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Abstract: There are legitimate privacy and security issues with the processing of massive amounts of sensitive data required to detect 
breaches, abnormalities, and security risks in network traffic (including IoT). Federated learning, a type of distributed machine 
learning, lets many people work together to train a single model while keeping data privacy and independence. An alternative to 
training and assessing the model on a central computer is a federated educational setting, whereby each client learn a local 
model having the same structure that is trained on its own dataset. After that, an aggregation server receives these local models and 
uses federated averaging to create an optimal global model. Designing efficient and effective solutions for intrusion detection 
systems (IDS) is greatly facilitated by this technique. We evaluated the efficacy of federated instruction for IDSs to that of 
conventional deep learning models in this study. Through the implementation of random client selection, our research shows that 
federated learning outperformed deep learning in terms of accuracy and loss, especially in data privacy and security-focused 
situations. We demonstrate via experiments how federated learning may build global models without exposing sensitive data, 
reducing the dangers of data leaks and breaches. The results show that federated average in federated learning could change the 
way IDS solutions are made, making them safer, more efficient, and more useful. 
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1. Introduction 

S a potent instrument for identifying intrusions in 
computer networks, machine learning (ML) has gained 

prominence in recent times. Nevertheless, the efficacy of 
conventional machine learning methodologies is significantly 
impacted by the accessibility of extensive and varied datasets, 

which may prove to be arduous to procure in practical 
applications [1,2]. The aforementioned difficulty is com- 
pounded by the dynamic and dispersed characteristics of 
contemporary computer networks, which produce enormous 
volumes of data in an inconsistent and real-time fashion 
[3]. Furthermore, the centralized structure of classic machine 
learning algorithms poses substantial issues about the privacy 
and security of data, particularly in sensitive settings such as 
the healthcare industry, the financial sector, and the national 
security sector. The potential consequences of data breaches, 

leakage, and illegal utilization of sensitive information are 
such that they can erode confidence and hinder the imple- 
mentation of machine learning strategies in these fields, con- 
sequently restricting their overall effectiveness and potential 
[4]. Federated learning has come up as a promising solution 
to tackle these challenges by facilitating distributed machine 
learning while ensuring the preservation of data privacy and 
security[24]. 

Federated learning is a viable method for creating effec- 
tive intrusion detection systems. Federated learning makes it 
possible for several parties or customers to participate in the 
training of a shared model in a collaborative manner while 
maintaining the confidentiality and decentralization of their 
data [5,24]. In order to train the model, every client educates 
its model individually on its own information, and only 
changes to the model are shared with a central aggregators 
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or server. This is done rather than transmitting data to a 
centralized server for training purposes. The server collects 
the model changes from a number of different clients and 
then updates the global model. The updated global model is 
then given back to the clients for more iterations for further 
development. To improve the global model, this procedure is 
repeated in an iterative manner, but the raw data is not shared 
with any of the customers [6]. In the context of distributed 
computing or Internet of Things network computing, such a 
paradigm is thought to be advantageous. Traditional machine 
learning algorithms for intrusion detection systems (IDSs) 
have a number of benefits that federated learning does not. In 
the first place, it makes it possible to create models that are 
more precise and reliable by using the variety of data that is 
collected from a number of different customers. The second 
benefit is that it makes it possible to develop global models 
without jeopardizing the confidentiality and safety of critical 
data information. Thirdly, it has the potential to save the 
energy and money needed to train massive machine learning 
models by reducing the transmission costs. Fourth, it opens 
up IDS solutions to various customers with different data 
heterogeneity, improving their scalability and efficiency [6]. 

The purpose of our research was to assess the efficacy 
of federated learning techniques in creating IDSs using the 
widely used NSL-KDD dataset [7,8], which is a dataset for 
network hacking detection. We used the horizontal federated 
learning framework that aggregates client data and uses ran- 
dom sampling to accomplish this goal in each training cycle. 
Our federated learning model’s performance was contrasted 
with that of a conventional deep learning model trained on 
a central dataset. Based on our experimental findings, the 
federated learning method achieved better accuracy and loss 
than the conventional deep learning method. Because 
federated learning enabled us to create a strong IDS solution 
while protecting the confidentiality of the specific client data, 
this enhancement was especially apparent in situations when 
data security and privacy were paramount. 

