
Optimizing Microservices Scalability and Resiliency with Kubernetes

ROMAN A. DOLMATOV, SERGEI E. SARADGISHVILI

Institute of Computer Science and Cyber
Peter the Great St. Petersburg Polytechnic University

29 Polytechnicheskaya St., 195251, St. Petersburg
RUSSIA

Abstract: - This paper proposes a novel hybrid autoscaling system for Kubernetes-based microservices,
integrating Horizontal and Vertical Pod Autoscalers with custom metric monitoring and heuristic scheduling
strategies (PROP, CONT, UTIL). The proposed approach enhances resource efficiency, fault tolerance, and
system responsiveness under variable load conditions. Implementation is validated through real-world
deployment using Prometheus, Grafana, and Vegeta, and addresses gaps in existing approaches that rely solely
on CPU/memory metrics. Results show improved scalability, resource allocation, and performance. The work
contributes a flexible, adaptive model with practical implications for cloud-native application management.

Key-Words: Kubernetes, Autoscaling, Microservices, Prometheus, Grafana, Hybrid Architecture, Custom
Metrics, Cloud-native, Fault Tolerance, Intelligent Scheduling

Received: April 11, 2024. Revised: March 5, 2025. Accepted: April 13, 2025. Published: May 21, 2025.

1 Introduction
In recent years, microservice architecture has
emerged as the de facto standard for building
distributed applications. Its modularity, flexibility,
and scalability have made it a cornerstone of
modern software development in both academic and
industrial settings. At the heart of this paradigm is
Kubernetes, an open-source platform that automates
the deployment, scaling, and management of
containerized applications. Kubernetes' native
support for autoscaling mechanisms-namely, the
Horizontal Pod Autoscaler (HPA) and the Vertical
Pod Autoscaler (VPA)-has played a crucial role in
enhancing the elasticity and efficiency of
microservices under variable workloads. However,
existing autoscaling techniques often rely on
simplistic metrics such as CPU and memory usage,
which do not adequately capture the multifaceted
nature of application load in real-world scenarios.
As applications become increasingly complex and
latency-sensitive, relying solely on these metrics can
lead to over-provisioning, under-utilization, or even
service outages. Moreover, traditional scaling
strategies typically operate independently, lacking
coordination between horizontal and vertical scaling
actions. This siloed approach can result in resource
contention, unstable scaling behavior, and increased
operational overhead. To address these limitations,
this study introduces a hybrid autoscaling system
that leverages custom metrics and intelligent
decision-making strategies to dynamically manage
microservice workloads. By integrating HPA and
VPA with a monitoring framework based on
Prometheus and Grafana, the proposed system

provides a responsive and adaptive mechanism for
resource allocation. Three heuristic strategies-PROP
(proportional), CONT (conflict-aware), and UTIL
(utilization-triggered)-are developed to fine-tune the
autoscaling process according to varying service-
level objectives (SLOs) and operational constraints.
This paper is structured as follows: Section 2
reviews related work and outlines the key
shortcomings in current solutions. Section 3
describes the system design and methodological
approach, including the monitoring setup and
simulation tools. Section 4 outlines the technical
implementation. Section 5 presents experimental
results and performance evaluation. Section 6
discusses the implications of our findings. Section 7
summarizes contributions and suggests directions
for future research. Finally, Section 8 concludes the
study.

2 Problem Formulation
The problem of efficient autoscaling in Kubernetes-
based microservices has received increasing
attention in both academic research and industrial
practice. Several studies have proposed mechanisms
for improving resource allocation and maintaining
service availability under fluctuating loads. Balla et
al. [1] presented a hybrid autoscaling approach
combining both horizontal and vertical scaling to
reduce latency and improve cost efficiency.
However, their solution relied heavily on predefined
thresholds and lacked flexibility in adapting to non-
linear load patterns. Similarly, L. Toka et al. [2]
explored machine learning-based autoscaling

