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Abstract: - This paper proposes a novel hybrid autoscaling system for Kubernetes-based microservices, 
integrating Horizontal and Vertical Pod Autoscalers with custom metric monitoring and heuristic scheduling 
strategies (PROP, CONT, UTIL). The proposed approach enhances resource efficiency, fault tolerance, and 
system responsiveness under variable load conditions. Implementation is validated through real-world 
deployment using Prometheus, Grafana, and Vegeta, and addresses gaps in existing approaches that rely solely 
on CPU/memory metrics. Results show improved scalability, resource allocation, and performance. The work 
contributes a flexible, adaptive model with practical implications for cloud-native application management. 
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1 Introduction 
In recent years, microservice architecture has 
emerged as the de facto standard for building 
distributed applications. Its modularity, flexibility, 
and scalability have made it a cornerstone of 
modern software development in both academic and 
industrial settings. At the heart of this paradigm is 
Kubernetes, an open-source platform that automates 
the deployment, scaling, and management of 
containerized applications. Kubernetes' native 
support for autoscaling mechanisms-namely, the 
Horizontal Pod Autoscaler (HPA) and the Vertical 
Pod Autoscaler (VPA)-has played a crucial role in 
enhancing the elasticity and efficiency of 
microservices under variable workloads. However, 
existing autoscaling techniques often rely on 
simplistic metrics such as CPU and memory usage, 
which do not adequately capture the multifaceted 
nature of application load in real-world scenarios. 
As applications become increasingly complex and 
latency-sensitive, relying solely on these metrics can 
lead to over-provisioning, under-utilization, or even 
service outages. Moreover, traditional scaling 
strategies typically operate independently, lacking 
coordination between horizontal and vertical scaling 
actions. This siloed approach can result in resource 
contention, unstable scaling behavior, and increased 
operational overhead. To address these limitations, 
this study introduces a hybrid autoscaling system 
that leverages custom metrics and intelligent 
decision-making strategies to dynamically manage 
microservice workloads. By integrating HPA and 
VPA with a monitoring framework based on 
Prometheus and Grafana, the proposed system 

provides a responsive and adaptive mechanism for 
resource allocation. Three heuristic strategies-PROP 
(proportional), CONT (conflict-aware), and UTIL 
(utilization-triggered)-are developed to fine-tune the 
autoscaling process according to varying service-
level objectives (SLOs) and operational constraints. 
This paper is structured as follows: Section 2 
reviews related work and outlines the key 
shortcomings in current solutions. Section 3 
describes the system design and methodological 
approach, including the monitoring setup and 
simulation tools. Section 4 outlines the technical 
implementation. Section 5 presents experimental 
results and performance evaluation. Section 6 
discusses the implications of our findings. Section 7 
summarizes contributions and suggests directions 
for future research. Finally, Section 8 concludes the 
study. 
 
 

2 Problem Formulation 
The problem of efficient autoscaling in Kubernetes-
based microservices has received increasing 
attention in both academic research and industrial 
practice. Several studies have proposed mechanisms 
for improving resource allocation and maintaining 
service availability under fluctuating loads. Balla et 
al. [1] presented a hybrid autoscaling approach 
combining both horizontal and vertical scaling to 
reduce latency and improve cost efficiency. 
However, their solution relied heavily on predefined 
thresholds and lacked flexibility in adapting to non-
linear load patterns. Similarly, L. Toka et al. [2] 
explored machine learning-based autoscaling 
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policies in edge environments, emphasizing the 
importance of fine-grained control through custom 
metrics. While innovative, their approach was 
primarily limited to edge computing scenarios. Z. 
Ding and Q. Huang [3] proposed COPA, a 
combined autoscaling framework that emphasizes 
efficient resource usage across pods. Their work 
primarily focused on static performance goals and 
did not incorporate dynamic service-level 
agreements (SLAs) or real-time workload 
adaptation. Nguyen et al. [4] applied custom metrics 
such as request rates and latency percentiles for 
HPA, enhancing responsiveness but without vertical 
scaling integration. Traditional systems like 
Kubernetes' default HPA and VPA operate 
independently. This lack of coordination has been 
noted in numerous studies, including Chen et al. [5], 
who discussed composite service scheduling 
without joint scaling logic. Similarly, the work of 
Abdel Khaleq and Ra [6] introduced reinforcement 
learning models to optimize resource provisioning, 
but implementation complexity and training data 
requirements often limit real-time feasibility. 
Furthermore, many academic works focus on 
simulations rather than real-world deployments. 
This gap is addressed in our implementation using 
Prometheus, Grafana, and the Vegeta load testing 
tool within a fully operational Kubernetes cluster. In 
summary, prior work has advanced the field of 
autoscaling by introducing custom metrics, hybrid 
strategies, and machine learning. Nevertheless, a 
practical and holistic implementation that combines 
dynamic horizontal and vertical scaling using real-
time SLA metrics remains an underexplored area. 
Our contribution lies in filling this gap through the 
integration of heuristic strategies (PROP, CONT, 
UTIL) into a unified hybrid autoscaling framework, 
validated by empirical testing. Recent articles 
published in WSEAS journals from 2022–2025, 
such as [7], [8], and [9], have underscored the need 
for intelligent and customizable autoscaling models. 
These works emphasize the importance of 
integrating monitoring platforms and incorporating 
feedback loops for real-time adaptation-principles 
that our study adopts and extends. 
 
