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Abstract: - The deep learning models used for image classification in various applications of computer vision
such as intelligent transportation systems, precision agriculture, medical imaging, and remote sensing, etc.
perform well when the dataset used for training the models is clean meaning the images in the dataset are free
from noise, distortion, motion blur, occlusions, and augmented data. However, in the presence of noisy data or
augmented data, the performance of many deep learning models degrades significantly, resulting in false image
classification. In this paper, the performance of various deep learning models in the presence of noise and data
augmentation is evaluated on benchmark datasets. Monte Carlo dropout is used for uncertainty quantification
and Grad-CAM is used for the visual explainability. The performance of the models is evaluated using
performance metrics accuracy and uncertainty-Robustness Index (URI). Experimental results show that the
method improves the robustness of the models in the presence of noisy data.
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1 Introduction autonomous driving for image segmentation tasks.
The deep learning models are widely used in image To address these issues of using deep learning
classification, segmentation tasks for applications in mo.dels. in noisy and al'lgmented data, uncertainty
remote sensing, medical imaging, intelligent estimation _and explainable Al methods are
transportation systems, and mobile robotics. The discussed in the paper. ~The uncertainty
commonly used model for such applications is quantl.ﬁcatlon is dqne using Monte (;arlo dropgut
convolutional neural network (CNN). The model and visual explanation of the model is done using
works well in many cases when the data used for gradient weighted class activation mapping (Grad-
training the model is clean meaning the data is free CAM). The performance of the model for
from sensor noise or motion blur. Also, data benchmark datasets is evaluated using performance
augmentation may cause degradation of model metrics such as uncertainty-robustness index (UR).
performance in many cases. The computer vision In this paper, the comparison of performance

models need to be robust in real time situations of deep learning models in t_he presence of noisy and
where the images are captured using sensors which augmented data is done using benchmark datasets.

have their inherent limitations and cause sensor Monte -Carlo dropout to quant'ify the pred'iction
uncertainty and Grad-CAM for visual explanation of

noise.

The conventional deep learning models are the models is discussed. The performance of the
treated as black boxes in which the reasons for models is evaluated using uncertainty-robustness
choosing a particular class or a particular prediction index (URI).

made by the deep learning model is not explained.
In that case, it becomes less trustworthy, and

convincing to accept the output given by the model. 2 Related Work
It is especially true in applications such as medical A framework to improve the reliability of deep
imaging for medical image classification and in learning models for image classification using
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uncertainty quantification and explainable Al is
used in [1]. The framework focuses on classification
models without discussion on its applicability in
different scenarios. Monte Carlo dropout method
and Grad-CAM are used in the paper for improving
the robustness of the models in the presence of
noisy data. The trade-off between accuracy and
estimation of prediction uncertainty is discussed in
[2]. The method evaluates the performance of
various prediction uncertainty estimation methods
used in deep learning models for image
classification. The method is evaluated to CNN and
limited number of uncertainty estimation models.
The quantification of uncertainty in deep learning
models is done using gradient information in [3].
The magnitude and the direction of the gradients is
calculated for the quantification. The method is used
for image classification tasks. A review of
quantification methods for prediction uncertainty
used in medical image analysis is presented in [4].
The challenges of using the deep learning models in
clinical settings are also discussed in the paper. The
enhancement in the estimation of prediction
uncertainty in deep neural networks is carried out in
[5]. The modifications in the standard loss functions
for noisy data are discussed in the paper. The
calibrated ensembles are used for prediction
uncertainty quantification for medical image
segmentation using deep learning models in [6].
Test-Time Mixup method is proposed for data
augmentation in image classification in [7]. The
robustness of the models improves without any need
of retraining the model. A framework for prediction
uncertainty estimation in deep learning models for
out of distribution detection is proposed in [8]. The
quantification of prediction uncertainty in deep
learning models using ensemble techniques for
satellite images is done in [9]. Grad-CAM is used in
disease classification with deep learning models in
[10]. The comparison of performance of
convolutional neural networks and vision
transformers is carried out in the paper. The use of
explainable Al in medical text processing with NLP
is discussed in [11]. A hierarchical framework for
improving the robustness of deep learning models in
the presence of noisy data is proposed in [12]. The
quantification of prediction accuracy without the
requirement of additional training and without
changing the model architecture is presented in [13].
The use of federal learning and explainable Al
techniques for medical imaging is discussed in [14].
A deep learning-based method for improving the
classification accuracy of lung nodule in 3D CT
scans is discussed in [15]. The robustness and
estimation of prediction accuracy is enhanced using
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a loss modification method in [16]. An ensemble
framework used for satellite imagery is used to
improve the prediction accuracy in [17]. Multiple
segmentation methods are combined with Bayesian
processing for segmentation of medical images in
[18]. Grad-CAM is used visual explanations of
decisions made in convolutional neural networks in
[19]. The distinction between data and model
uncertainties in Bayesian learning is discussed in
[20]. The applications of the method in
segmentation and depth estimation are also
discussed.

