
Positioning Estimation of Radiating Sources using the Multiple Signal 

Classification (MUSIC) Technique 

MUHAMMAD SALEM 1, MUJAHID AL-AZZO 2  

Electronics Engineering Department 
 Ninevah University 

Mosul, IRAQ 
  

Abstract: - This study used two algorithms to determine the positions of wave radiation sources. The classic 
Fourier transform (FT) algorithm is compared with the modern Multiple Signal Classification (MUSIC) 
algorithm. Both methods were implemented to estimate the positions of a single source and two sources with and 
without noise. The percentage error in sources’ positioning resulting from spectral estimating algorithms was 
calculated. Moreover, the minimum separation (dpt) between transmitting sources was determined, representing 
the shortest distance between sources at which the algorithm can distinguish between sources and estimate their 
positions. Simulation results indicate that the MUSIC algorithm surpasses the FFT algorithm in enhancing 
positioning estimation for wave-transmitting sources. 
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1 Introduction 

The problem of positioning wave radiation sources is 
of significant interest, particularly within 
communications, digital signal processing, medical 
technology, radar, sonar, and seismic applications. 
The position of the wave transmitter is determined 
spatially relative to a reference point, [1]. 
Transmitted signals are affected by random noise; 
typically, AWGN stands for additive white Gaussian 
noise, [2]. 
      Array signal processing optimizes sensor outputs 
in antenna arrays to enhance system performance 
compared to a single antenna. It has the advantages 
of increased signal-to-noise ratio (SNR), side-lobe 
control, and improved array resolution. A uniform 
linear array (ULA) increases the received signal gain, 
[3].  
      The continuous-time signals received by the array 
antenna are converted to discrete domains for 
processing, [4]. To get the desired results, array 
processing requires an understanding of either a 
reference signal or the direction of the signal's 
source, [5]. ULA receives electromagnetic (EM) or 
sound waves [6].  

      As applications evolved, so did interest in 
calculating spatial characteristics. Array signal 

processing employs sensors to sample a wave field 
and infer spatial information from source signals, [7]. 
Spectral estimation techniques, either parametric 
(modern algorithm) or non-parametric (classical 
algorithm), estimate a signal's spectral density from 
samples based on application needs [8]. 
      Nonparametric or classical method approaches 
make use of Cooley and Tukey's fast Fourier 
transform (FFT). They are quick and simple to 
implement but lack accuracy and suffer from 
spectrum leakage, reducing result quality. They are 
also very sensitive to noise, which limits their 
effectiveness in noisy signal environments, [9], [10], 
[11].  
      Parametric methods, also known as high-
resolution or subspace methods, include a multiple 
signal classification (MUSIC) algorithm by Schmidt. 
They offer high resolution, low spectral leakage, and 
reduced noise sensitivity, [12], [13], [14]. However, 
the metric superiority or the degree of the superiority 
is studied in this paper for the applications of finding 
the distance of each source from a reference axis, as 
well as the separation between them. In general, this 
can be extended to the reflecting objects as well as 
the transmitting sources for both ultrasonic and 
electromagnetic waves. 
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      This research suggests employing parametric 
approaches based on eigenanalysis to address the 
constraints of FFT algorithm-based nonparametric 
methods, [15]. 

 

2 Field Analysis 
Let Ϝ(q) represent the field of the transmitting wave 
source on the transmitting axis. Let ℌ(g) represent 
the field received from the source on the receiving 
axis as in Fig. 1. 

ℋ(g) =
k

ζλ
 ∫q Ϝ(q) e(jβη(q,g)) dq  (1) 

 

 

 

 

 

 

 

 

Fig. 1 Coordinate system between transmitter (TX) 
and receiver (RX). 

      Equation (1) very closely resembles the Fresnel 
principle, where β represents the wave number (β =
2π

λ
), λ represents wavelength, k is a constant, and ζ 

indicates the axial distance between the transmitter 
(object plane) and receiver (recording plane). The 
distance η between a point g on the recording axis 
(acting as an antenna) and a point q on the object axis 
is calculated by: 

η(q, g) =  √ζ2 + (g − q)2  (2) 

Using the paraxial approximation with the Fresnel 
region, equation (1) can be simplified to (3): 

  ℋ(g) = k1 e
(

jβg2

2ζ
)
∫q Ϝ(q) e

(
jβq2

2ζ
)
e

(
−jβqg

ζ
)

dq  (3) 

      Where k1 is a complex constant obtained by 
simplifying equations (1) and (2) [16], [17], [18]. 