 

3 System Design and Methodology 
This section outlines the architecture and 
methodology of the proposed hybrid autoscaling 
system, which integrates horizontal and vertical 
autoscaling strategies using custom metrics and 
intelligent decision logic. The system leverages 
native Kubernetes components and open-source 
tools such as Prometheus, Grafana, and custom 

scheduling logic to dynamically adjust resources in 
real time. 
 
3.1 Architecture Overview 
The architecture of the proposed system is 
composed of four core components: the monitored 
microservices, the metrics collection and 
aggregation layer (Prometheus), the autoscaling 
controller with embedded strategies (PROP, CONT, 
UTIL), and the visualization and alerting layer 
(Grafana).  
 
Each microservice runs inside its own Kubernetes 
Pod and exposes Prometheus-compatible metrics via 
HTTP endpoints. The metrics are scraped by 
Prometheus at 15-second intervals and passed to the 
Prometheus Adapter, which exposes these as 
Kubernetes custom metrics. These decisions are 
based on Service-Level Objectives (SLOs) defined 
per service, such as 95th percentile latency and 
average queue depth. The controller can trigger 
HPA to adjust the number of pods or VPA (in 
recommendation mode) to suggest vertical 
adjustments. Grafana dashboards present real-time 
visualization for manual inspection, capacity 
planning, and alert management. 
 
3.2 Scaling Strategies 
PROP (Proportional Scaling): Adjusts the number of 
replicas based on deviations from response time 
SLAs. If average response time exceeds thresholds, 
the number of replicas increases proportionally [13] 
CONT (Conflict-aware Scaling): Detects contention 
on nodes by monitoring CPU throttling, memory 
saturation, and node-level metrics. If conflicts are 
detected, new pods are scheduled on less utilized 
nodes. 
UTIL (Utilization-driven Scaling): Monitors actual 
resource consumption (e.g., network I/O, Redis 
queue length) and spawn’s additional pods when 
resource saturation exceeds safe thresholds. 
 

3.3 Metrics and Monitoring 
Prometheus scrapes metrics from microservices, the 
Kubernetes node exporter, and Redis exporters. 
Prometheus Adapter converts these metrics into 
Kubernetes Custom Metrics API format, allowing 
HPA to use them. Each metric is defined by 
PromQL expressions, tuned to SLA targets such as 
average latency, queue depth, and active users. 
Grafana dashboards visualize key indicators 
including replica counts, resource usage, and SLA 
violations. 
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3.4 Load Simulation 
The test environment comprises a 4-node 
Kubernetes cluster (each with 4 vCPUs and 8 GB 
RAM) deployed in a virtualized private cloud [20] 
Vegeta is used to simulate load scenarios with 
varying request rates (from 100 to 1000 RPS) over 
test durations of 10, 20, and 30 minutes. Metrics 
such as response time, 95th percentile latency, 
number of active pods, and resource consumption 
are collected and analyzed. Configuration files for 
testing (YAML and scripts) are included in the 
appendix to support reproducibility. 
 