Roman A. Dolmatov, Sergei E. Saradgishvili
International Journal of Communications

http://www.iaras.org/iaras/journals/ijoc

ISSN: 2367-8887 16 Volume 10, 2025

policies in edge environments, emphasizing the
importance of fine-grained control through custom
metrics. While innovative, their approach was
primarily limited to edge computing scenarios. Z.
Ding and Q. Huang [3] proposed COPA, a
combined autoscaling framework that emphasizes
efficient resource usage across pods. Their work
primarily focused on static performance goals and
did not incorporate dynamic service-level
agreements (SLAs) or real-time workload
adaptation. Nguyen et al. [4] applied custom metrics
such as request rates and latency percentiles for
HPA, enhancing responsiveness but without vertical
scaling integration. Traditional systems like
Kubernetes' default HPA and VPA operate
independently. This lack of coordination has been
noted in numerous studies, including Chen et al. [5],
who discussed composite service scheduling
without joint scaling logic. Similarly, the work of
Abdel Khaleq and Ra [6] introduced reinforcement
learning models to optimize resource provisioning,
but implementation complexity and training data
requirements often limit real-time feasibility.
Furthermore, many academic works focus on
simulations rather than real-world deployments.
This gap is addressed in our implementation using
Prometheus, Grafana, and the Vegeta load testing
tool within a fully operational Kubernetes cluster. In
summary, prior work has advanced the field of
autoscaling by introducing custom metrics, hybrid
strategies, and machine learning. Nevertheless, a
practical and holistic implementation that combines
dynamic horizontal and vertical scaling using real-
time SLA metrics remains an underexplored area.
Our contribution lies in filling this gap through the
integration of heuristic strategies (PROP, CONT,
UTIL) into a unified hybrid autoscaling framework,
validated by empirical testing. Recent articles
published in WSEAS journals from 2022–2025,
such as [7], [8], and [9], have underscored the need
for intelligent and customizable autoscaling models.
These works emphasize the importance of
integrating monitoring platforms and incorporating
feedback loops for real-time adaptation-principles
that our study adopts and extends.

3 System Design and Methodology
This section outlines the architecture and
methodology of the proposed hybrid autoscaling
system, which integrates horizontal and vertical
autoscaling strategies using custom metrics and
intelligent decision logic. The system leverages
native Kubernetes components and open-source
tools such as Prometheus, Grafana, and custom

scheduling logic to dynamically adjust resources in
real time.

3.1 Architecture Overview
The architecture of the proposed system is
composed of four core components: the monitored
microservices, the metrics collection and
aggregation layer (Prometheus), the autoscaling
controller with embedded strategies (PROP, CONT,
UTIL), and the visualization and alerting layer
(Grafana).

Each microservice runs inside its own Kubernetes
Pod and exposes Prometheus-compatible metrics via
HTTP endpoints. The metrics are scraped by
Prometheus at 15-second intervals and passed to the
Prometheus Adapter, which exposes these as
Kubernetes custom metrics. These decisions are
based on Service-Level Objectives (SLOs) defined
per service, such as 95th percentile latency and
average queue depth. The controller can trigger
HPA to adjust the number of pods or VPA (in
recommendation mode) to suggest vertical
adjustments. Grafana dashboards present real-time
visualization for manual inspection, capacity
planning, and alert management.

3.2 Scaling Strategies
PROP (Proportional Scaling): Adjusts the number of
replicas based on deviations from response time
SLAs. If average response time exceeds thresholds,
the number of replicas increases proportionally [13]
CONT (Conflict-aware Scaling): Detects contention
on nodes by monitoring CPU throttling, memory
saturation, and node-level metrics. If conflicts are
detected, new pods are scheduled on less utilized
nodes.
UTIL (Utilization-driven Scaling): Monitors actual
resource consumption (e.g., network I/O, Redis
queue length) and spawn’s additional pods when
resource saturation exceeds safe thresholds.

3.3 Metrics and Monitoring
Prometheus scrapes metrics from microservices, the
Kubernetes node exporter, and Redis exporters.
Prometheus Adapter converts these metrics into
Kubernetes Custom Metrics API format, allowing
HPA to use them. Each metric is defined by
PromQL expressions, tuned to SLA targets such as
average latency, queue depth, and active users.
Grafana dashboards visualize key indicators
including replica counts, resource usage, and SLA
violations.

Roman A. Dolmatov, Sergei E. Saradgishvili
International Journal of Communications

http://www.iaras.org/iaras/journals/ijoc

ISSN: 2367-8887 17 Volume 10, 2025

3.4 Load Simulation
The test environment comprises a 4-node
Kubernetes cluster (each with 4 vCPUs and 8 GB
RAM) deployed in a virtualized private cloud [20]
Vegeta is used to simulate load scenarios with
varying request rates (from 100 to 1000 RPS) over
test durations of 10, 20, and 30 minutes. Metrics
such as response time, 95th percentile latency,
number of active pods, and resource consumption
are collected and analyzed. Configuration files for
testing (YAML and scripts) are included in the
appendix to support reproducibility.

