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Abstract: - Maritime surveillance systems can be employed to increase the security of ports, airports, merchant
and war ships against pirates, terrorists or any hostile vessel attacks, to avoid collisions, to control maritime
traffic at ports and channels and for coastal and oil platforms defense. Cameras are one of the main sensors of
these systems.  They are cheap and complement  other types of sensors.  There are few papers about  video
maritime surveillance systems present in literature compared with other kinds of video surveillance systems.
This survey was motivated by the importance of the subject, to motivate new researches and because there are
no surveys about  video detection  and tracking  of  marine vehicles  or  they  are  not  widespread.  The paper
presents the state of the art algorithms. 
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1  Introduction
Video  surveillance  systems  in  dynamic
environments  is  one  of  the  most  active  research
topics  in  computer  vision  [1],  receiving  much
attention  in  the  last  decade  [2].  Maritime
surveillance  can  be  defined  as  the  effective
recognition of all maritime activities that impact the
security, the economy or the environment [3]. About

80% of all world trade is carried by sea transport.
With  the  growing  use  of  maritime  transport,  an
increase of pirate attacks, activities such as traffic of
prohibited  substances,  illegal  immigration  and
fishing, terrorist attacks at port areas and collisions
between marine vehicles primarily at channels and
near the ports and coasts is occurring. It is estimated
that  the  losses  due  to  piracy  may  reach  US$  16
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billion per year [4]. The attack against civilian and
military  marine  vehicles  is  one  way  to  hurt  the
economy  and  security  of  a  country  [5,  6].  The
terrorist attack against the U.S. warship Cole DDG
67 occurred at port Aden, Yemen, caused the death
of 17 people [5].  The French tanker Limburg also
suffered terrorist  attack at the Yemen coast.  Pirate
attacks are very common in Somalia, in the Strait of
Malacca and Indonesia [7]. 

The manual operation of surveillance systems is not
efficient due to fatigue, stress and the limited ability
of  human  beings  to  perform  certain  tasks,  the
development  of  automated  systems  for  maritime
surveillance is essential to reduce the occurrence of
unwanted events [2, 3, 5 -19].

The  use  of  cameras  in  maritime  surveillance
systems has increased [19]. Cameras are essential to
assist and supplement the radars and other sensors.
They are cheap, flexible [6, 11, 17, 20] and can be
installed  on  almost  every  platform  type  [2].  The
magnetometer detects vehicles by the change in the
magnetic field around the vehicle, but are limited to
detect  vehicles within walking distance [10].  Low
and high frequency radars are expensive, hampered
by  clutter  [10],  have  blind  zones  close  to  the
transmitting  antenna  [6,  11]  and  detect  with  low
efficiency  the  vehicles  built  with  non-conductive
materials [4, 6, 7]. 

Efforts  have  been  made  worldwide  for  the
development of maritime surveillance systems. The
European project AMASS - Autonomous Maritime
Surveillance  System  -  was  created  to  develop  a
surveillance system with FLIR cameras installed on
advanced platforms [17].  The AVITRACK system
[21]  and  MAAW  -  Maritime  Activity  Analysis
Workbench - [5] are surveillance systems based an
cameras.  The ARGOS system [1]  has  been active
since  2007  and  is  used  to  monitor  the  maritime
traffic  at  Gran  waterway  in  Venice,  Italy.  The
SELEX Sistemi Integrati system integrates the data
obtained by cameras and by radars and are operating
in Russia, Italy, Poland, China and Panama. Burkle
et al. [13] proposed a surveillance system based on
cameras  installed  on  different  platforms  and  land
bases to increase the system coverage area.

New technologies have emerged allowing the data
fusion extracted from different systems and sensors.
The  cameras  are  one  of  the  main  system
components [2, 5]. The AMFIS system [13], the AIS

system- Automatic Identification System - [15], the
ASV system- Automatic Sea Vision - [15], the VMS
system-  Vessel  Monitoring  System  –  [2]  and  the
AIVS3  system  -  Automated  Intelligent  Video
Surveillance system for Ships - [6] are examples of
maritime  surveillance  systems  that  perform  data
fusion.
 

2  Components of a video surveillance
system 
A complete  video  surveillance  system  consists  of
five main components, the initial detector, the image
processor, the classifier, the tracker and the behavior
analyzer.  Figure  1  shows  a  complete  video
surveillance system.

Fig 1. main components of a complete video
surveillance system.

Some surveillance systems may not contain all these
components. The initial detector is a motion detector
that detects all pixels in motion [1, 2, 4, 5, 7, 9, 15,
16] or an object  detector based on a classifier  set
[22].  The  information  obtained  by  the  initial
detector  is  handled  by  the  image  processor  to
eliminate  noise,  to  segment  the  most  relevant
regions  and  to  detect  the  connected  components.
These  regions  are  evaluated  and  classified  into
objects  that  are  or  are  not  of  interest  by  the
classifier.  The objects of  interest  are modeled and
are therefore called objects being tracked OT. The
tracker  attempts  to  locate  the  OT in  a  region  of
interest ROI at each frame I(t) and determines the
OT position P(OT(t)). The ROI is the frame region
where the probability OT be found is  higher.  The
vehicle trajectory and speed are sent to the behavior
analyzer. It generates an alert to a control center if it
classify the event as a suspicious activity [3, 5, 6,
16, 18]. The trajectory and speed analysis can also
improve  the  efficiency  of  the  detection  and
classification of marine vehicles [9].