 

3 Data Model 
Consider U elements of a uniform linear array (ULA) 
separated evenly by distance d. Consider the received 
signals as complex exponentials, with n(t) 
representing AWGN noise with a variance σ2 and a 
mean of zero. Assume the narrowband signals are 
emitted by M sources that impinge on a ULA, and the 
source signals are expressed by s(t). Let the number 
of signal sources be less than the number of antenna 
elements (M < U). The signals received at a ULA 
output are as follows: 

        𝐫(𝐭) = 𝐀𝐬(𝐭) + 𝐧(𝐭)                        (4) 

      Where r(t) = [r1(t), r2(t), …, ru(t)]T is a vector 
received by the (ULA); T denotes the transpose of a 
matrix, and s(t) = [s1(t), s2(t), ..., sM(t)]T. 

      Where n(t) = [n1(t), n2(t), …, nu(t)]T is a noise 
vector, A = [a(ϕ1), a(ϕ2), …, a(ϕM)] and 𝐚(ϕM) =

[1, e
−j2πdqm  

λζ , e
−j4πdqm  

λζ , … , e
−j2πdqm(u−1)

λζ ]TIs the 
positioning vector of the array, and it is shown in 
equation (5) [19], [20]. 

𝐀 =  [

1 1 … 1
e−jϕ1 e−jϕ2 … e−jϕM

⋮ ⋮ ⋮ ⋮
e−jϕ1(U−1) e−jϕ2(U−1) … e−jϕM(U−1)

]    (5) 

 

3.1 Non-parametric method (Fourier 

transform) 

The discrete Fourier transform (DFT) represents 
finite-length sequences, an easy function of an 
integer variable, k. The M-point DFT for a finite-
length sequence y(m) of length M that equals zero 
outside of the interval [0, M - 1] is: 

          XK = ∑ ym e
−j2πkm

M

𝑀−1

𝑚=0
                   (6) 

      Where k = 0, 1, 2, …, M-1, and XK is the kth 
coefficient of the DFT, which is often complex, and 
ym refers to the mth sample of the time sequence and 
involves M samples.  
      The inverse discrete Fourier transform (IDFT) is 
the common inverse of the DFT, and the following 
equation may describe it: 

                  Ym =
1

M
∑ XK e

j2πkm

M

𝑀−1

𝑘=0
                    (7) 
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      The fast Fourier transform (FFT) is a method for 
efficiently obtaining DFT that considerably reduces 
calculation time by calculating DFT coefficients 
iteratively, [21]. 

 

3.2 Music method 
This algorithm separates the observation space into 
two subspaces: signal and noise subspaces. Equation 
(4)'s array output is used, and the incoming signals' 
covariance matrix is stated below, [22], [23], [24]: 

         ∁𝐱 = E{𝐫𝐫H} = 𝐀𝓡𝐬𝐀H + σ2J   (8) 

      Here, E{.} is the statistical expectation, H 
represents Hermitian transpose, ℛs indicates the 
covariance matrix of signal elements, σ2 indicates the 
covariance of noise elements, and J is the identity 
matrix. 

         𝓡𝐬 =  E{𝐬(𝐭)𝐬(𝐭)H}     (9) 

      The eigenvalue decomposition (EVD) approach 
is utilized to split the covariance matrix of incoming 
signals into eigenvalues and eigenvectors. The 
eigenvalues of  ∁𝐱 are [λ0, λ1, …, λU-1], where λ0 is the 
highest eigenvalue and found using: 

        | ∁𝐱 − λiJ | = 0    i = 0, 1, … , U − 1             (10) 

      The eigenvectors of an eigenvalue λi are indicated 
as vi as follows: 

         | ∁𝐱 − λiJ | 𝐯i = 0      (11) 

      Eigenvectors related to the U-M lowest 
eigenvalues are calculated using (12): 

         𝐀𝓡𝐬𝐀H 𝐯i = 0                                               (12) 

      Here i = M; M+1, …, U-1 is an eigenvector 
representing noise. Equation (13) shows that the 
eigenvectors related to the U-M eigenvalues are 
orthogonal to the positioning vector a. Positions are 
determined by detecting peaks in the spatial spectrum 
with the formula: 

         Pmusic(q) =
1

𝐚H 𝐯n 𝐯n
H 𝐚 

              (13) 

Where a: positioning vector and 𝐯n: Noise vector. 