4 Implementation Setup
The implementation of the proposed autoscaling
system was carried out using a production-grade
Kubernetes environment. The cluster was
provisioned with Kubespray, supporting high
availability and network policy enforcement. The
deployment stack includes Prometheus for metric
collection, Grafana for visualization, Redis for
queue simulation, and Vegeta for load generation.
Key implementation components are as follows:
Kubernetes Cluster: A 4-node setup, each with 4
vCPUs and 8 GB RAM, configured with the Calico
network plugin. [17] The cluster was deployed in a
private OpenStack environment to simulate realistic
cloud conditions.
• Microservices: The application consists of
stateless services exposed via NodePort, including
an API gateway and worker nodes. Docker images
were built and stored in a private registry.
• Monitoring Stack: Prometheus Operator was
deployed using Helm with kube-prometheus-stack.
The Prometheus Adapter was configured to expose
custom metrics to the HPA controller.
• Vertical Scaling Configuration.The Vertical Pod
Autoscaler (VPA) was deployed in recommender-
only mode to provide suggestions without disrupting
running pods. Resource recommendations were used
to support intelligent decisions by the custom
controller.
• Autoscaling Policies: YAML manifests defined
the behavior of each scaling strategy. For PROP,
rules were based on SLA targets; for CONT,
thresholds were applied to node saturation levels;
for UTIL, rules were based on average
CPU/memory across the cluster.
• Grafana Dashboards: A customized dashboard
was created with panels for system-wide
CPU/memory usage, pod replica count over time,
latency distributions, and Redis queue depth. Alerts

were configured using Grafana’s notification system
for SLA violations.
• Load Testing: Vegeta was used to generate HTTP
GET requests at rates between 100–1000 RPS for up
to 30 minutes. [11] Scripts automatically logged
system behavior and metrics snapshots. Load
patterns included both gradual ramp-ups and sudden
spikes to test responsiveness.
The entire configuration, including Helm values
files, deployment manifests, PromQL expressions
[12] and load generation scripts, is available in the
appendix for reproducibility and validation.

5 Experimental Results
To evaluate the effectiveness of the proposed hybrid
autoscaling system, a series of experiments were
conducted using the load generation tool Vegeta.
These experiments were designed to simulate
realistic workload patterns on microservices
deployed in a Kubernetes cluster.

The evaluation compared three configurations:
• Static Configuration (no autoscaling)
• Kubernetes HPA only (based on CPU utilization)
• Proposed Hybrid Autoscaling System (PROP,
CONT, UTIL strategies with custom metrics)

Configuration Avg
Respo

nse
Time

95th
Percen

tile
Latenc

y

Avg
CPU

Utilizat
ion

Repl
ica

Spin
-up

Time

Static 320
ms

470
ms

70% -

HPA (CPU-
based)

210
ms

300
ms

62% 18 s

Hybrid
(PROP+CONT

+UTIL)

135
ms

180
ms

55% 12 s

Table 1 summarizes the aggregated results across all
test runs

The number of pod replicas increased dynamically
while memory and CPU resources were rebalanced
efficiently. The system avoided SLA violations even
under aggressive load conditions.[10] The results
clearly demonstrate that the hybrid autoscaling
system significantly improves responsiveness and
resource efficiency compared to standard
autoscaling methods. It also showed faster recovery

Roman A. Dolmatov, Sergei E. Saradgishvili
International Journal of Communications

http://www.iaras.org/iaras/journals/ijoc

ISSN: 2367-8887 18 Volume 10, 2025

time from overload scenarios and better SLA
compliance due to its awareness of queue depth and
node-level resource saturation.