Marine  vehicles  do  not  have  particular
characteristics  that  can  be  used  for  an  efficient
classification  [12].  It  is  difficult  to  construct  a
representative database for vessel classification due
to  the  variety  of  marine  vehicles  types   [6,  15].
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Although  some  surveillance  systems  perform  the
classification  [5,  18,  19],  these  systems classify a
limited  number  of  marine  vehicles  types  and  the
classification efficiency depends on the position and
distance relative to the camera.

3  Difficulties
Conventional algorithms for detection and tracking
vessels  at  video,  when  applied  to  a  maritime
environment  without  proper  adjustments,  do  not
produce efficient results, as the background is quite
dynamic. The maritime scenario presents challenges
that may hinder the initial detector and the tracker.
The  dynamic  and  unpredictable  ocean  appearance
makes their mathematical modeling difficult [7, 9].
The  images  captured  by  the  cameras  may  not  be
clear due to the presence of noise and clutter caused
by  the  electronics  equipments  or  by  the  adverse
environmental condition, such as storms, haze and
low luminosity [4, 14, 20]. The white foam on the
water surface caused by the vehicle propeller or by
the  waves,  the  sunlight  reflection,  the  change  in
lighting  conditions,  the  constant  change  of  each
pixel value caused by waves, the presence of objects
that  float  over  the  ocean,  the  great  variability  of
certain  maritime  vehicles  features  such  as  size,
maneuverability,  appearance,  geometric  shape,  the
low contrast of the image captured by the cameras
or between the marine vehicle and the background
and the presence of birds, clouds, fog and aircraft
that arises immediately above the horizon hinder the
detector and tracker [1, 2, 4, 7, 9, 10, 11, 14, 16, 19].
Figure  2  shows  an  image  with  low  contrast  and
clutter.  Figure  3 demonstrates the error caused by
white foam.

Fig 2. image with low contrast and clutter [18].

Fig 3. white foam generated by the ship [16].

It  is  common  to  use  FLIR  cameras  -  Forward
Looking  Infrared  –  because  they  are  more
insensitive to changes in lighting conditions, they do
to  capture  the  sunlight  reflection  over  the  sea

surface  or  over  the  vehicle  and they decrease  the
influence of white foam [9, 10], but they limit the
quantity of features that can be extracted [20] and
have high energy consumption [2, 10]. 

Most of the surveillance systems use fixed cameras
[15]. Systems based on cameras installed on buoys
have  to  compensate  their  movement  to  lower  the
probability of tracking mistakes [2]. In these cases,
the  horizon  line  is  used  as  a  reference.  Cameras
installed on aircrafts or low port marine vessels can
produce  tracking  fails  caused  by  the  vibratory
camera  movement,  being  necessary  to  use  a
smoothing filter [20]. 

4  Horizon line detection
The initial detector usually detects a maritime vessel
around the position of the horizon line PHL. After
estimating the PHL, the surveillance system detects
the maritime vehicles that arises next and above the
horizon line, limiting the search region and reducing
the execution time of the initial detector [2, 10, 14].
The ROI region can be reduced to the ocean region,
below the PHL [6, 15, 19].

Authors like Fefilatyev et al.  [14], Todorovic [23]
and  Ettinger  et  al.  [24]  estimate  the  PHL  by
minimizing the intra-class variance of the sky and
the sea pixels values. To minimize the influence of
the  coast  and  marine  vehicles  present  near  the
horizon, Fefilatyev [10] proposed the Unsupervised
Slice algorithm. The image is divided into N parts
with N-1 vertical lines evenly distributed. The line
segments that  minimize the intra-class variance of
each part are calculated and combined to estimate
the  PHL.  Fefilatyev  et  al.  [25]  minimize  the
intra-class  variance  using  features  extracted  from
the pixel values. Cornall et al. [26] estimate the PHL
by  segmenting  the  pixels  with  a  threshold.  The
centroids of the sky and sea pixels define a segment
perpendicular  to  PHL.  McGee  et  al.  [27]  and
Fefilatyev et al. [25] segment the sky and sea pixels
with an SVM classifier. McGee et al. [27] estimate
the PHL as the line that separates the sky and sea
pixels  with  less  error  among  all  candidate  lines.
Fefilatyev et al. [25] define a quantized pixel map
{-1,1} according to the classification.  The PHL is
the line that minimizes the intra-class pixel variance
on the map.  The surveillance system proposed by
Kruger et al. [17] have cameras with inertial units
that  determine  the  camera  position  in  space,
stabilize the image and reduce the total number of
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possible candidate positions for the PHL.

Fefilatyev et al. [2] discard the frames in which the
PHL estimation is unreliable to increase the detector
and the tracker robustness. The reliability reduction
can occur when the sky or the sea comes out of the
camera field of view and when water droplets are
deposited  on  the  lens.  Considering  the  hypothesis
that  the  sea  and  sky  pixel  values  have  Normal
distributions, Fefilatyev et al. [2] select a small set
of candidate lines with a less robust algorithm based
on the Hough transform applied to a gradient map
and than select among the candidate lines the one
that  maximizes  an  function  that  indicates  the
variance between the two classes to accelerate the
PHL estimation.  Wei  et  al.  [6]  applie  the  Hough
transform  on  a  gradient  map  calculated  over  the
application result  of a smoothing filter  to the first
frame.  If  the  line  is  not  accurately  detected,  the
search region becomes the entire image. Bloisi et al.
[19]  applies  the  Hough  transform  on  a  gradient
image  to  determine  a  candidate  PHL.  The  PHL
estimation  is  validated  if  90%  of  sampled  pixels
above and below the PHL have different values.

The  approaches  based  on  the  Hough  transform
[2,6,19]  and  on  optical  flow  [28]  have  higher
computational complexity.