 

4 Simulation Results: 
This paper studies the position estimation problem 
for a single source and two sources. Using simulated 

data, the spatial position of the transmitter is 
determined relative to a reference point, where two 
algorithms, FFT and MUSIC, have been 
implemented. The study and simulation were 
conducted using MATLAB to achieve the desired 
results.  
      A variety of parameters were utilized, including 
η (number of samples or number of antennas), γ 
(wavelength), ζ (distance between transmitter and 
receiver axes), Δs (sampling interval or distance 
between antennas), and PS1 (the position of the first 
source) and PS2 (the position of the second source). 
The study uses different values of some parameters 
to obtain a wide range of results. 
      The percentage error (EPS) in the sources’ 
position for all methods can be determined using the 
following equation: 

    EPs =
| PS(actual )−PS(Reconstructed) |

PS(actual )

∗ 100 %        (14) 

      PS(actual) is the actual (or real) position, and 
PS(Reconstructed) is the value of the sources’ position 
obtained after processing.  
      The minimum separation (dpt) between 
transmitting sources was determined, representing 
the shortest distance between sources at which the 
algorithm can distinguish between sources and 
estimate their positions, and is calculated using the 
following equation: 

    Min. Separation (dpt) = PS2 − PS1              (15) 

      The minimum separation (dpt) In (cm). 

 

4.1 Results without noise: 

4.1.1 Simulation results with a single source: 

A single transmitting source is used. It emits a signal 
with wavelength (γ = 0.4 cm). Using the parameters 
PS1 = 2 cm, Δs = 1 cm, ζ = 50 cm, and η = 10, Fig. 2 
shows that the FFT algorithm (red line) estimates the 
position of the source at PS1 = 2.109375 cm, with a 
percentage error of EPS = 5.47% from the actual 
source position PS1 = 2 cm. 

      In contrast, the MUSIC algorithm (blue line) 
estimates the position at PS1 = 2.0313 cm, with a 
percentage error of EPS = 1.56%, significantly lower 
than the FFT algorithm. Additionally, the main lobe 
width was narrower, and side lobes (SL) levels were 
nonexistent, enhancing the accuracy of the position 
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estimation and reducing power loss compared to the 
FFT algorithm. 

 

 

 

 

 

 

 

Fig. 2 Position estimation for a single source using 
the FFT and MUSIC algorithms PS1 = 2 cm, γ = 0.4 

cm, Δs = 1 cm, ζ = 50 cm, and η = 10. 

      Fig. 3 illustrates the relationship between the 
percentage error (EPS) and η for a single source after 
implementing the FFT and the MUSIC algorithms. 
The figure shows that the MUSIC algorithm 
outperforms the FFT algorithm with lower EPS in 
estimating the source position. The results indicated 
that increasing η does not affect EPS. 

 

 

 

 

 

 

 

 

 

Fig. 3 The relationship between the percentage error 
(EPS) and η using the FFT and MUSIC algorithms 
PS1 = 2 cm, γ = 0.4 cm, Δs = 1 cm. 

 

4.1.2 Simulation results with two sources: 

The FFT and MUSIC algorithms are applied to 
estimate the position of two sources using the same 
parameters as for a single source. The minimum 
separation (dpt) and EPS for each source are 
calculated. 
      Using the parameters PS1 = 2 cm, PS2 is changed 
until obtaining a minimum detectable distance dpt, γ 
= 0.4 cm, Δs = 1 cm, ζ = 50 cm, and η = 10, Fig. 4 (a) 
illustrates the performance of the FFT algorithm with 

two signal sources. The algorithm fails to distinguish 
between the sources when they are close to each other 
(dpt = 1.35 cm), as their peaks merge, and it becomes 
difficult to differentiate between them. 
      While the FFT algorithm in Fig. 4 (b) succeeded 
in distinguishing between the sources after increasing 
the distance between them (dpt = 1.59 cm), the first 
source's position was estimated at PS1 = 1.640625 cm 
with EPS1 = 17.97%, and the second source's position 
was estimated at PS2 = 4.0625 cm with EPS2 = 13.16%, 
with many and considerable SL levels and wide main 
lobes. 
      In contrast, the MUSIC algorithm in Fig. 4 (c) 
successfully distinguishes the sources with high 
accuracy (dpt = 0.45 cm), estimating the position of 
the first source at PS1 = 2.0313 cm with EPS1 = 1.56% 
and the position of the second source at PS2 = 2.4219 
cm with EPS2 = 1.15%, which is much lower than the 
FFT algorithm. Additionally, the main lobe width 
was narrower, and SL levels were minimal, 
enhancing the accuracy of sources’ position 
estimation and reducing power loss compared to the 
FFT algorithm. 

