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Abstract: - The deep learning models used for image classification in various applications of computer vision 
such as intelligent transportation systems, precision agriculture, medical imaging, and remote sensing, etc. 
perform well when the dataset used for training the models is clean meaning the images in the dataset are free 
from noise, distortion, motion blur, occlusions, and augmented data. However, in the presence of noisy data or 
augmented data, the performance of many deep learning models degrades significantly, resulting in false image 
classification. In this paper, the performance of various deep learning models in the presence of noise and data 
augmentation is evaluated on benchmark datasets. Monte Carlo dropout is used for uncertainty quantification 
and Grad-CAM is used for the visual explainability. The performance of the models is evaluated using 
performance metrics accuracy and uncertainty-Robustness Index (URI). Experimental results show that the 
method improves the robustness of the models in the presence of noisy data.   
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1 Introduction 
The deep learning models are widely used in image 
classification, segmentation tasks for applications in 
remote sensing, medical imaging, intelligent 
transportation systems, and mobile robotics. The 
commonly used model for such applications is 
convolutional neural network (CNN). The model 
works well in many cases when the data used for 
training the model is clean meaning the data is free 
from sensor noise or motion blur. Also, data 
augmentation may cause degradation of model 
performance in many cases. The computer vision 
models need to be robust in real time situations 
where the images are captured using sensors which 
have their inherent limitations and cause sensor 
noise. 

The conventional deep learning models are 
treated as black boxes in which the reasons for 
choosing a particular class or a particular prediction 
made by the deep learning model is not explained. 
In that case, it becomes less trustworthy, and 
convincing to accept the output given by the model. 
It is especially true in applications such as medical 
imaging for medical image classification and in 

autonomous driving for image segmentation tasks. 
To address these issues of using deep learning 
models in noisy and augmented data, uncertainty 
estimation and explainable AI methods are 
discussed in the paper. The uncertainty 
quantification is done using Monte Carlo dropout 
and visual explanation of the model is done using 
gradient weighted class activation mapping (Grad-
CAM). The performance of the model for 
benchmark datasets is evaluated using performance 
metrics such as uncertainty-robustness index (URI).  

   In this paper, the comparison of performance 
of deep learning models in the presence of noisy and 
augmented data is done using benchmark datasets. 
Monte Carlo dropout to quantify the prediction 
uncertainty and Grad-CAM for visual explanation of 
the models is discussed. The performance of the 
models is evaluated using uncertainty-robustness 
index (URI). 
 

 

2 Related Work 
A framework to improve the reliability of deep 
learning models for image classification using 
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uncertainty quantification and explainable AI is 
used in [1]. The framework focuses on classification 
models without discussion on its applicability in 
different scenarios. Monte Carlo dropout method 
and Grad-CAM are used in the paper for improving 
the robustness of the models in the presence of 
noisy data. The trade-off between accuracy and 
estimation of prediction uncertainty is discussed in 
[2]. The method evaluates the performance of 
various prediction uncertainty estimation methods 
used in deep learning models for image 
classification. The method is evaluated to CNN and 
limited number of uncertainty estimation models. 
The quantification of uncertainty in deep learning 
models is done using gradient information in [3]. 
The magnitude and the direction of the gradients is 
calculated for the quantification. The method is used 
for image classification tasks. A review of 
quantification methods for prediction uncertainty 
used in medical image analysis is presented in [4].  
The challenges of using the deep learning models in 
clinical settings are also discussed in the paper. The 
enhancement in the estimation of prediction 
uncertainty in deep neural networks is carried out in 
[5]. The modifications in the standard loss functions 
for noisy data are discussed in the paper. The 
calibrated ensembles are used for prediction 
uncertainty quantification for medical image 
segmentation using deep learning models in [6]. 
Test-Time Mixup method is proposed for data 
augmentation in image classification in [7]. The 
robustness of the models improves without any need 
of retraining the model. A framework for prediction 
uncertainty estimation in deep learning models for 
out of distribution detection is proposed in [8]. The 
quantification of prediction uncertainty in deep 
learning models using ensemble techniques for 
satellite images is done in [9]. Grad-CAM is used in 
disease classification with deep learning models in 
[10]. The comparison of performance of 
convolutional neural networks and vision 
transformers is carried out in the paper. The use of 
explainable AI in medical text processing with NLP 
is discussed in [11]. A hierarchical framework for 
improving the robustness of deep learning models in 
the presence of noisy data is proposed in [12]. The 
quantification of prediction accuracy without the 
requirement of additional training and without 
changing the model architecture is presented in [13]. 
The use of federal learning and explainable AI 
techniques for medical imaging is discussed in [14]. 
A deep learning-based method for improving the 
classification accuracy of lung nodule in 3D CT 
scans is discussed in [15]. The robustness and 
estimation of prediction accuracy is enhanced using 

a loss modification method in [16]. An ensemble 
framework used for satellite imagery is used to 
improve the prediction accuracy in [17]. Multiple 
segmentation methods are combined with Bayesian 
processing for segmentation of medical images in 
[18]. Grad-CAM is used visual explanations of 
decisions made in convolutional neural networks in 
[19]. The distinction between data and model 
uncertainties in Bayesian learning is discussed in 
[20].  The applications of the method in 
segmentation and depth estimation are also 
discussed. 
 