5  Initial vessel detection
An efficient initial detection of the maritime vehicle
is  important  because  the performance of  all  other
surveillance  system  components  depend  on  its
performance.  Marine  environments  are  very
dynamic  and difficult  to  be  processed,  which  can
generate  a  lot  of  false  detections  FP and  missing
vessels FN [10].

The initial detection based only on frame differences
can  fail  in  cases  where  the  vehicle  is  docked  or
moves  toward  the  camera  as  little  difference
between the pixel  values  at  consecutive frames is
produced  [19].  The  ocean  pixels  values  are
constantly  varying  due  to  the  waves,  which
generates  many  FP  [10].  There  are  detection
algorithms based on the frequency information [29]
and on histograms [30], however, recent works use
Gaussian  functions  to  model  the  sea  pixel  values
and detect vehicles by background subtraction [1, 2,
4, 5, 7, 9, 15, 16]. The optical flow analysis is not
much used for the initial detection due to the higher
computational complexity [7]. Some authors [9, 29]

and  divide  the  image  into  N  regions  and  extract
features,  such  as  entropy,  energy,  uniformity  and
contrast  of  each  area.  Maritime  regions  where
vehicles  are  present  have  different  characteristics
from the other regions.

The constant movement of the water is one of the
factors that cause failures in algorithms based on the
background  subtraction  [4,  6].  The  background
subtraction  statistically  exploits  the  fact  that  each
pixel value follows a normal distribution (equation
(1)) or a mixture of normal distributions over time.
The probability P of each pixel I(x,y) belong to the
ocean or to the vehicle is related to the difference of
its  value  and  the  mean  of  each  distribution
considering  the  distributions  variances  (equation
(2)). 

BM(x,y) = N(x,y) (μ ,σ ) (1)

P(I(x,y)) ∈BM(x,y) σ
| I(x,y)-μ |

(2)

Many authors have reported that using a background
model BM represented by a mixture of Gaussians is
less  efficient.  Szpak  and  Tapamo  [7]  conducted
statistical  tests  based  on  DIP  -  Departure  from
Unimodality - and concluded that the pixel values in
most  cases  have  a  Normal  distribution,  however,
Bloisi et al. [1] reported that a mixture of Normal
distributions  can  represent  the  ocean  better.  The
right  conclusion  is  that  the  best  representation
depends on the application.

Pires et al. [15], Grupta et al. [5] and Robert-Inácio
et al. [9] represent BM(x,y,t) by an adaptive Normal
distribution. A maritime vehicle is detected whether
a connected component area larger than a threshold
L is located on the region corresponding to the water
surface at the map of relevant pixels MRP. MRP is a
map that  contains only the pixels that have a low
probability to belong to the BM. Pires et al. [15] and
Robert-Inácio  et  al.  [9]  put  in  the  MRP only  the
pixels whose value of the difference between I(x,y,t)
and  µ(x,y,t) is greater than a threshold L2. Pires et
al. [15] calculates the difference pixel-by-pixel and
Robert-Inácio et al. [9] split the image with a regular
grid and define I(x,y,t) as the average of the pixels
values at  each region.  Grupta et  al.  [5] put  in the
MRP only  the  pixels  whose  squared  value  of  the
difference between I(x,y,t)  and  µ(x,y,t)  divided by
σ(x,y,t) is greater than a threshold L3. Hu et al. [16]
detect marine vehicles with background subtraction.
The  initial  frames  are  used  to  define  the  BM.
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BM(x,y) is the average of the last six I(x,y) values
inserted  into  a  buffer.  I(x,y,t)  is  inserted  into  the
buffer only if the difference between µ(x,y,t) and the
average  value  of  the  pixel  at  (x,y)  and  its  3x3
neighborhood  is  greater  than  a  threshold  L at  K
consecutive frames.  Szpak and Tapamo [7]  define
BM(x,y) as a Normal distribution initially estimated
with  the  first  N frames  and adjusted  every  frame
considering higher weights to more recent  frames.
The  probability  of  a  pixel  to  belong  to  a  marine
vehicle is proportional to the deviation of its value
and  its  neighbors  to  the  interval
[µ(x,y,t)-3.σ(x,y,t);µ(x,y,t)+3.σ(x,y,t)].  At  every  Z
frames, an active contour starts at the image edges
and  evolves  to  the  position  where  a  new marine
vehicle is. The BM proposed by Bloisi et al. [1] is a
mixture  of  seven  Normal  distributions  defined  by
clusterization  of  the  RGB  pixel  values  at  (x,y)
contained  in  the  training  images.  It  was  chosen
seven  distributions  to  represent  all  possible  sea
appearances.  The  vehicle  is  detected  when  a
connected  component  has  a  low  probability  to
belong to the 7 distributions. Wei et al.  [6] define
BM(x,y) = ax + by + c. The real values a, b and c
are  the  ones  that  minimize  a  mean  squared  error
function weighted by the pixel values that are below
the horizon line.  They are  updated at  each frame.
The  detection  is  performed  with  the  search  for
connected components present at the residue image
I(x,y,t)-BM(x,y,t) segmented by thresholding.