3 Methodology

The various types of noise such as gaussian noise,
salt and pepper noise were added to the data. The
standard data augmentation techniques such as
scaling, rotation, and flipping, etc. were applied on
the images. The models were trained on clean data
as well as on noisy data to evaluate the model
performance. The predictive probability estimation
is done using equation (1).

P(yIx) = 23T p(ylx, ) (1)

Where w; denotes the sampled model weight.

The predictive entropy computes the entropy of the
predictive distribution and is given in equation (2).

Hlylx] = =Ecp(y = clx)logp(y = c|x) 2
The mutual information is obtained using equation
(3). It captures the model uncertainty by taking the

difference between the predictive entropy and the
expected entropy.

Iy, wlx] = Hlylx] = 2 X1 H[ylx, W] (3)

The uncertainty robustness index (URI) given by
equation (4) balances the classification accuracy and
model uncertainty.

Accuracy

URI = 4

1+Uncertainty
The higher value of URI means high accuracy. This

metric is used robustness performance in the
presence of noisy and augmented data.

4 Dataset Description

The CIFAR-10 dataset [21], a benchmark dataset, is
used for classification in deep learning methods.
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The dataset consists of 60,000 color images. The
size of each image is 32x32 pixels. The total number
of classes in the dataset is 10 and the 10 class labels
are airplane, automobile, bird, cat, deer, dog, frog,
horse, ship, truck. The dataset URL is
https://www.cs.toronto.edu/~kriz/cifar.html

5 Results and Discussion

The performance of deep learning models in case of
clean data is sufficiently good for image
classification for many applications of computer
vision. However, when the data augmentation
techniques are used to augment the data for training
the deep learning models, the performance of the
classification methods degrade sometimes. Also, the
presence of noisy data during the training process
degrades the model performance. In this paper,
clean and noisy data is used for training the models.
Both the models VGG16 and ResNet50 achieved
high accuracy on the clean data. The accuracy of
the models degraded significantly in the presence of
noisy and augmented data.

Table 1. Accuracy comparison of VGGI16 and
ResNet50 under Noisy Data.

Model Accuracy (%) Accuracy (%)
on clean data on noisy data

VGG16 91.6 79.4

ResNet50 | 94.5 82.3

The accuracy comparison of VGG16 and ResNet50
under noisy data is given in Table 1.

Table 2. Accuracy comparison of VGGI16 and
ResNet50 under Augmented Data.

Model Accuracy (%) Accuracy (%)

on clean data on augmented data
VGG16 91.6 81.5
ResNet50 | 94.5 85.2

The accuracy comparison of VGG16 and ResNet50
under augmented data is given in Table 2.

Table 3. URI comparison of VGG16 and ResNet50
under Noisy and Augmented Data.

Model URI for URI for URI for

clean data noisy data | augmented data
VGGI16 0.88 0.75 0.76
ResNet50 | 0.92 0.78 0.80

The URI comparison of VGG16 and ResNet50
under noisy data and augmented data is given in
Table 3.
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The uncertainty-robustness index (URI) depicted the
prediction reliability. Monte Carlo dropout provided
reliable quantification of prediction uncertainty. The
use of Grad-CAM provided interpretations into
model robustness. The performance comparison of
VGG16 and ResNet50 under noisy data is given in
Table 1.

The study is limited to benchmark datasets
without applying it to real-time image data capture
under noisy conditions. The method is tested on
limited noise types. The future work could include
applying the method in real-time data cature in
outdoor environment under noisy conditions and
using additional noise types.

6 Conclusion

In this paper, the challenges of image classification
in the presence of noisy and augmented data are
addressed using explainable Al techniques. The
experiments were conducted on noisy and
augmented data using VGGI6 and ResNet50
models. It is observed that the performance of both
the models degraded significantly in the presence of
noisy data. To address the problem, Monte Carlo
dropout is used for quantification of prediction
uncertainty and Grad-CAM is used for
understanding the decisions making in the models.
The performance evaluation of the models is done
using metric uncertainty-robustness index (URI).
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