doi: 
10.1109/ICASSP48485.2024.10448298. 

[18] Q. Luo, S. Li, X. Yan, C. Wang, Z. Zhou, G. 
Jia, An improved two-phase robust distributed 
Kalman filter, Signal Processing, vol. 220, 
2024. 

[19] H. Jung, S. Kang, T. Kim, H. Kim, ConfTrack: 
Kalman Filter-based Multi-Person Tracking by 
Utilizing Confidence Score of Detection Box, 
IEEE/CVF Winter Conference on Applications 

of Computer Vision (WACV), 2024, pp. 6583-
6592 

[20] H. D. Hesar, H., A. D. Hesar, Adaptive dual 
augmented extended Kalman filtering of ECG 
signals, Measurement, vol. 239, 2025, doi:  
10.1016/j.measurement.2024.115457. 

[21] Wang, G. Ge, S.S., Xue, R., Zhao, J., Li, C., 
Complex-valued Kalman filters based on 
Gaussian entropy, Signal Processing vol.160, 
pp. 178–189, 2019, doi: 
10.1016/j.sigpro.2019.02.024 

[22] Mohammadi, A., Plataniotis, K.N., Structure-
induced complex Kalman filter for 
decentralized sequential Bayesian estimation, 
IEEE Signal Process. Lett. 22 (9), 1419–1423, 
2015, doi:10.1109/LSP.2015.2407196. 

[23] Shafiei, M., Ledwich, G., Nourbakhsh, G., 
Arefi, A., Pezeshki, H.: Layered Based 
Augmented Complex Kalman Filter for Fast 
Forecasting-Aided State Estimation of 
Distribution Networks: arXiv: Applications, 
2018, 
https://api.semanticscholar.org/CorpusID:8852
3677 

[24] Petukhov, N., Zamolodchikov, V., Zakharova, 
E., Shamina, A., Synthesis and Comparative 
Analysis of Characteristics of Complex Kalman 
Filter and Particle Filter in Two-dimensional 
Local Navigation System, 2019 Ural 

Symposium on Biomedical Engineering, 

Radioelectronics and Information Technology 

(USBEREIT), Yekaterinburg, Russia, pp. 225-
228, 2019, doi: 
10.1109/USBEREIT.2019.8736595. 

[25] Borio, D., Susi, M., Bicomplex Kalman Filter 
Tracking for GNSS Meta-Signals, In 
Proceedings of the 36th International 

Technical Meeting of the Satellite Division of 

The Institute of Navigation (ION GNSS+ 
2023), Denver, Colorado, pp. 3353-3373, 2023, 
doi:10.33012/2023.19233. 

[26] Dini, D.H., Mandic, D.P., Class of widely 
linear complex Kalman filters, IEEE 

Transactions on Neural Networks and 

Learning Systems 23(5), 775–786, 2012. doi: 
10.1109/TNNLS.2012.2189893.   

[27] Dang, W., Scharf, L.L., Extensions to the 
theory of widely linear complex Kalman 
filtering, IEEE Transactions on Signal 

Processing, 60(12), pp. 6669-6674, 2012, 
doi:10.1109/TSP.2012.2214213. 

[28] Polyzos A., Tsinos C., Adam M., Assimakis 
N., Complex Information Filter and Complex 
Kalman Filter Comparison: Selection of the 
Faster Filter, WSEAS Transactions on Systems 

and Control, vol. 19, pp. 324-333, 2024. 
[29] Polyzos A., Tsinos C., Adam M., Gkonis P., 

Assimakis N., Complex Kalman Filter Gain 
Elimination, Proceedings of the 2nd 

International Conference on Frontiers of 

Artificial Intelligence, Ethics, and 

Athanasios Polyzos et al.
International Journal of Signal Processing 

http://iaras.org/iaras/journals/ijsp

ISSN: 2367-8984 11 Volume 11, 2026

https://doi.org/10.37394/23203.2023.18.51
https://doi.org/10.1016/j.sigpro.2019.02.024
https://doi.org/10.1016/j.sigpro.2019.02.024
http://dx.doi.org/10.1109/LSP.2015.2407196
https://api.semanticscholar.org/CorpusID:88523677
https://api.semanticscholar.org/CorpusID:88523677
http://dx.doi.org/10.33012/2023.19233
https://doi.org/10.1109/TNNLS.2012.2189893
https://doi.org/10.1109/TNNLS.2012.2189893
http://dx.doi.org/10.1109/TSP.2012.2214213


Multidisciplinary Applications, pp. 545-582, 
Athens, Greece, 2024, doi: 10.1007/978-981-
96-7945-4_33. 