 

 

 

 

 

 

 

Fig. 4 (a) Shows the failure of the FFT algorithm to 
distinguish between sources. 

 

 

 

 

 

 
 

 

Fig. 4 (b) Shows the success of the FFT algorithm in 
distinguishing between sources. 
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Fig. 4 (c) Shows the success of the MUSIC 
algorithm in distinguishing between sources. 

      After implementing the FFT and MUSIC 
algorithms, Fig. 5 illustrates the relationship between 
minimum separation (dpt) and η for two sources. The 
figure shows that the MUSIC algorithm outperforms 
the FFT algorithm by distinguishing between very 
close sources (high resolution). The results indicated 
that two parameters affect dpt, namely ζ and η. The 
dpt increases with the increase in ζ (requiring greater 
distance between sources for distinguishing) and 
decreases with increased η. Therefore, ζ = 50 cm is 
better than ζ = 70 cm, and so on. 

 

 

 

 

 

 

 
 

Fig. 5 The relationship between minimum 
separation (dpt) and η using the FFT algorithm and 
MUSIC algorithm PS1 = 2 cm, PS2 = variable, γ = 0.4 

cm, Δs = 1 cm. 

      Fig. 6 (a and b) illustrates the relationship 
between the percentage error (EPS) and η for two 
sources after implementing the FFT and MUSIC 
algorithms. The figure indicates that the MUSIC 
algorithm outperforms the FFT algorithm with lower 
EPS in estimating sources’ positions. The results 
suggest that EPS decreases with increasing η. 
Additionally, the EPS for the second source (EPS2) is 

less than that of the first source (EPS1), indicating that 
the position estimation of the second source is more 
accurate. 

 

 

 

 

 

 

 
Fig. 6 (a) The relationship between the percentage 

error (EPS) and η using the FFT and MUSIC 
algorithms PS1 = 2 cm, PS2 = variable, γ = 0.4 cm, Δs 

= 1 cm, ζ = 50 cm. 

 

 

 

 

 

 

 

 

Fig. 6 (b) The relationship between the percentage 
error (EPS) and η using the FFT and MUSIC 

algorithms PS1 = 2 cm, PS2 = variable, γ = 0.4 cm, Δs 
= 1 cm, ζ = 70 cm. 

 

4.2 Results with noise: 

When sending a wireless signal from TX, it is exposed 
to AWGN noise (an unwanted effect that alters or 
distorts the signal) upon reception at RX. Therefore, 
we will add this noise to the transmitted signal to 
study the impact of this issue on the results. 

 

4.2.1 Simulation results with a single source: 

Using the parameters PS1 = 2 cm, γ = 0.4 cm, Δs = 1 
cm, ζ = 50 cm, SNR = 5 dB, and η = 10, Fig. 7 shows 
that the FFT algorithm (red line) with added noise of 
SNR = 5 dB has EPS = 9.38% in estimating the source 
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position with signal distortion and many and 
considerable SL levels. 

      In contrast, the MUSIC algorithm (blue line) with 
SNR = 5 dB achieves EPS = 6.25% with the main lobe 
narrower compared to SNR = 5 dB (red line) and no 
SL levels. 
      This demonstrates that the MUSIC algorithm 
outperforms the FFT algorithm with a narrower main 
lobe, negligible SL levels, and lower EPS. 

 

 

 

 

 

 
 

Fig. 7 Position estimation for a single source using 
the FFT and MUSIC algorithms PS1 = 2 cm, γ = 0.4 
cm, Δs = 1 cm, ζ = 50 cm, SNR = 5 dB, and η = 10. 

 

      Fig. 8 (a and b) illustrates the relationship 
between the percentage error (EPS) and η for a single 
source at SNR = 5 dB after implementing the FFT 
and the MUSIC algorithms. The results showed that 
a decrease in SNR and η leads to an increase in EPS. 
However, the MUSIC algorithm outperforms the 
FFT algorithm in reducing EPS when estimating the 
source position. 