Our research shows that federated learning is a great way 
to build intrusion detection systems (IDS) for situa- tions 
where data security and privacy are paramount. For both 
accuracy and loss, our trials showed that the federate learning 
model was superior than the classic deep learning model. 
When contrasted with the conventional deep learning model, 
the federate learning model outperformed it with a 98.067% 
accuracy rate and a reduced loss rate. Since the federate 
learning model outperforms the conventional deep learning 
model in terms of accuracy and loss rate, it may be concluded 
that it is superior at identifying network intrusions. As a result, 
intrusion detection systems may become more precise and 
trustworthy, which is great news for industries like 
healthcare, banking, and national security that deal with 
sensitive data and want to keep it safe from prying eyes. 
One way to make federated learning even more efficient 
and successful for intrusion detection systems is to employ 
a horizontal design with average aggregation and client se- 

lection at random. To avoid overfitting and make the model 
more generalizable, this design makes sure that all clients 
have access to different types of training data. The average 
aggregation approach is a great tool for dealing with local 
dataset variability and making sure that the global model ac- 
curately represents the client data. Furthermore, by selecting 
customers at random, we can guarantee that each client has an 
equal chance to take part in the training and provide feedback 
on the final model. 

What follows is an outline of the rest of the paper. Follow- 
ing this, we will give you the rundown on federated learning 
and how it helps IDSs. As a follow-up, we will demonstrate 
relevant research. Next, we will go over the steps that were 
taken to gather data for this study. Last but not least, we 
outline the results and importance of this study. 

 
2. Background 

2.1 System for Federated Learning in 

Anomaly Intrusion Detection 

Federated learning presents a multitude of benefits in the 
context of devising IDS (intrusion detection system) solu- 
tions that are both effective and efficient [9]. The subsequent 
advantages emphasize the potential of federated learning as a 
viable strategy for intrusion detection system (IDS) solutions: 

Federated learning guarantees privacy by enabling the 
building of a global intrusion detection system (IDS) model 
without requiring the exchange of sensitive security records 
from particular branches or organizations. This is accom- 
plished via the process of data sharing. The privacy and 
security of sensitive information is safeguarded via the use 
of federated learning, which involves training on dispersed 
data without transferring the actual data itself. In an intrusion 
detection system (IDS), where data on network traffic & 
security events might be very sensitive, this is of the utmost 
importance. 

• Protection of Personal Rights: Federated learning guar- 
antees privacy by enabling the building of a global intrusion 
detection system (IDS) model without requiring the exchange of 
sensitive security records from particular branches or 
organizations. This is accomplished via the process of data 
sharing. The privacy and security of sensitive information is 
safeguarded via the use of federated learning, which involves 
training on dispersed data without transferring the actual data 
itself. In an intrusion detection system (IDS), where data on 
network traffic & security events might be very sensitive, this 
is of the utmost importance. 

• Increased Safety & Protection: Federated learning offers 
advantages in terms of data security since it stores the infor- 
mation on local devices & reduces the amount of data that 
is sent to a centralized server. In IDS applications, one of 
the most major concerns is the possibility of illegal access, 
interception, or theft of data while it is being sent. This 
strategy helps to limit the likelihood of these happening. 

• Enhanced efficiency: Traditional server-based IDS pro- 
grams may involve transmitting significant volumes of data 
to a centralized server for processing, which increases com- 
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munication expenses. Federated learning share just model 
updates, reducing data transfers and communication costs. 
With limited network capacity and large data quantities, this 
efficiency advantage is crucial. 

• Ability to grow: Federated learning is very flexible, 
which means it can be used for IDS apps where data is spread 
out across many devices or places. In smart city wireless 
networks with many sensors that track traffic, for example, 
federated learning can create a global IDS model that looks at 
data from every sensor while keeping the data local. It makes 
it possible to analyze and find incidents of security across the 
whole network. 

• Approach Based on Collaboration: Federated learning 
makes it possible for several companies to work together 
without jeopardizing the confidentiality and safety of their 
confidential information. With federated learning, several en- 
tities in an IDS may train their local models on their own data 
while still contributing to a common global model. This is 
especially useful when multiple departments or organizations 
need to collaborate. By embracing a wide variety of data 
sources and points of view, this partnership improves the 
overall effectiveness of the intrusion detection system (IDS). 

• Updating in Real-Time: Federated learning allows for the 
simultaneous training of local models on all devices and their 
instantaneous transmission of training results to a central 
server. The intrusion detection system can thus quickly adjust to 
the evolving network environment and identify emerging 
threats as they happen. 

• Better accuracy: Federated learning makes use of a bigger 
and more varied collection, which improves performance and 
accuracy. By giving the model different types of data from 
various sources to learn from, the IDS can find more types of 
threats, which makes it more accurate overall. 