 

4 Implementation Setup 
The implementation of the proposed autoscaling 
system was carried out using a production-grade 
Kubernetes environment. The cluster was 
provisioned with Kubespray, supporting high 
availability and network policy enforcement. The 
deployment stack includes Prometheus for metric 
collection, Grafana for visualization, Redis for 
queue simulation, and Vegeta for load generation. 
Key implementation components are as follows: 
Kubernetes Cluster: A 4-node setup, each with 4 
vCPUs and 8 GB RAM, configured with the Calico 
network plugin. [17] The cluster was deployed in a 
private OpenStack environment to simulate realistic 
cloud conditions. 
• Microservices: The application consists of 
stateless services exposed via NodePort, including 
an API gateway and worker nodes. Docker images 
were built and stored in a private registry. 
• Monitoring Stack: Prometheus Operator was 
deployed using Helm with kube-prometheus-stack. 
The Prometheus Adapter was configured to expose 
custom metrics to the HPA controller. 
• Vertical Scaling Configuration.The Vertical Pod 
Autoscaler (VPA) was deployed in recommender-
only mode to provide suggestions without disrupting 
running pods. Resource recommendations were used 
to support intelligent decisions by the custom 
controller. 
• Autoscaling Policies: YAML manifests defined 
the behavior of each scaling strategy. For PROP, 
rules were based on SLA targets; for CONT, 
thresholds were applied to node saturation levels; 
for UTIL, rules were based on average 
CPU/memory across the cluster. 
• Grafana Dashboards: A customized dashboard 
was created with panels for system-wide 
CPU/memory usage, pod replica count over time, 
latency distributions, and Redis queue depth. Alerts 

were configured using Grafana’s notification system 
for SLA violations. 
• Load Testing: Vegeta was used to generate HTTP 
GET requests at rates between 100–1000 RPS for up 
to 30 minutes. [11] Scripts automatically logged 
system behavior and metrics snapshots. Load 
patterns included both gradual ramp-ups and sudden 
spikes to test responsiveness. 
The entire configuration, including Helm values 
files, deployment manifests, PromQL expressions 
[12] and load generation scripts, is available in the 
appendix for reproducibility and validation. 
 
 
5 Experimental Results 
To evaluate the effectiveness of the proposed hybrid 
autoscaling system, a series of experiments were 
conducted using the load generation tool Vegeta. 
These experiments were designed to simulate 
realistic workload patterns on microservices 
deployed in a Kubernetes cluster. 
 
The evaluation compared three configurations: 
• Static Configuration (no autoscaling) 
• Kubernetes HPA only (based on CPU utilization) 
• Proposed Hybrid Autoscaling System (PROP, 
CONT, UTIL strategies with custom metrics) 

Configuration Avg 
Respo

nse 
Time 

95th 
Percen

tile 
Latenc

y 

Avg 
CPU 

Utilizat
ion 

Repl
ica 

Spin
-up 

Time 

Static 320 
ms 

470 
ms 

70% - 

HPA (CPU-
based) 

210 
ms 

300 
ms 

62% 18 s 

Hybrid 
(PROP+CONT

+UTIL) 

135 
ms 

180 
ms 

55% 12 s 

Table 1 summarizes the aggregated results across all 
test runs 
 
The number of pod replicas increased dynamically 
while memory and CPU resources were rebalanced 
efficiently. The system avoided SLA violations even 
under aggressive load conditions.[10] The results 
clearly demonstrate that the hybrid autoscaling 
system significantly improves responsiveness and 
resource efficiency compared to standard 
autoscaling methods. It also showed faster recovery 
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time from overload scenarios and better SLA 
compliance due to its awareness of queue depth and 
node-level resource saturation. 
 
