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Abstract: Reducing noise is an important preprocessing step for further analyze the information in the hyperspectral
image (HSI). Commonly, filtering methods for HSIs are based on the data vectorization or matricization while
ignore the related information between different bands. So there are new approaches considering multidimensional
data as whole entities based on tensor decomposition. However, it can not cope with the HSIs disturbed by non-
white noise which is the most cases in the actual world and cannot preserve small targets. In this paper, we propose
a new method for the reduction of non-white noise from images. The first step of this method is to change the
noise in HSIs being a white one through a prewhitening procedure(PW). Then multidimensional wavelet packet
transform with multiway Wiener filter (PW-MWPT-MWF) to improve the target detection efficiency of HSI with
small targets in the noise environment. The performances of the our method (PW-MWPT-MWF) are exemplified
using simulated and real-world HSI
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1 Introduction
A hyperspectral image is a multidimensional array
also named as a tensor and it normally consists of hun-
dreds of spectral bands. So, HSI data, for instance,
airborne hyperspectral images HYDICE (Hyperspec-
tral Digital Imagery Collection Experiment) [4], has
two spatial dimensions and one spectral dimen- sion.
While acquired images in hyperspectral imagery are
disturbed by additive noise, which can degrade clas-
sifcation and target detection results. To reduce the
noise, HSI is commonly split into vectors or ma-
trix so any 2D filtering method could be applied, but
this splitting way dose not consider the related infor-
mation between image planes [14]. So, some new
approaches, such as tensor decomposition method,
has been used to denoise those images and showed
some prospects in this field. There are two main
decomposition models for multidimensional arrays:
TUCKER3 (Three-mode factor analysis) decompo-
sition and PARAFAC/CANDECOMP (Canonical De-
composition / Parallel Factor Analysis) decomposi-
tion [7, 8].

A multiway Wiener filter (MWF) [3, 11–13] is
proposed to process a HSI as a whole entity based on
TUCKER3 decomposition [7, 8]. In MWF, the filter
in each mode is computed as a function of the filters
in other modes, which reflects its capability in inte-
grally utilizing the information in each mode of the
multidimensional data. In practice, HSIs are always
disturbed by hard-removed non-white noise, but this

MWF method could not deal with the cases with non-
white noise. So a prewhitening procedure for HSIs
to change the non-white noise to a white one is pro-
posed in this paper. After that MWF can be used to
filter the prewhitened result (PW-MWF). Then we can
get the denoised images by an inverse processing of
prewhitening. Though PW-MWF preserves the data
structure of HSI, it also has some negative side ef-
fects in preserving small targets in the denoising pro-
cess. In fact, PW-MWF is essentially an optimal low-
pass filter while small targets are high frequency sig-
nals in Fourier basis, therefore PW-MWF might re-
move small targets in the denoising process. A mul-
tidimensional wavelet packet transform decomposes
the prewhitened HSI into different coefficient tensors
(components) by wavelet packet transform [6], and
jointly filter each component by MWF.

Since small target detection is an important issue
in the HSI processing field [1, 10], in this paper, PW-
MWPT-MWF is proposed to reduce non-white noise
in HSI with small targets and hence improve the tar-
get detection performances. The experiments of sim-
ulated and real-world images are given to present the
performances of target detection after denoising by
PW-MWPT-MWF.

The remainder of the paper is as follows: Section
2 introduces some basic knowledge about the multi-
linear algebra. Section 3 introduces the signal model.
Section 4 introduces the proposed prewhitening algo-
rithm. Section 5 shows how to use MWF to jointly
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filter the data component tensor. Section 6 presents
some experimental results and finally section 7 con-
cludes this paper.

2 Multilinear algebra tools
2.1 n-mode unfolding
The n-mode vectors are the In-dimensional vectors
obtained from a tensor by varying index in while
keeping the other indices fixed. The so-called n-mode
flattened matrix Xn ∈ RIn×Mn (n = 1, 2, 3) de-
notes the n-mode unfolding matrix of a tensor X ∈
RI1×I2×I3 , with size In ×Mn where Mn = Ip × Iq
with p, q 6= n (p, q = 1, 2, 3). The columns of Xn are
the In-dimensional vectors obtained from X by vary-
ing index in while keeping the other indices fixed.