The  initial  detection  validation  by  a  classifier  is
present  in  the  literature  [18,  19],  however,  due to
high variability of the appearance and the geometric
shape of marine vehicles, this approach is not very
explored.  Bloisi  et  al.  [19]  proposed  an  initial
detector  based  on  a  ensemble  classifier  trained
offline  with  Haar  wavelet  features.  The  ensemble
was  designed  to  increase  the  robustness  of  initial
detection in cases where a vessel  is  anchored and
when sunlight reflections or white foam are present
at the sea surface. Teutsch and Kruger [18] train a
SVM classifier with the features invariant moments,
some  statistical  measures  such  as  mean  and
variance,  texture  analysis,  co-occurrence  matrices
and the gradient analysis to classify vehicles in two
steps.  At the first  step the detected candidates are
classified into objects over the ocean or clutter. If it
is classified as an object over the ocean, the object is
classified as a marine vehicle or an irrelevant object
in the second step. Sullivan and M. Shah [31] detect
marine  vehicles  with  the  similarity  value  between
the result of the FFT transform applied to vehicles

images recorded in a database and the result of the
FFT transform applied to candidate regions at each
frame. Feineigle et al. [8] detect marine vehicles by
the Euclidean distance between SIFT feature points
detected  at  each  frame  and  SIFT  feature  points
present in a image dataset.

Detection  algorithms  based  on  connected
components localization must  consider the vehicle
proximity to the camera [4]. Using a camera focused
at infinity and installed on a buoy, Fefilatyev [10]
detects  marine  vehicles  by exploiting  the  gradient
information  of  the  pixels  above  the  PHL.
Morphological  operations  of  erosion  and  dilation
followed by the connected components localization
are  used  to  detect  a  pixel  set  with  high  gradient
present  above the PHL.  Figure  4 shows a  marine
vehicle  detection  by  exploiting  the  gradient
information.

Fig 4. detection of marine vehicles by exploiting the
gradient information of the pixels above the PHL

[10]. 

Fefilatyev  et  al.  [14]  and  Fefilatyev  et  al.  [2]
accelerated algorithm proposed by Fefilatyev [10].
They  removed  the  need  for  morphological
operations.  The  threshold  values  for  the  pixel
segmentation  are  obtained  by  applying  the  Otzu
segmentation method on a gradient map. Frost and
Tapamo  [4]  detect  marine  vehicles  by  locating
connected  components  based  on  segmentation  by
thresholding applied to a probability map estimated
by  a  Gaussian  kernel  function.  Only  connected
components  with  geometric  shape  similar  to
pre-defined models are considered marine vehicles.

The  use  of  different  and  independent  features  is
important  to  increase  the  robustness  of  the  initial
detector and the tracker to the variability of vehicle
and  environment  appearances.  Kruger  and  Orlov
[17] and Teutsch and Kruger [18] combine the result
of 3 detectors based on the extraction of distinctive
features to determine if a vehicle is present near the
PHL.  Westall  et  al.  [32]  exploit  the  information
provided by different  color spaces.  At  each frame
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point in 3 different resolutions are extracted a color
histogram H and a histogram gradient orientations
HoG  through  integral  images  to  accelerate  the
extraction  [11].  Connected  points  that  have  the
histograms H and HoG different from its neighbor’s
histograms belong to  a  marine  vehicle.  Fefilatyev
[10]  compared  the  efficiency  of  texture
measurements  like  entropy,  average,  standard
deviation,  and  moments  up  to  the  fourth  order
calculated with RGB value of each pixel and their
neighborhood  11x11  pixels  normalized  to  the
interval  [0,1].  Applying  segmentation  by
thresholding, the pixels that belong to the sky, to the
sea and to marine vehicles are separated into distinct
groups. Islam et al. [12] proposed a detector wose
initial  image  Q0  is  blurred  by  a  linear  filter  to
generate the image I. A Gaussian filter with σ=1 and
other one with σ=3 are applied to Q0 and I to form
the  filtered  images  Q1,  Q3,  I1  and  I3.  The
differences  Q1-Q3  and  I1-I3  are  applied  to  an
anomaly detector to produce the A and B images.
A(x,y)-B(x,y)  is  proportional  to  the  probability  of
the pixel at (x,y) to belong to a marine vehicle.

5.1  Techniques Used To Lower The Quantity
Of FP And FN Detections
The ocean is a dynamic environment that has waves,
white  foam  and  light  reflections  on  the  water
surface, which can generate a considerable FP and
FN amounts.  Some  authors  [6,  9] report  that  the
detection  and  tracking  applied  on  IR  images  are
more efficient because the water temperature is not
influenced by these events.

Different methods are employed to decrease the FP
and FN rates detections. Many authors [2, 7, 9- 11,
14, 15, 18, 19] only validate the initial detection of a
marine vehicle if the tracking result is consistent and
reliable at N consecutive frames. Fefilatyev [10] and
Fefilatyev  et  al.  [14] only  consider  an  initial
detection if the detection is reliable and the centroid
and  bounding  box  trajectories  of  the  OT  are
consistent at 10 of the first 20 frames. Fefilatyev et
al. [2] added to these rules the need of the vehicle
appearance to be almost constant at N consecutive
frames  and  the  need  for  an  object  to  have  a
considerable size. 

To  decrease  the  FP rate  caused  by  ocean  waves,
birds,  aircrafts  or  objects  of  negligible  size,
Fefilatyev [10] and Grupta et al. [5] consider marine
vehicles  the  connected  components  located  at  the

MRP that are distanced from PHL at least N pixels
apart.  The  contour  size  of  a  FP caused  by  foam,
shadows, reflections and waves decreases at every
frame to disappear when the active contour tracker
based on level set functions proposed by Szpak and
Tapamo [7] is applied. To reduce the FP rate, Bloisi
et al. [19] use an ensemble classifier trained offline
to validate the initial detection. To decrease the FP
rate caused by white foam, Frost Frost and Tapamo
[4]  analyze  if   each pixel  value  remains  different
from the  BM value  for  more  than  N consecutive
frames. Foam pixels have lower persistence than the
vehicle pixels. At the first step, Hu et al. [16] and
Grupta et al. [5] eliminate the foam pixels removing
small connected components located at the MRP. Hu
et  al.  [16]  applie  an  algorithm  that  eliminates
shadows  to  reduce  its  influence.  Pixels  with  high
brightness  and  chromaticity  distortion  are  white
foam  candidates.  The  candidate  pixels  that  have
brightness  variation  greater  than  a  threshold  are
considered white foam.