[30] Dini, D.H., Kanna, S., Mandic, D.P., 
Distributed Widely Linear Complex Kalman 
Filtering, arXiv:1311.4369v1 [cs.SY],  2013. 

[31] Polyzos A., Tsinos C., Adam M., Assimakis 
N., Selection of the Fastest Solution of the 
Complex Riccati Equation, WSEAS 

Transactions on Systems and Control, vol. 19, 
pp. 436-454, 2024. 
 
 

Appendix  
Calculation Burdens of the Augmented and Dual 

Filters 

The calculation burdens of complex matrices 
operations are given in [28]. 
 

ACKFtv and ACKFti 

 
Matrix Operation Calculation Burden 

Ha(k)Pa(k|k − 1) 32n2m − 12nm 

Ha(k)Pa(k|k − 1)Ha∗(k) 32nm2 − 6m2 + m 

Ha(k)Pa(k|k − 1)Ha∗(k) + Ra(k) 2m2 + m 

[Ha(k)Pa(k|k − 1)Ha∗(k) + Ra(k)]−1 (208m3 − 96m2 + 8m)/6 

Ka(k) = Pa(k|k − 1)Ha∗(k)[Ha(k)Pa(k|k − 1)Ha∗(k) + Ra(k)]−1 32nm2 − 12nm 

Ha(k)xa(k|k − 1) 16nm − 2m 

za(k) − Ha(k)xa(k|k − 1)  2m 

Ka(k)[za(k) − Ha(k)xa(k|k − 1) ] 16nm − 2n 
xa(k|k) = xa(k|k − 1) + Ka(k)[za(k) − Ha(k)xa(k|k − 1) ] 2n 
Ka(k)Ha(k)Pa(k|k − 1) 32n2m − 6n2 + n 

Pa(k|k) = Pa(k|k − 1) − Ka(k)Ha(k)Pa(k|k − 1) 2n2 + n 

xa(k + 1|k) = Fa(k)xa(k|k) 16n2 − 2n 

Fa(k)Pa(k|k) 32n3 − 12n2 

Fa(k)Pa(k|k)Fa∗(k) 32n3 − 6n2 + n 

Pa(k + 1|k) = Qa(k) + Fa(k)Pa(k|k)Fa∗(k) 2n2 + n 

 
ACIKFtv and ACIKFti 

 
Matrix Operation Calculation Burden 

Ra−1(k) 1

6
(208m3 − 96m2 + 8m) 

Ha∗(k)Ra−1(k) 32nm2 − 12nm 

Ha∗(k)Ra−1(k)Ha(k) 32n2m − 6n2 + n 

Ha∗(k)Ra−1(k)za(k) 16nm − 2n 

ya(k|k) = ya(k|k − 1) + Ha∗(k)Ra−1(k)za(k) 2n 

Sa(k|k) = Sa(k|k − 1) + Ha∗(k)Ra−1(k)Ha(k) 2n2 + n 

Pa(k|k) = Sa−1(k|k) 1

6
(208n3 − 96n2 + 8n) 

xa(k|k) = Pa(k|k)ya(k|k) 16n2 − 6n 

Ka(k) = Pa(k|k)Ha∗(k)Ra−1(k) 32n2m − 12nm 

Fa(k)Pa(k|k) 32n3 − 12n2 

Fa(k)Pa(k|k)Fa∗(k) 32n3 − 6n2 + n 

Pa(k + 1|k) = Qa(k) + Fa(k)Pa(k|k)Fa∗(k) 2n2 + n 

Sa(k + 1|k) = Pa−1(k + 1|k) 1

6
(208n3 − 96n2 + 8n) 

Fa(k)Pa(k|k)ya(k|k) 16n2 − 2n 

ya(k + 1|k) = Sa(k + 1|k)Fa(k)Pa(k|k)ya(k|k) 16n2 − 6n 

xa(k + 1|k) = Pa(k|k)ya(k + 1|k) 16n2 − 6n 

 