2.2 n-mode product
The n-mode product of a data tensor X ∈ RI1×...×IN

and a matrix B ∈ RJ×In in mode n. It is of size
I1 × · · · × In−1 × J × In+1 × · · · × IN and denoted
by X×n B,is a tensor in which the entries are given by
(X ×n B)i1,···in−1,j,in+1,···iN =

∑In
in=1 xi1,i2,···iN bj,in

where bj,in denotes the (j, in) element of matrix B and
j = 1, · · · J .

2.3 Signal model
A noisy HSI is modeled as a tensor R ∈ RI1×I2×I3

resulting from a pure HSI X ∈ RI1×I2×I3 impaired by
an additive tensor noise N ∈ RI1×I2×I3 . The tensor R
can be expressed as

R = X + N (1)

3 Noise reduction by joint compo-
nent filtering

3.1 Three-dimensional wavelet packet trans-
form

The 3-dimensional wavelet packet transform
(3D-WPT) can be computed by performing 1-D
wavelet packet transform in each mode. Therefore,
the wavelet packet coefficient tensor CR can be
computed as: CR = R×1 W1 ×2 W2 ×3 W3 =
(X + N) ×1 W1 ×2 W2 ×3 W3 There-
fore, the coefficient tensor of each part:
CX = X ×1 W1 ×2 W2 ×3 W3 and
CN = N×1W1×2W2×3W3 and the reconstruction
can be written as:

R = CR ×1 W1
T ×2 W

T
2 ×3 W

T
3 (2)

where Wn ∈ RIn×In , n = 1, 2, 3 indicate the wavelet
packet transform matrices and the superscript T de-
notes the transpose. When the transform level vector
is l = [l1, l2, l3]

T , where ln ≥ 0 denotes the wavelet
packet transform level in mode n, the coefficient ten-
sor CR

l,m, which is also called a component in this pa-
per, of scale m = [m1,m2,m3], where 0 ≤ mn ≤
2ln − 1, can be extracted by: CR

l,m = CR ×1 Em1 ×2

Em2×3Em3 = (CX+CN)×1W1
T×2W

T
2 ×3W

T
3 .

Then, CR
l,m can be expressed as CR

l,m=CX
l,m + CN

l,m

where CX
l,m = CX ×1 W1

T ×2 WT
2 ×3 WT

3 and
CN

l,m = CN ×1 W1
T ×2 W

T
2 ×3 W

T
3 are the signal

and noise coefficient tensors, respectively. The corre-
sponding inverse process is

CR =
∑
m1

∑
m2

∑
m3

CR
l,m×1E

T
m1
×2E

T
m2
×3E

T
m3

(3)

where the extraction operator Emn is defined as:
Emn = [01, I In

2ln
× In

2ln

,02] ∈ RIn/2ln×In where 01 is

a zero matrix with size In
2ln
× mnIn

2ln
, 02 is a zero ma-

trix with size In
2ln
× (2ln−1−mn)In

2ln
and It is an identity

matrix of size t .

4 Pre-whitening method
If the noise in HSI is not white, MWF cannot ef-
fectively remove the non-white noise and estimate the
expected signal. In this paper, we propose to change
the non-white noise in R into a white one by a pre-
processing procedure, then MWF can be used to de-
noise the whitened data tensorR.

If the noise in HSI is not white, the noise covari-
ance matrix C

(n)
N 6= σ2I, where σ2 is the variance

of the corresponding white noise, then a prewhitening
matrix P−1n can be applied to R. The matrix Pn is
given by C

(n)
N = PT

nPn, where Pn is the Cholesky
factor of C

(n)
N . If we can directly get the unfolding

matrix Nn of the noise tensor N , then it can be fac-
tored as Nn = QnPn, where QT

nQn = I and Pn

is the same Cholesky factor as above. In the non-
white noise case, we consider the unfolding matrix
Rn = Xn +Nn and substitute Rn to Rn = RnP

−1
n ,

then

Rn = XnP
−1
n +NnP

−1
n = XnP

−1
n +Qn (4)

with the assumption that the signal is independent of
the noise.

So, the covariance matrix R
T
nRn =

(P−1n )
T
XT

nXnP
−1
n + I, that is to say that the

non-white noise has been whitened. Thus the MWF
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algorithm can be applied to the transformed unfolding
data matrix RnP

−1
n . This procedure is named as

PW-MWF. To get the estimated signal X̂ , an inverse
process of prewhitening is necessary after we get the
denoised result, which will be described in the next
subsections.