To  decrease  the  FN  and  FP rates,  some  authors
apply morphological operations [5, 6, 32]. Grupta et
al.  [5]  applie  the  erosion,  dilation  and  smoothing
operations  before  looking  for  connected
components. Westall et al. [32] applie the opening,
closing, erosion and dilation operations to eliminate
noise  and  decrease  the  FP  rate.  Beyond  these
operations, Wei et al. [6] applied the operations of
opening and closing to the residue image I(x,y,t) -
BM(x,y,t) to eliminate clutter.

6  Maritime Vehicle Tracking
There  are  many  object  tracking  methods  in  the
literature.  The  mean-shift,  successive  clustering,
active contour and template matching are the most
used methods in marine environments. The use of
Kalman filter  [33]  as  an estimator  produces  good
tracking  applications  results  because  the  vehicle
movement is not too complex [18].

6.1  Kalman Filter
The Kalman filter KF [33] is an optimal estimation
method of the state of a stochastic, non-stationary,
dynamic and linear process. Kalman [33] introduced
the  representation  of  linear  dynamical  systems by
state equations. The process is governed by discrete
and linear equations (equations (3) and (4)) [20].

x(t+1) = A. x(t) + B.u(t) + w(t) (3)
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z(t) = C.x(t) + D.u(t) + v(t) (4)

Where  x  is  the  process  state  vector,  which  may
contain  variables  related  to  the  object  translation,
scale and orientation and its first and second order
derivatives,  u  is  the  control  vector,  z  is  the
measurement  vector  obtained  by  a  tracking
algorithm, A is the state transition matrix, B is the
state control matrix, C is the observation matrix, D
is the measurement control  matrix,  w is the noise
associated  with  the  state  and  v  is  the  noise
associated with the measure. By hypothesis, w and v
noise  vectors  are  independent  and  have  Gaussian
multivariate  probability  distribution  functions  of
zero mean and diagonal covariance matrix Q and R
respectively (w ~ N(0,Q) and  v ~ N(0, R)). 

KF  is  a  recursive  algorithm  that  consists  of  two
phases: time update and measurement update. The
time update phase (equations (5) and (6)) estimates
the state vector x(t|t-1) value and the error matrix
P(t|t-1) value considering the observations obtained
at I(t-1). 

x ( t∣t-1)=A.x ( t-1∣t-1 ) (5)
P(t∣t-1)=E((x(t)-x(t∣t-1)). (x(t)-x(t∣t-1))T)

=A.P(t-1∣t-1) . A+Q
(6)

Where  x(t)  is  the  state  at  frame  t,  x(t|t-1)  and
x(t-1|t-1) are a priori and a posteriori estimation of
the state  vector,    P(t|t-1)  and P(t-1|t-1)  are  the  a
priori and a posteriori estimation of the error matrix
and E is the expected value. 

The measurement update phase (equations (7),  (8)
and (9)) corrects the x(t|t-1) and P(t|t-1) values by
incorporating the z(t) measurement obtained bay the
tracker at each frame. 

K(t) = P(t∣t-1).CT .(C.P(t∣t-1).CT +R) -1 (7)
x(t∣t) = x(t∣t-1) + K(t).(z(t)-C.x(t∣t-1)) (8)

P(t∣t) = P(t∣t-1) - K(t).C.P(t∣t-1) (9)

Where K(t) is the Kalman gain at frame t. 

A very common application of KF is the prediction
of each object  position at  frame t+1 to define the
ROI position [1, 2, 5, 6, 10, 14, 15, 18].

6.2  Successive Clustering
The clustering applied to successive frames is one of

the  simplest  tracking  methods  [9].  An  image
segmentation  algorithm  is  applied  at  each  frame
image  to  generate  a  probability  map.  Then,  a
clustering  algorithm  forms  the  connected
components  in  the  map.  P(OT(t))  is  usually
considered  the  centroid  position  of  the  connected
component  that  is  nearest  to  the  OT  centroid
position estimated by the KF.

The surveillance system ASV [15]  determines  the
vehicle  spatial  position  geometrically  by
considering  the  camera  height,  the  vehicle  pixel
closest  to  the  water  surface  and  the  PHL.  The
tracking is based on successive clustering. P(OT(t))
is  determined  by  associating  the  bounding  box
positions  and  centroid  velocities  estimated  by  the
KF for each vehicle and the ones calculated for each
connected component. Fefilatyev [10], Fefilatyev et
al.  [14]  and  Fefilatyev  et  al.  [2]  track  marine
vehicles  by  applying  the  Kalman  filter  and
successive clustering at each frame. When one OT is
not detected within the ROI estimated by the KF, the
OT is considered occluded and the OT model is not
updated,  but  the  KF  continues  estimating  future
states of the OT bounding box and centroid. Bloisi
et  al.  [1]  and Grupta et  al.  [5]  group together the
clusters being tracked that  are close to each other
and have similar movements in a single OT. Grupta
et  al.  [5]  segment  the  image  by  background
subtraction  and  analyze  only  the  proximity  and
movement of the centroids. Bloisi et al. [1] segment
the image by analyzing the optical flow similarity of
the pixels and cluster the neighbor segments with a
K-means algorithm. The optical flow is a dense field
vector of displacements that define the translation of
the pixels at successive frames. The OT movement
can be estimated by analyzing the optical flow of the
OT pixels. The optical flow is a vector that indicates
the displacement of the pixels between successive
frames and its calculation is performed considering
the hypothesis  that  the  brightness  of  the  pixels  at
successive  frames  do  not  vary  abruptly  [34]
(equation (10)).