3 Methodology 
The various types of noise such as gaussian noise, 
salt and pepper noise were added to the data. The 
standard data augmentation techniques such as 
scaling, rotation, and flipping, etc. were applied on 
the images. The models were trained on clean data 
as well as on noisy data to evaluate the model 
performance.  The predictive probability estimation 
is done using equation (1).  
 
 𝑃(𝑦|𝑥) =

1

𝑇
∑ 𝑝(𝑦|𝑥, 𝑤̂𝑡) 𝑇

𝑡                                        (1) 
 
Where 𝑤̂𝑡 denotes the sampled model weight. 
 
The predictive entropy computes the entropy of the 
predictive distribution and is given in equation (2).  
 
𝐻[𝑦|𝑥] = − ∑ 𝑝(𝑦 = 𝑐|𝑥) log 𝑝(𝑦 = 𝑐|𝑥)𝑐              (2) 
 
The mutual information is obtained using equation 
(3). It captures the model uncertainty by taking the 
difference between the predictive entropy and the 
expected entropy.   
 
𝐼[𝑦, 𝑤|𝑥] = 𝐻[𝑦|𝑥] −

1

𝑇
∑ 𝐻[𝑦|𝑥, 𝑤̂𝑡]𝑇

𝑡=1               (3) 
 
The uncertainty robustness index (URI) given by 
equation (4) balances the classification accuracy and 
model uncertainty. 
 
𝑈𝑅𝐼 =

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦

1+𝑈𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦
                                             (4) 

 
The higher value of URI means high accuracy. This 
metric is used robustness performance in the 
presence of noisy and augmented data. 
 
4 Dataset Description 
 
The CIFAR-10 dataset [21], a benchmark dataset, is 
used for classification in deep learning methods. 
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The dataset consists of 60,000 color images. The 
size of each image is 32x32 pixels. The total number 
of classes in the dataset is 10 and the 10 class labels 
are airplane, automobile, bird, cat, deer, dog, frog, 
horse, ship, truck. The dataset URL is 
https://www.cs.toronto.edu/~kriz/cifar.html 
 
 

5 Results and Discussion 
The performance of deep learning models in case of 
clean data is sufficiently good for image 
classification for many applications of computer 
vision. However, when the data augmentation 
techniques are used to augment the data for training 
the deep learning models, the performance of the 
classification methods degrade sometimes. Also, the 
presence of noisy data during the training process 
degrades the model performance. In this paper, 
clean and noisy data is used for training the models.   
Both the models VGG16 and ResNet50 achieved 
high accuracy on the clean data.  The accuracy of 
the models degraded significantly in the presence of 
noisy and augmented data.  
 
Table 1. Accuracy comparison of VGG16 and 
ResNet50 under Noisy Data. 

Model  Accuracy (%)  
on clean data 

Accuracy (%)  
on noisy data 

VGG16  91.6 79.4 
ResNet50 94.5 82.3 

 
The accuracy comparison of VGG16 and ResNet50 
under noisy data is given in Table 1. 
 
Table 2. Accuracy comparison of VGG16 and 
ResNet50 under Augmented Data. 

Model  Accuracy (%)  
on clean data 

Accuracy (%)  
on augmented data 

VGG16  91.6 81.5 
ResNet50 94.5 85.2 

 
The accuracy comparison of VGG16 and ResNet50 
under augmented data is given in Table 2. 
 
Table 3. URI comparison of VGG16 and ResNet50 
under Noisy and Augmented Data. 

Model  URI for 
 clean data 

URI for 
 noisy data 

URI for 
augmented data 

VGG16  0.88 0.75 0.76 
ResNet50 0.92 0.78 0.80 

 
The URI comparison of VGG16 and ResNet50 
under noisy data and augmented data is given in 
Table 3. 
 

The uncertainty-robustness index (URI) depicted the 
prediction reliability. Monte Carlo dropout provided 
reliable quantification of prediction uncertainty. The 
use of Grad-CAM provided interpretations into 
model robustness. The performance comparison of 
VGG16 and ResNet50 under noisy data is given in 
Table 1. 

The study is limited to benchmark datasets 
without applying it to real-time image data capture 
under noisy conditions. The method is tested on 
limited noise types. The future work could include 
applying the method in real-time data cature in 
outdoor environment under noisy conditions and 
using additional noise types. 
 
6 Conclusion 
In this paper, the challenges of image classification 
in the presence of noisy and augmented data are 
addressed using explainable AI techniques. The 
experiments were conducted on noisy and 
augmented data using VGG16 and ResNet50 
models. It is observed that the performance of both 
the models degraded significantly in the presence of 
noisy data. To address the problem, Monte Carlo 
dropout is used for quantification of prediction 
uncertainty and Grad-CAM is used for 
understanding the decisions making in the models. 
The performance evaluation of the models is done 
using metric uncertainty-robustness index (URI). 
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