 

6 Discussion 
The experimental findings presented in this section 
provide empirical support for the efficacy of the 
proposed hybrid autoscaling system. By combining 
intelligent scaling strategies and real-time custom 
metric monitoring, the system addresses several 
deficiencies in traditional autoscaling 
approaches.[14] First, the use of application-level 
metrics-such as request rate, queue depth, and SLA-
based latency thresholds-enables more accurate 
scaling decisions. Unlike CPU-bound autoscalers, 
our model dynamically adjusts resource allocations 
based on operational behavior, resulting in 
improved latency control and higher system 
throughput. Second, the intelligent heuristics 
(PROP, CONT, UTIL) allow the autoscaler to 
respond not only to load increases but also to 
internal infrastructure constraints such as node 
saturation and inter-pod contention. The CONT 
method, in particular, showed high effectiveness in 
preventing cascading failures by proactively 
redistributing pods away from overloaded nodes. 
Third, the modular nature of the autoscaler-designed 
to work alongside native Kubernetes components 
ensures compatibility with existing CI/CD pipelines 
and DevOps workflows. No invasive changes to 
core Kubernetes components were required, 
facilitating adoption in enterprise environments. 
However, the system also has limitations. 
Prometheus query performance can become a 
bottleneck under very high cardinality, and 
extensive metric collection may increase overhead. 
The VPA recommender, while informative, does not 
enforce recommendations automatically in our 
prototype.[15] Future work may explore how 
reinforcement learning agents could be integrated to 
further optimize the scaling logic. Finally, while the 
hybrid system excelled under controlled test 
conditions, further validation in production-grade, 
multi-tenant environments is essential. This would 
ensure robustness in the face of unexpected 
workloads, security constraints, and resource 
sharing complexities. 
 
 

7 Contribution and Future Work 
This study contributes a practical and modular 
approach to microservice autoscaling in Kubernetes 
by addressing current limitations in single-metric 

and uni-directional scaling policies [16] The key 
contributions of the work. Hybrid Autoscaling 
Framework: Integration of HPA and VPA through a 
unified controller that uses custom application-level 
metrics.Heuristic Scaling Strategies:Implementation 
of PROP, CONT, and UTIL strategies tailored for 
different operational conditions and system 
bottlenecks. SLA-Centric Decision Making: Use of 
SLA thresholds (e.g., response latency, queue 
length) as the basis for scaling, enhancing user 
experience and reliability. Real-world deployment 
using Prometheus, Grafana, Vegeta, and Redis 
within a Kubernetes cluster, supporting 
reproducibility and extensibility 
Directions for future research include: 
• Machine Learning Integration: Incorporate 
reinforcement learning or deep Q-networks to 
optimize scaling thresholds and policy switching. 
• Multi-Cluster Scaling: Extend the architecture to 
support federation and auto-scaling across multi-
region Kubernetes clusters. 
• Security and Policy Constraints: Integrate 
autoscaling with Kubernetes policies and RBAC to 
respect tenant isolation and compliance [18] 
• Cost-aware Autoscaling: Embed cost metrics from 
cloud providers (e.g., AWS billing data) to inform 
cost-efficient scaling decisions. 
The proposed framework lays the groundwork for 
intelligent autoscaling systems that are both 
responsive to real-time performance changes and 
adaptable to diverse microservice workloads. 
 
 
8 Conclusion 
This paper presented a hybrid autoscaling 
framework for Kubernetes-based microservice 
environments that integrates both Horizontal and 
Vertical Pod Autoscalers with intelligent heuristic-
based decision strategies (PROP, CONT, UTIL) and 
custom application-level metrics. Through empirical 
evaluation under varying load conditions, we 
demonstrated that the proposed approach 
outperforms standard autoscaling methods in 
responsiveness, SLA adherence, and resource 
utilization.The hybrid system not only adapts 
dynamically to load fluctuations but also accounts 
for internal node constraints and performance 
bottlenecks, making it suitable for production-grade 
deployment in cloud-native applications. The 
modular architecture ensures easy integration with 
existing monitoring stacks and DevOps workflows 
[19]. Future extensions of this work may focus on 
machine learning integration for dynamic threshold 
tuning, multi-cluster support, and cost optimization 
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in cloud billing scenarios. The results underscore the 
importance of combining metrics diversity, policy 
intelligence, and system observability for resilient 
and efficient autoscaling in modern container 
orchestration platforms. 
Roman Dolmatov conducted basic research and 
wrote code. 
Sergei Saradgishvili Supervised the entire research 
process. 
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