I(x,y,t) - I(x+x, y+y, t+ t) = 0 (10)

A high frame per second rate is required to secure
this  hypothesis.  The  equation  that  connects  the
optical  flow vector  V=(∂x/∂t,  ∂y/∂t)T  and the  first
order intensity derivative (equation (11)) is deduced
by Taylor series expansion up to the first order term
(equation (10)) [35].
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(∇ I(x,y,t) )T .V+  I(x,y,t)
 t

 = 0 (11)

6.3  Mean-Shift
The  mean-shift  algorithm  is  a  nonparametric
clustering  technique  based  on  gradient  ascent
applied to data in the feature space FS. Was initially
proposed by Fukunaga and Hostetler [36], and then
was adapted by Cheng [37] for image analysis, by
Comaniciu and Meer [38] for image segmentation
and by Bradski [39] and Comaniciu et al. [40] for
object tracking.

The  mean-shift  algorithm  considers  the  data  as
points in FS associated with a empirical probability
density  function,  where  regions  of  dense  data
present  in  FS  correspond  to  local  maximum  or
modes  of  the  data  distribution.  A local  gradient
ascent  algorithm  is  applied  to  the  empirical
probability  density  function  to  determine  the  data
region corresponding to the mode. Given n points p i,
i=1,...,n  in  Rd,  the  empirical  probability  density
function  EPDF(p)  that  has  a  radially  symmetric
kernel  (equation  (13))  centralized  at  p  and  has  a
bandwidth h is defined by equation (12) [37, 38].

EPDF(p) = 
1

nh d ∑
i=1

n

K(
p-pi

h
) (12)

K(a) = ck .k(∥a∥
2
) (13)

Where  ck is  a  normalization  constant.  The  EPDF
modes are localized at the points were the gradient
of the EPDF is null (∇EPDF(p)=0).

The  OT  model  is  represented  by  the  function
EPDFR  [40].  Equivalently,  a  pixel  region  R  is
represented by the function EPDFC. Both functions
are estimated by the histograms Hepdfr and Hepdfc
(equations (14) and (15)). At each interaction step,
the  mean-shift  vector  (equation  (17))  shifts  R
toward a region of maximum similarity between the
histograms calculated by the Taylor series expansion
of  the  Bhattacharyya  coefficient  (equation  (16)).
The final R position is the OT position.

Hepdfru (p) = C ∑
i=1

n

k(∥(pi )∥
2 ).d[b(pi )-u] (14)

Hepdfcu (p) = Ch∑
i=1

nh

k(∥
(p-pi )

h
∥

2

).d[b(p i )-u] (15)

Where b returns the histogram bin for the pixel p i, u

is a bin, d is the Kronecker delta function, n and nh
are the pixel amount at p neighborhood defined by
the kernel k, C and Ch are normalization constants
and pi is a neighbor pixel of p.

CBhattacharyya=∑
u=1

m

√Hepdfr(u) . Hepdfc(u) (16)

mh (p)=
∑
i=1

n

pi . wi . g(∥p-pi

h ∥
2

)

∑
i=1

n

wi . g(∥p-pi

h ∥
2

)

 - p (17)

Where g(a) = -k'(a) and wi is calculated by
equation (18).

w i (p)=∑
i=1

n

√ ru

cu . p
.d[b(pi ) - u] (18)

Where ru is the of the bin u in the OT histogram and
cu is the value of the bin u in the R histogram.

Bibby and Reid [41] developed a tracker based on
mean-shift algorithm, but his approach fails in cases
of total occlusions.

Liu et al. [11] modifie the segmentation threshold by
selecting  online  the  most  discriminative  features
with the algorithm proposed by Collins and Liu [42]
and applies the mean-shift  algorithm starting from
the position estimated by KF to determine P(OT(t)).
The feature pool has three color components, three
differences  between  color  components  and  the
results of eight transformations applied to the Hue
component.  The  function  that  measures  the
discrimination  degree  is  based  on  the  similarity
between the histograms of OT and its neighboring
pixels.

6.4  Template Matching
The  template  matching  in  the  context  of  object
tracking is defined as the location of a small pixel
set  called  template  within  the  ROI  [43].  The  OT
model is the template to be found within the ROI.
Templates are constructed with the pixels inside a
simple geometric shape region. The position of the
candidate  region  C  that  maximizes  the  similarity
between the OT model M and all candidates reveal
P(OT(t)).  The  Hamming  distance  (equation  (19))
[44],  the  Euclidean  distance  [45],  the  Cross
Correlation [46], NCC (equation (20)) - Normalized
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Cross Correlation - [47], the SSD (equation (21)) -
Sum  of  Squared  Difference  –  [46]  and  SAD
(equation (22)) - Sum of Absolute Difference - [46]
are  examples  of  similarity  functions  between
templates. The weightless neural network WiSARD
can generate different similarity functions and can
be adapted to tracking [48]. The simplest similarity
function is the sum of the differences between pixel
values of two templates (equation (19)). The values
dx and dy that  minimizes  the function determines
P(OT(t)).