Notice that the large and small targets are sepa-
rated into the approximation and detail coefficient ten-
sors respectively, which makes it possible to avoid re-
moving the small target in filtering noise. Therefore,
PW-MWPT-MWF outperforms PW-MWF in preserv-
ing the small targets.

5 Experimental results
In the experiments, PW-MWPT-MWF and PW-MWF
are compared in the aspect of improving target detec-
tion performances. The results obtained both on sim-
ulated and real-world data are presented in this sec-
tion. The HSI is modeled as a three-dimensional ten-
sor, where the first two dimensions indicate the spa-
tial field and the third dimension indicates the spec-
tral bands. Wavelet db3 is used to apply PW-MWPT-
MWF with transform levels [l1, l2, l3] = [1, 1, 0].

SAM detector [9] is used in the experiments to de-
tect targets in the image. As Spectral Angle Mapper
(SAM) does not require the characterization of back-
ground, it can avoid the inaccuracy of the comparison
result caused by the noise covariance matrix estima-
tion error. The SAM detector can be expressed as:

TSAM (x) =
sTx

(sTs)1/2(xTx)1/2
(5)

where s is the reference spectrum, x is the pixel spec-
trum. To assess the performances of detection, the
probability of detection (Pd) is defined as:

Pd =

∑ns
i N rd

i∑ns
i Ni

(6)

and the probability of false alarm (Pfa) is defined as:

Pfa =

∑ns
i Nfd

i∑ns
i (I1 × I2 −Ni)

(7)

where ns is the number of spectral signatures, Ni the
number of pixels with spectral signature i, N rd

i the
number of rightly detected pixels, and Nfd

i the num-
ber of falsely detected pixels.

5.1 Results on simulated data
The simulated data is generated with the spectral sig-
natures presented in Fig. 1 and it has 100 rows, 100
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Figure 1: Spectral signatures of the simulated data

(a) Pure image
(band 6)

(b) Image before
denoising (band
6,SNR=20dB)

(c) Image denoised
by PW-MWF

(d) Image denoised
by

PW-MWPT-MWF

Figure 2: Detection results of HYDICE, Pfa=10−4

columns and 220 spectral bands, which can be mod-
eled as a 100× 100× 220 tensor. There are six target
types and three different spatial sizes 8×8, 3×3, 1×1
of each type, which are shown in Fig. 2(a). These tar-
gets are mixed to the background by using the linear
mixing model with target abundance being 80%. The
band 6 of the noisy image with SNR= 20dB is shown
Fig. 2(b), from which one can see that the small tar-
gets are almost disappeared in the noise.

Fig. 2(c) shows the detection result under Pfa =
10−4 after denoising by PW-MWF. In this figure, it is
obvious that most of the 1× 1 targets are not detected
and there are false alarm neighbors with the detected
1 × 1 targets. On the contrast, the detection result
after denoising by PW-MWPT-MWF is much better.
The 2 × 2 targets are all detected and only one 1 × 1
target is dismissed. The experiment result in Fig. 2
implies that PW-MWPT-MWF owns the capability in
preserving the small targets in the denoising process.

To make the experimental results more convinc-
ing and show the subtle changes of the detection re-
sults, the receiver operating characteristic (ROC) val-
ues are given in Table 1 in the noise environments
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Table 1: ROC values of PW-MWF and PW-MWPT-
MWF for the simulated HSI

Pd of PW-MWF Pd of PW-MWPT-MWF
Pfa 15dB 20dB 25dB 15dB 20dB 25dB
0.0001 0.515 0.9492 0.9863 0.7125 0.9282 0.9675
0.0002 0.581 0.9492 0.9863 0.7271 0.9282 0.9678
0.0003 0.599 0.9493 0.9863 0.7381 0.9282 0.9775
0.0005 0.629 0.9494 0.9872 0.7637 0.9482 0.9779
0.0008 0.673 0.9494 0.9872 0.7821 0.9482 0.9872
0.0013 0.718 0.9515 0.9872 0.8004 0.9482 0.9876
0.0022 0.737 0.9515 0.9872 0.8132 0.9582 0.9973
0.0036 0.710 0.9515 0.9872 0.8462 0.9582 0.9989
0.0060 0.815 0.9589 0.9872 0.8956 1.0000 1.0000
0.0100 0.911 0.9845 1.0000 0.9908 1.0000 1.0000
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Figure 3: Spectral signatures of targets

from 15dB to 25dB. In 15dB, Pd after denoising by
PW-MWPT-MWF is much greater than that by PW-
MWF under the same Pfa. From the comparison
of ROC in Table 1, it shows that PW-MWPT-MWF
can improve the target detection performances more
greatly than PW-MWF can in different noise environ-
ments.