 

 

 

 

 

 

 
 

Fig. 8 (a) The relationship between the percentage 
error (EPS) and η using the FFT and MUSIC 

algorithms PS1 = 2 cm, γ = 0.4 cm, Δs = 1 cm, ζ = 50 
cm, SNR = 5 dB. 

 

 

 

 

 

 
Fig. 8 (b) The relationship between the percentage 

error (EPS) and η using the FFT and MUSIC 
algorithms PS1 = 2 cm, γ = 0.4 cm, Δs = 1 cm, ζ = 70 

cm, SNR = 5 dB. 

 

4.2.2 Simulation results with two sources: 

Using the parameter PS1 = 2 cm, PS2 is changed until 
obtaining a minimum detectable distance dpt, γ = 0.4 
cm, Δs = 1 cm, ζ = 50 cm, SNR = 5 dB, and η = 10, 
Fig. 9 (a) shows that the FFT algorithm estimated the 
position of the first source at PS1 = 1.641 cm with EPS1 
= 17.97%, and PS2 = 4.453 cm with EPS2 = 12.74%. It 
also distinguished between nearby sources with a 
distance of dpt = 1.95 cm, with high SL levels and 
wide main lobes. 
      In contrast, Fig. 9 (b) shows that the MUSIC 
algorithm estimated the position of the first source at 
PS1 = 1.797 cm with EPS1 = 10.16%, and PS2 = 3.828 
cm with EPS2 = 9.69%. It also distinguished between 
nearby sources with a distance of dpt = 1.49 cm, with 
the main lobe narrower compared to Fig. 9 (a) and 
shallow SL levels. 
      This demonstrates that the MUSIC algorithm 
outperforms the FFT algorithm with a narrower main 
lobe, negligible SL levels, and lower EPS. 

 

 

 

 

 

 

 

Fig. 9 (a) Position estimation for two sources using 
the FFT algorithms PS1 = 2 cm, PS2 = variable, γ = 
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0.4 cm, Δs = 1 cm, ζ = 50 cm, SNR = 5 dB, and η = 
10. 

 

 

 

 

 

 

 

 

Fig. 9 (b) Position estimation for two sources using 
the MUSIC algorithms PS1 = 2 cm, PS2 = variable, γ 
= 0.4 cm, Δs = 1 cm, ζ = 50 cm, SNR = 5 dB, and η 

= 10. 

      After applying the FFT and MUSIC algorithms, 
Fig. 10 (a and b) illustrates the relationship between 
the minimum separation (dpt) and η for two sources 
in the presence of noise. Fig. 10 (a) illustrates the 
performance of the FFT algorithm. At the same time, 
Fig. 10 (b) shows that the MUSIC algorithm 
outperforms the FFT algorithm in Fig. 10 (a) by 
distinguishing very closely spaced sources (high 
resolution). The results indicate that dpt is affected by 
ζ, η, and SNR, increasing with ζ and lower SNR and 
decreasing with higher η. 

 

 

 

 

 

 

 

 

Fig. 10 (a) The relationship between minimum 
separation (dpt) and η using the FFT algorithm PS1 = 
2 cm, PS2 = variable, γ = 0.4 cm, Δs = 1 cm, SNR = 

5 dB. 

 

 

 

 

 

 

 

 

 

 

Fig. 10 (b) The relationship between minimum 
separation (dpt) and η using the MUSIC algorithm 
PS1 = 2 cm, PS2 = variable, γ = 0.4 cm, Δs = 1 cm, 

SNR = 5 dB. 

 

5 Conclusion 
This research used the classical method, FFT, and the 
modern method, MUSIC, to estimate sources’ 
positions with and without noise. Different 
parameters are used to study the performance of 
algorithms with the position estimation problem. 
Simulation results showed that with a single noise-
free source, the MUSIC algorithm outperforms FFT 
in low percentage error, no side lobes, and narrow 
main lobe results. In the case of two noise-free 
sources, MUSIC also outperforms FFT in low 
percentage error, shallow side lobes, narrow main 
lobes, and high performance in distinguishing 
between sources that are very close to each other and 
estimating their positions (very small dpt). When 
implementing the algorithms with one and two 
sources with the noise, the results showed that the 
percentage error, side lobes, and dpt of FFT increase 
with decreasing SNR, while MUSIC remains 
superior and still performs better than FFT. 
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