  Dif(M,Ci )=
∑

(x,y)∈M

(I(x+dx,y+dy)-M(x,y))

Nx . Ny

(19)

NCC(x,y)=
∑

(x,y)∈M

(I(x+dx,y+dy) . M(x,y))

√ ∑
(x,y)∈M

M2 (x,y)
(20)

SSD(x,y)= ∑
(x,y)∈M

(M(x,y)-I(x+dx,y+dy))2 (21)

L1(x,y)= ∑
(x,y)∈M

∣M(x,y)-I(x+dx,y+dy)∣ (22)

The  L1  norm  distance  (equation  (22))  rises  the
robustness  to  noise  because  it  generates  a  lower
penalty than the quadratic SSD function penalty. To
limit  the  effects  caused  by  variations  in  the
environment  lighting  conditions,  the  normalized
SSD  can  be  used  in  place  of  the  SSD (equation
(23)).

NSSD(x,y)= ∑
(x,y)∈M

(A -B)2

A=
M(x,y)-μ (M(x,y))

σ (M(x,y))

B=
I(x+dx,y+dy)-μ (I(x+dx,y+dy))

σ (I(x+dx,y+dy))

(23)

Where  µ and  σ are  the  average  and the  standard
deviation.

The  similarity  does  not  necessarily  have  to  be
calculated  with  the  pixel  values.  Any  feature
extracted from a pixel region can be used.

Fefilatyev  et  al.  [14]  and  Fefilatyev  et  al.  [2]
stabilize the image obtained by the camera installed
on  a  buoy  by  minimizing  the  NCC between  two
images  IMG1 and  IMG2.  IMG1 is  the  difference
between  the  OT template  and  the  average  of  the
template  pixel  values.  IMG2  is  the  difference
between the frame I(t) and the average value of the

pixels inside the ROI at I(t). The tracking algorithms
proposed by Fefilatyev et al. [14] and Fefilatyev et
al.  [2]  define  P(OT(t))  by  the  NCC  template
matching  algorithm  used  to  stabilize  the  camera
when the result of the segmentation by thresholding
applied  to  an  gradient  image  is  unreliable.  If  the
template  matching  is  also  unreliable,  I(t)  is
discarded. The threshold value is calculated by Otsu
method.  Moreira  and  Ebecken  [48]  proposed  a
tracker  based  on  the  weightless  neural  network
WiSARD. The OT model is stored at the network
RAM nodes. Candidate regions of quantized pixels
are put at the network input. P(OT(t)) is defined as
the  position  of  the  region  that  maximizes  the
network response. The tracker proposed by Hu et al.
[16]  defines  P(OT(t))  by  a  template  matching
algorithm  that  uses  the  MAD  function  (equation
(24))  -  Median  of  Absolute  Differences  –  as  the
similarity function.

MAD=
1

W.H ∑
i=0

W

∑
j=0

H

|OT(x,y,t)-I(x+i,y+j,t) | (24)

Where W and H are the length and height of the OT
bounding box.

6.5  Histogram Matching 
The histogram matching  is  a  technique frequently
used for tracking objects because the histogram is
invariant  to  rotation  and  scale  transformations
applied  to  the  object  and  it  is  robust  to  partial
occlusions  [49].  The  appearance model  is  defined
extracting a histogram with the OT pixels. P(OT(t))
is  the  frame  position  that  provides  the  maximum
similarity measure between the OT histogram HM
and histograms extracted from candidate regions HC
(equation (25)). 

S(HM,HC) = ∑
j=1

n

(HM(j)-H(j)) (25)

Where  n  is  the  total  bin  quantity  and H(j)  is  the
value of the bin j of the histogram H.

Puzicha et al. [50] present other ways of calculating
the similarity between histograms as the weighted
bin  to  bin  difference,  the  histogram  intersection
(equation (26)) and  χ². The log likelihood statistics
and  log  likelihood  ratio  statistics  functions  of
similarity between histograms have been simplified
by Ojala  et  al.  [51]  (equation (27))  and (equation
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(28)).

I(HOR ,HOC ) = 
∑
j=1

n

min(HOR (j) - HOC (j))

∑
j=1

n

( HOR (j))

(26)

L(HOR , HOC ) = ∑
j=1

n

HOC .log(HO R (j)) (27)

L(HOR , HOC )=2.∑
j=1

n

HOC.log(
HOC (j)

HOR (j)
) (28)

The  linear  approximation  of  the  Bhattacharyya
coefficient [40] is the most used similarity function
for tracking objects, because it  is easily calculated
and because there are many authors who reported
the success of their application [49].

The tracker proposed by Bloisi et al. [19] determine
P(OT(t))  with  histograms  matching  based  on  the
Bhattacharyya  coefficient.  The  pixel  values  are  in
the HSV color space to minimize the influence of
shadows and lighting variations caused by sunlight
reflection  over  the  sea  surface.  To  decrease  the
quantity of tracking and detection failures, Bloisi et
al. [19] proposed the radar and camera data fusion.
Fusion occurs in a normalized plane where P(OT(t))
is defined by the nearest neighbor rule. Westall et al.
[32] detect the head of missing people at sea using
information in RGB, YCbCr,  YIQ and HSV color
spaces  considering  by  hypothesis  that  these  color
spaces are independent.

6.6  Active Contour
The active contour tracking method represents the
vehicle contour by one or more curves. The curves
move  dynamically  at  every  frame  toward  the
position of the vehicle edges, which by hypothesis is
the place where the discontinuity of the pixel values
are higher. Trackers generally use the final contour
position at the previous frame as the initial position
at  the  current  frame.  The  main  advantage  of  the
active contour is  that  it  is  relatively insensitive to
lighting  variations.  Figure  5  shows  the  active
contour evolution.