5.2 Results on real-world data
One high spatial resolution HSI HYDICE [2] is de-
noised by PW-MWF and PW-MWPT-MWF to com-
pare their target detection improvement ability in
noise environment. The HYDICE image contains 100
rows, 100 columns and 158 spectral bands, which is
modeled as a 100 × 100 × 158 tensor. Three types
of target spectral signatures are considered, and these
targets are mixed to the background with respect to the

Table 2: ROC values of PW-MWF and PW-MWPT-
MWF for HYDICE

Pd of PW-MWF Pd of PW-MWPT-MWF
Pfa 15dB 20dB 25dB 15dB 20dB 25dB
0.0001 0.6593 0.8828 0.9634 0.7289 0.8851 0.9854
0.0002 0.6593 0.9048 0.969 0.7399 0.9084 0.9863
0.0003 0.6630 0.9121 0.9681 0.7546 0.9451 0.9866
0.0005 0.6703 0.9121 0.9734 0.7912 0.9634 0.9873
0.0008 0.6740 0.9487 0.985 0.7985 0.9670 0.9878
0.0013 0.6777 0.9634 0.989 0.8315 0.9707 0.989
0.0022 0.6850 0.9780 0.999 0.8498 0.9853 0.9899
0.0036 0.6923 1.0000 1.0000 0.8755 0.9927 0.9953
0.0060 0.7106 1.0000 1.0000 0.9341 0.9927 1.0000
0.0100 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

(a) Pure image
(band 50)

(b) Image before
denoising (band
50,SNR=20dB)

(c) Image denoised
by PW-MWF

(d) Image denoised
by

PW-MWPT-MWF

Figure 4: Detection results of HYDICE, Pfa=10−4

linear mixing model when target abundance is 80%;
Fig. 4(a) and Fig. 4(d) are the pure and noisy

images in band 50. The targets are placed in the field,
beside the road and in the trees respectively to contain
the usual target situations in HSI. The detection results
after denoising by PW-MWF and PW-MWPT-MWF
are shown in Fig. 4(c) and Fig. 4(d) respectively. In
Fig. 4(d), 1 × 1 targets in the field and beside the
road are detected. The only dismissed 1 × 1 target
is in the trees, which is always a difficult situation to
detect small target in it. On the contrast, in Fig. 4(c)
all the 1 × 1 targets are dismissed and a 2 × 2 target
in the trees is also lost. The comparison between Fig.
4(c) and Fig. 4(d) shows that PW-MWPT-MWF owns
better capability in preserving small targets than PW-
MWF as expected.

Apart from the binary target detection results in
Fig. 4, to better compare the performances of PW-
MWF and PW-MWPT-MWF, the ROC values are also
presented in Table 2. As expected, the Pd of PW-
MWPT-MWF is better than that of PW-MWF in the
same Pfa. The comparison of the ROC values im-
plies that PW-MWPT-MWF performs better than PW-
MWF in improving the target detection result of the
real-world data as well.

6 Conclusion
To reduce non-white noise in HSI, a pre-whitening
method is proposed by a two-stage process comprised
of a noise pre-whitening procedure and a MWF
process. The performances of PW-MWF and PW-
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MWPT-MWF in improving the target detection in
noisy environment are discussed in this paper. Though
PW-MWF performs well in reducing white noise in
HSI, it might also remove targets in the image, espe-
cially when the targets are small. The reason lead-
ing to this phenomenon is that PW-MWF treats di-
rectly HSI as a whole entity by filtering each mode
of the HSI in a Wiener filter like way. Since the en-
ergy of the small targets is thin, it is easy to be re-
moved in the filtering process. However, PW-MWPT-
MWF decompose the pre-whitening HSI into several
components (coefficient tensors) and filter each one
by MWF. As small and large targets are separated into
different components, the small ones can be preserved
in the filtering process. This is why PW-MWPT-MWF
performs better than PW-MWF in improving target
detection performance when there exist small targets
in the image.

Simulated and real-world HSIs are considered in
the experiments to compare the performances of PW-
MWF and PW-MWPT-MWF in improving target de-
tection in the noise environment. The experimental
results highlight that PW-MWPT-MWF outperforms
PW-MWF in improving the target detection results in
the presence of small targets.
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