6 Discussion
The experimental findings presented in this section
provide empirical support for the efficacy of the
proposed hybrid autoscaling system. By combining
intelligent scaling strategies and real-time custom
metric monitoring, the system addresses several
deficiencies in traditional autoscaling
approaches.[14] First, the use of application-level
metrics-such as request rate, queue depth, and SLA-
based latency thresholds-enables more accurate
scaling decisions. Unlike CPU-bound autoscalers,
our model dynamically adjusts resource allocations
based on operational behavior, resulting in
improved latency control and higher system
throughput. Second, the intelligent heuristics
(PROP, CONT, UTIL) allow the autoscaler to
respond not only to load increases but also to
internal infrastructure constraints such as node
saturation and inter-pod contention. The CONT
method, in particular, showed high effectiveness in
preventing cascading failures by proactively
redistributing pods away from overloaded nodes.
Third, the modular nature of the autoscaler-designed
to work alongside native Kubernetes components
ensures compatibility with existing CI/CD pipelines
and DevOps workflows. No invasive changes to
core Kubernetes components were required,
facilitating adoption in enterprise environments.
However, the system also has limitations.
Prometheus query performance can become a
bottleneck under very high cardinality, and
extensive metric collection may increase overhead.
The VPA recommender, while informative, does not
enforce recommendations automatically in our
prototype.[15] Future work may explore how
reinforcement learning agents could be integrated to
further optimize the scaling logic. Finally, while the
hybrid system excelled under controlled test
conditions, further validation in production-grade,
multi-tenant environments is essential. This would
ensure robustness in the face of unexpected
workloads, security constraints, and resource
sharing complexities.

7 Contribution and Future Work
This study contributes a practical and modular
approach to microservice autoscaling in Kubernetes
by addressing current limitations in single-metric

and uni-directional scaling policies [16] The key
contributions of the work. Hybrid Autoscaling
Framework: Integration of HPA and VPA through a
unified controller that uses custom application-level
metrics.Heuristic Scaling Strategies:Implementation
of PROP, CONT, and UTIL strategies tailored for
different operational conditions and system
bottlenecks. SLA-Centric Decision Making: Use of
SLA thresholds (e.g., response latency, queue
length) as the basis for scaling, enhancing user
experience and reliability. Real-world deployment
using Prometheus, Grafana, Vegeta, and Redis
within a Kubernetes cluster, supporting
reproducibility and extensibility
Directions for future research include:
• Machine Learning Integration: Incorporate
reinforcement learning or deep Q-networks to
optimize scaling thresholds and policy switching.
• Multi-Cluster Scaling: Extend the architecture to
support federation and auto-scaling across multi-
region Kubernetes clusters.
• Security and Policy Constraints: Integrate
autoscaling with Kubernetes policies and RBAC to
respect tenant isolation and compliance [18]
• Cost-aware Autoscaling: Embed cost metrics from
cloud providers (e.g., AWS billing data) to inform
cost-efficient scaling decisions.
The proposed framework lays the groundwork for
intelligent autoscaling systems that are both
responsive to real-time performance changes and
adaptable to diverse microservice workloads.

8 Conclusion
This paper presented a hybrid autoscaling
framework for Kubernetes-based microservice
environments that integrates both Horizontal and
Vertical Pod Autoscalers with intelligent heuristic-
based decision strategies (PROP, CONT, UTIL) and
custom application-level metrics. Through empirical
evaluation under varying load conditions, we
demonstrated that the proposed approach
outperforms standard autoscaling methods in
responsiveness, SLA adherence, and resource
utilization.The hybrid system not only adapts
dynamically to load fluctuations but also accounts
for internal node constraints and performance
bottlenecks, making it suitable for production-grade
deployment in cloud-native applications. The
modular architecture ensures easy integration with
existing monitoring stacks and DevOps workflows
[19]. Future extensions of this work may focus on
machine learning integration for dynamic threshold
tuning, multi-cluster support, and cost optimization

Roman A. Dolmatov, Sergei E. Saradgishvili
International Journal of Communications

http://www.iaras.org/iaras/journals/ijoc

ISSN: 2367-8887 19 Volume 10, 2025

in cloud billing scenarios. The results underscore the
importance of combining metrics diversity, policy
intelligence, and system observability for resilient
and efficient autoscaling in modern container
orchestration platforms.
Roman Dolmatov conducted basic research and
wrote code.
Sergei Saradgishvili Supervised the entire research
process.

References:

[1] Balla, D., Simon, C., Maliosz, M., “Adaptive
scaling of Kubernetes pods,” IEEE/IFIP
Network Operations and Management
Symposium, pp. 1–5, 2020.

[2] L. Toka, G. Dobreff, B. Fodor, and B. Sonkoly,
“Machine learning-based scaling management
for Kubernetes edge clusters,” IEEE Trans.
Network and Service Management, vol. 18, no.
1, pp. 958–972

[3] Z. Ding and Q. Huang, “COPA: A combined
autoscaling method for Kubernetes,” IEEE Int.
Conf. on Web Services (ICWS), pp. 416–425,
2021.