Fig 5. active contour evolution. I is the iteration step
number.

Goldenberg et  al.  [52]  describes  the  mathematical
theory related to the parametric and non-parametric
active  contour  methods.  There  are  two  ways  to
represent  the  object  contour:  the  explicit
representation, as is the case of snakes, or implicit
representation, such as the level set function [4, 7].
Snakes have not  been applied for  tracking marine
vehicles yet. For this reason, only the tracking based
on level set functions will be presented in this paper.

A distance  function  that  implicitly  determines  the
curve C position is defined by equation (29) [4, 7].

C={(x,y)|φ (x,y)=0} (29)

C is the set of image points whose level set function
value is null.  Many authors define the function as
the Euclidean distance between the point (x,y) and C
(equation (30)).

φ (x,y)={
-d(x,y),         if (x,y) is inside C
 0 ,                if (x,y) is over C
  d(x,y) ,        if (x,y) is outside C} (30)

Where d(x,y) is the Euclidean distance between the
pixel at (x,y) and the curve C. 

The curve evolution is defined by the equation (31)
[4].  The update of the level set function values at
each point generates the implicit curve movement.

d φ

dt
= V∣∇ φ∣ (31)

Where V is  a  speed function that  depends on the
pixel  values  and  is  independent  of  the
parametrization [52]. V can be defined as a gradient
function  [4].  The  update  of  the  level  set  function
depends on the V value.

The level set function that describes the OT contour
at  each  frame  moves  by  minimizing  an  energy

I=0

I=2
I=1
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function. The energy function proposed by Frost and
Tapamo  [4] is  minimized  by  a  gradient  descent
method. It is composed by a sum of three functions:
the  color  histogram,  the  FFT  transform  and
statistical  measures  like  entropy,  contrast,
homogeneity  and energy.  These  functions  indicate
the difference between the pixel  values of the OT
model and the pixel values inside the active contour.
Szpak and  Tapamo [7] applies  the  active  contour
method directly on a probability map that estimates
the  probability  of  each  pixel  to  be  a  background
pixel. The Chan-Vese energy function was chosen.
This function measures the sum of the probability
variances of the pixels inside and outside the curve. 

6.7  Occlusion Handling
Partial  and  total  occlusions  may  occur.  The
occlusion  can  cause  a  tracking  failure.  Figure  6
shows an occlusion case. Teutsch and Kruger [18]
proposed a tracker that combines 3 different trackers
to  increase  the  robustness  to  partial  occlusions.
When  the  response  of  one  or  two  trackers  is
unreliable,  P(OT(t))  obtained  by  them  receives  a
lower weight. T1 and T2 trackers are based on pixel
regions and T3 is based on feature points extracted
by the algorithm proposed by Shi and Tomasi [53].
T1  tracker  performs  segmentation  by  adaptive
thresholding at each frame I(t) and defines P(OT(t))
by the nearest neighbor rule applied to the centroids
of connected pixel regions present at I(t) and I(t-1).
T2 performs the association between blobs extracted
at  I(t)  and  I(t-1).  T3  performs  the  association
between feature points extracted from the ROI and
the OT feature points and defines P(OT(t))  as the
average  position  of  each  associated  feature  point.
Teutsch and Kruger [18] associate  an independent
KF for each OT and only update their models when
the  OT is  not  occluded.  A total  occlusion  occurs
when none of the trackers determines P(OT(t)) with
high  confidence.  In  this  case,  the  KF  continues
estimating P(OT(t)). If the OT is not detected at N
consecutive  frames  with  high  confidence,  the
reference to the OT is erased.

Bacho  et  al.  [20] model the OT by a grid of size
31x31 pixels which has associated the parameters of
affine  transformations.  The  tracker  is  based  on  a
particle  filter  and  defines  P(OT(t))  as  a  weighted
average of the positions estimated by each particle.
When an occlusion occurs, the variance associated
with  the  state  transition  matrix  of  each  particle
increases to scatter the particles over the space and

to detect the vehicle after the occlusion with greater
efficiency.  P(OT(t))  is  determined  by  the  particle
that is more similar to the OT template. 

Fig 6. occlusion example [18].

7  Conclusion
This paper presented the state of the art methods of
video detection and tracking of marine vehicles. The
maritime  environment  is  very  challenging  and
dynamic.  The  algorithms  of  object  detection  and
tracking,  when applied to a maritime environment
without proper adjustments, do not produce efficient
results. Many errors of detection and tracking may
occur  due  to  noise,  clutter,  waves,  dynamic  and
unpredictable  ocean  appearance,  sunlight
reflections,  bad  environmental  conditions,  low
luminosity and image contrast, presence of objects
that  float  over  the  ocean,  white  foam,  the  great
variability of certain maritime vehicles features such
as  size,  maneuverability,  appearance,  geometric
shape  and  the  presence  of  birds,  clouds,  fog  and
aircraft that arises immediately above the horizon. 

Video  maritime  surveillance  systems  are  very
important. They can be used to increase the coastal
and ship security  against  hostile  vessel  attacks,  to
avoid  collisions,  to  control  the  maritime traffic  at
ports and channels and for oil platforms defense.

There are not many researches about video detection
and  tracking  of  marine  vehicles.  The  algorithms
seem not  to  perform well  in  some real  situations
when little vessels that have low contrast with the
background arise in the camera field of view. The
video maritime surveillance is still  a not complete
solved problem and need to be more explored.
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