ACKFGEtv and ACKFGEti 

 
Matrix Operation Calculation Burden 

Ra−1(k) (208m3 − 96m2 + 8m)/6 

Ha∗(k)Ra−1(k) 32nm2 − 12nm 

Λa(k) = Pa(k|k − 1)Ha∗(k)Ra−1(k) 32n2m − 12nm 

Λa(k)Ha(k) 32n2m − 4n2 

Ia + Λa(k)Ha(k) n 

[Ia + Λa(k)Ha(k)]−1 (208n3 − 96n2 + 8n)/6 

Λa(k)za(k) 16nm − 2n 

xa(k|k − 1) + Λa(k)za(k) 2n 

xa(k|k) = [Ia + Λa(k)Ha(k)]−1{xa(k|k − 1) + Λa(k)za(k)} 16n2 − 2n 

Pa(k|k) = [Ia + Λa(k)Ha(k)]−1Pa(k|k − 1) 32n3 − 14n2 + n 

xa(k + 1|k) = Fa(k)xa(k|k) 16n2 − 2n 

Fa(k)Pa(k|k) 32n3 − 12n2 

Fa(k)Pa(k|k)Fa∗(k) 32n3 − 6n2 + n 

Pa(k + 1|k) = Qa(k) + Fa(k)Pa(k|k)Fa∗(k) 2n2 + n 

 
The calculation burdens of real matrix operations 
are summarized in Table 3. The calculation burden 
of the inverse of a real symmetric matrix is given in 
[31].  
 

Table 3. Calculation Burden of real matrices 
operations 

 
Matrices Operation Matrices Dimensions Calculation Burden 

M1 + M2 = M (d1 × d2) + (d1 × d2) d1d2 
M1 + M2 = S symmetric (d × d) + (d × d) 1

2
d2 +

1

2
d 

I + M1 = M (d × d) + (d × d) d 
M1 ∙ M2 = M (d1 × d2) ∙ (d2 × d3) 2d1d2d3 − d1d3 
M1 ∙ M2 = S symmetric (d1 × d2) ∙ (d2 × d1) d1

2d2 + d1d2 −
1

2
d1

2 −
1

2
d1 

M−1 symmetric (d × d) (7d3 − d)/6 

 
The calculation burden of the dual model 
parameters derivation, which is required in each 
iteration of the dual algorithms, is given in Table 4. 
 

Table 4. Calculation Burden of dual model 
parameters derivation 

 
Matrices Operation scalar operations Calculation  

Burden 

F(k) + A(k) n2 complex+complex adds 2n2 

F(k) − A(k) n2 complex+complex adds 2n2 

Fd(k) = Jn
−1Fa(k)Jn 

= [
Real(F(k)) + A(k)) −Imag(F(k)) − A(k))

Imag(F(k)) + A(k)) Real(F(k)) − A(k))
] 

  
4n2 

H(k) + B(k) nm complex+complex 
adds 

2nm 

H(k) − B(k) nm complex+complex 
adds 

2nm 

Hd(k) = Jm
−1Ha(k)Jn 

= [
Real(H(k)) + B(k)) −Imag(H(k)) − B(k))

Imag(H(k)) + B(k)) Real(H(k)) − B(k))
] 

  
4nm 

 
Q(k) + U(k) 

1

2
n2 − 1

2
n 

complex+complex adds 
n real+complex adds 

n2 

 
Q(k) − U(k) 

1

2
n2 − 1

2
n 

complex+complex adds 
n real+complex adds 

n2 

1

2
Jn

−1Qa(k)Jn 
1

2
n2 + 1

2
n real*real mults n2/2 + n/2 

Qd(k) = Jn
−1Qa(k)Jn

∗ −1 =
1

2
Jn

−1Qa(k)Jn 

=
1

2
[

Real(Q(k)) + U(k)) −Imag(Q(k)) − U(k))

Imag(Q(k)) + U(k)) Real(Q(k)) − U(k))
] 

  
5n2/2
+ n/2 

 
R(k) + V(k) 

1

2
m2 − 1

2
m 

complex+complex adds 
m real+complex adds 

m2 

 
R(k) − V(k) 

1

2
m2 − 1

2
m 

complex+complex adds 
m real+complex adds 

m2 
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1

2
Jm

−1Ra(k)Jm 
1

2
m2 + 1

2
m real*real mults m2/2

+ m/2 

Rd(k) = Jm
−1Ra(k)Jm

∗ −1 =
1

2
Jm

−1Ra(k)Jm 

=
1

2
[

Real(R(k)) + V(k)) −Imag(R(k)) − V(k))

Imag(R(k)) + V(k)) Real(R(k)) − V(k))
] 

  
5m2/2
+ m/2 

Fd(k), Hd(k), Qd(k), Rd(k) 13n2/2 + n/2 + 4nm + 5m2/2 + m/2 

 
The calculation burdens of complex matrices 
operations are given in [28]. Dual algorithms use the 
matrices dimensions N = 2n and M = 2m. 
 