[4] Nguyen, Q. T., et al., “Horizontal autoscaling
in Kubernetes using custom metrics,” Int. J. of
Cloud Computing, vol. 12, no. 4, pp. 325–337,
2022.

[5] Chen, Q., Mao, J., Shen, H., Fu, Y., Yang, G.,
“Autonomic Scheduling of Composite Web
Services in Clouds,” IEEE Trans. Parallel and
Distributed Systems, vol. 30, no. 3, pp. 674–
688, 2019.

[6] A. Abdel Khaleq and I. Ra, “Intelligent
microservices autoscaling module using
reinforcement learning,” Cluster Computing,
pp. 1–12, 2023.

[7] V. K. Sharma, D. G. Thakur, “Dynamic
Resource Management in Kubernetes Using
Multi-Metric Evaluation,” WSEAS Trans. on
Computers, vol. 21, pp. 202–211, 2022.

[8] A. P. Dimitrov, I. D. Nikolov, “Observability-
Driven Scaling Policies in Cloud Platforms,”
WSEAS Trans. on Systems and Control, vol.
17, pp. 155–165, 2023.

[9] M. S. Elkhodr, N. Ali, “Adaptive Load
Management in Containerized Systems,”
WSEAS Trans. on Information Science and
Applications, vol. 20, pp. 111–120, 2024.

[10] Baresi, L., Quattrocchi, G., “COCOS: A
scalable architecture for containerized
heterogeneous systems,” IEEE Int. Conf. on
Software Architecture, pp. 103–113, 2020.

[11] Kounev, S., Kephart, J. O., Milenkoski, A.,
Zhu, X., “Self-Aware Computing Systems: An
Engineering Approach,” Springer, 2017.

[12] Santos, J., Wauters, T., Volckaert, B., De
Turck, F., “gym-hpa: Efficient auto-scaling via
reinforcement learning,” NOMS, IEEE, pp. 1–
9, 2023.

[13] Katnapally, N., Chinta, P. C. R., Routhu, K. K.,
Velaga, V., Bodepudi, V., & Karaka, L. M.
(2021). Leveraging Big Data Analytics and
Machine Learning Techniques for Sentiment
Analysis of Amazon Product Reviews in
Business Insights. American Journal of
Computing and Engineering, 4(2), 35-51.

[14] Munagandla, V. B., Dandyala, S. S. V., &
Vadde, B. C. (2024). Improving Educational
Outcomes Through Data-Driven Decision-
Making. International Journal of Advanced
Engineering Technologies and Innovations,
1(3), 698-718

[15] Vadde, B. C., & Munagandla, V. B. (2024).
Cloud-Native DevOps: Leveraging
Microservices and Kubernetes for Scalable
Infrastructure. International Journal of
Machine Learning Research in Cybersecurity
and Artificial Intelligence, 15(1), 545-554.

[16] Banik, S., Dandyala, S. S. M., & Nadimpalli, S.
V. (2020). Introduction to Machine Learning in
Cybersecurity. International Journal of
Machine Learning Research in Cybersecurity
and Artificial Intelligence, 11(1), 180-204

[17] Dalal, A., Abdul, S., Kothamali, P. R.,
& Mahjabeen, F. (2017). Integrating
Blockchain with ERP Systems:
Revolutionizing Data Security and Process
Transparency in SAP.Revista de Inteligencia
Artificial en Medicina,8(1), 66-77.

[18] Vadde, B. C., & Munagandla, V. B. (2023).
Integrating AI-Driven Continuous Testing in
DevOps for Enhanced Software Quality.
Revista de Inteligencia Artificial en Medicina,
14(1), 505-513.

[19] Bodepudi, V. (2023). Understanding the
Fundamentals of Digital Transformation in
Financial Services: Drivers and Strategic
Insights. Journal of Artificial Intelligence and
Big Data, 3(1), 10-31586.

[20] Routhu, K., Bodepudi, V., Jha, K. M., &
Chinta, P. C. R. (2020). A Deep Learning
Architectures for Enhancing Cyber Security
Protocols in Big Data Integrated ERP Systems.
Available at SSRN 5102662.

Roman A. Dolmatov, Sergei E. Saradgishvili
International Journal of Communications

http://www.iaras.org/iaras/journals/ijoc

ISSN: 2367-8887 20 Volume 10, 2025