DACKFtv and DACKFti 

 
Matrix Operation Calculation Burden 

Fd(k), Hd(k), Qd(k), Rd(k) 13n2/2 + n/2 + 4nm + 5m2/2 + m/2 
Hd(k)Pd(k|k − 1) 2N2M − NM 
Hd(k)Pd(k|k − 1)HdT

(k) NM2 + NM − M2/2 − M/2 
Hd(k)Pd(k|k − 1)HdT

(k) + Rd(k) M2/2 + M/2 

[Hd(k)Pd(k|k − 1)HdT
(k) + Rd(k)]

−1

 (7M3 − M)/6 

Kd(k) = Pd(k|k − 1)HdT
(k) 

[Hd(k)Pd(k|k − 1)HdT
(k) + Rd(k)]

−1

 
2NM2 − NM 

Hd(k)xd(k|k − 1) 2NM − M 
zd(k) − Hd(k)xd(k|k − 1) M 
Kd(k)[zd(k) − Hd(k)xd(k|k − 1) ] 2NM − N 
xd(k|k) = xd(k|k − 1) + Kd(k) 
[zd(k) − Hd(k)xd(k|k − 1) ] N 

Kd(k)Hd(k)Pd(k|k − 1) N2M + NM − N2/2 − N/2 
Pd(k|k) = Pd(k|k − 1) − Kd(k)Hd(k)Pd(k|k − 1) N2/2 + N/2 
xd(k + 1|k) = Fd(k)xd(k|k) 2N2 − N 
Fd(k)Pd(k|k) 2N3 − N2 
Fd(k)Pd(k|k)FdT

(k) N3 + N2/2 − N/2 
Pd(k + 1|k) = Qd(k) + Fd(k)Pd(k|k)FdT

(k) N2/2 + N/2 

 
DACIKFtv and DACIKFti 

 
Matrix Operation Calculation Burden 

Fd(k), Hd(k), Qd(k), Rd(k) 13n2/2 + n/2 + 4nm + 5m2/2 + m/2 

Rd−1
(k) (7M3 − M)/6 

HdT
(k)Rd−1 2NM2 − NM 

HdT
(k)Rd−1

(k)Hd(k) N2M + NM − N2/2 − N/2 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

HdT
(k)Rd−1

(k)zd(k) 2NM − M 

yd(k|k) = yd(k|k − 1) + HdT
(k)Rd−1

(k)zd(k) N 

Sd(k|k) = Sd(k|k − 1) + HdT
(k)Rd−1

(k)Hd(k) N2/2 + N/2 

Pd(k|k) = Sd−1
(k|k)        (7N3 − N)/6 

xd(k|k) = Pd(k|k)yd(k|k) 2N2 − N 

Kd(k) = Pd(k|k)HdT
(k)Rd−1

(k) 2N2M − NM 

Fd(k)Pd(k|k) 2N3 − N2 

Fd(k)Pd(k|k)FdT
(k) N3 + N2/2 − N/2 

Pd(k + 1|k) = Qd(k) + Fd(k)Pd(k|k)FdT
(k) N2/2 + N/2 

Sd(k + 1|k) = Pd−1
(k + 1|k) (7N3 − N)/6 

Fd(k)Pd(k|k)yd(k|k) 2N2 − N 

yd(k + 1|k) = Sd(k + 1|k)Fd(k)Pd(k|k)yd(k|k) 2N2 − N 

xd(k + 1|k) = Pd(k|k)yd(k + 1|k) 2N2 − N 

 
DACKFGEtv and DACKGEFti 

 
Matrix Operation Calculation Burden 

Fd(k), Hd(k), Qd(k), Rd(k) 13n2/2 + n/2 + 4nm + 5m2/2 + m/2 

Rd−1
(k) (7M3 − M)/6 

HdT
(k)Rd−1 2NM2 − NM 

Λd(k) = Pd(k|k − 1)HdT
(k)Rd−1

(k) 2N2M − NM 

Λd(k)Hd(k) 2N2M − N2 

Id + Λd(k)Hd(k) N 

[Id + Λd(k)Hd(k)]−1 (7N3 − N)/6 

Λd(k)zd(k) 2NM − N 

xd(k|k − 1) + Λd(k)zd(k) N 

xd(k|k) = [Id + Λd(k)Hd(k)]−1 
{xd(k|k − 1) + Λd(k)zd(k)} 2N2 − N 

Pd(k|k) = [Id + Λd(k)Hd(k)]−1Pd(k|k − 1) N3 + N2/2 − N/2 

xd(k + 1|k) = Fd(k)xd(k|k) 2N2 − N 

Fd(k)Pd(k|k) 2N3 − N2 

Fd(k)Pd(k|k)FdT
(k) N3 + N2/2 − N/2 

Pd(k + 1|k) = Qd(k) + Fd(k)Pd(k|k)FdT
(k) N2/2 + N/2 
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