• Shorter Training Time: Federated learning decreases 
training time and resources compared to centralized meth- 
ods. IDS improves efficiency and speeds model training by 
training on local devices. 

• Cost reduction: By using networked devices that are al- 
ready in place for model training, federated learning reduces 
costs. Organizations may use their existing infrastructure 
without requiring extra expenditures in hardware or software, 
leading to a cost-effective implementation and upkeep of 
intrusion detection systems (IDS). 

Federated learning is an attractive strategy for creating 
cutting-edge, efficient, collaborative IDS solutions because 
it takes use of these benefits. 

 
2.2 The Architecture of Federated Learning  
The federated learning architecture comprises two discrete 
methodologies: vertical federated learning and horizontal 
federated learning. These approaches both facilitate the col- 
laborative training of models while safeguarding data pri- 
vacy. 

Horizontal federated learning comprises numerous clients, 
such as various enterprises or network segments, who share 
the same set of features but use diverse examples of those 

characteristics. For instance, it’s very uncommon for differ- 
ent companies to keep identical network traffic records, but 
from their own networks. Clients in this architecture work 
together to build an intrusion detection model, but they don’t 
exchange raw traffic data directly. Customers usually do this 
by updating their models on a central server after training 
them locally on their own traffic data. The server combines 
these modifications and returns the modified model to the 
clients. When applied to several networks, horizontal feder- 
ated learning improves intrusion detection accuracy without 
compromising data privacy. 

However, in vertical federated learning, a shared collection of 
examples is used by several clients, each of which may have 
a unique set of characteristics. These clients may be network 
monitoring tools or sensors. For example, these clients may 
access many data sources, including system logs, sensor 
readings, and network traffic logs, but they all relate to the 
same system or network. Without sharing any raw data, the 
clients work together to build an intrusion detection model 
that uses a combination of characteristics. Clients train local 
models using their own data sources and then share changes 
with each other. By exploiting these enhancements, the 
clients work together to create an integrated model that 
combines various sources of information while maintaining 
each source’s anonymity. By adding a wider variety of data 
while yet protecting the confidentiality of the data source, 
vertical federated learning improves the accuracy of intrusion 
detection. 

 
2.3 Techniques for Federated Learning 

Federated learning methods have become strong ways to 
train machine learning models together while keeping data 
private and preventing unauthorized access[24]. By using 
these methods, businesses can use the knowledge of many 
autonomous devices without putting private data at risk. 
Table 1 compares the four main federated learning methods: 
averaging, differential privacy, safe aggregation, and transfer 
learning. 

Table 2 provides a summary and comparison of the various 
aggregation techniques that are used in federated learning. 

 
2.4 Federated Learning Aggregation 

Usually, the aggregation process takes place at a centralized 
server or aggregator, which is in charge of gathering client- 
provided local model changes and integrating them to create 
a global model. In FL, there are a several popular techniques 
for aggregation: 

1. FedAvg, or Federated Averaging: FedAvg is a technique 
of aggregation that is used often in FL. The global model 
update in FedAvg is the average of client local model updates, 
usually gradients or model weights. In order to update the 
global model, the central server averages the local changes. 
FedAvg is easy to implement and has the potential to achieve 
high performance in a wide variety of real-world circum- 
stances. 
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TABLE 1. Techniques for federated learning compared[24]. 

 
Technique  Description Advantages Disadvantages 

Federated 
eraging 

Av- Central server aggregates 
model updates from multi- 
ple clients and sends up- 
dated model back to clients. 

Efficient, scales well to a 
large number of clients, and 
preserves the privacy of 
client data. 

Slow convergence due to 
communication bottleneck; 
potential bias towards more 
frequently updated clients. 

Federated 
Learning 

 
with 

Adds noise to model up- 
dates to protect client pri- 

Provides strong privacy 
guarantees; allows for more 

Introduces noise to model 
updates, which may reduce 

Differential 
Privacy 

Federated 
Learning 
with Secure 
Aggregation 

Federated 
Transfer 
Learning 

vacy. 
 

Utilizes secure multiparty 
computation to aggregate 
model updates without re- 
vealing client data. 

Clients transfer knowledge 
learned from their local data 
to a shared model. 

diverse client participation. 
 

Provides strong privacy 
guarantees; preserves client 
data privacy, even in case 
of compromised server. 

Enables learning across do- 
mains and improves model 
generalization. 

model accuracy. 
 

Computationally 
expensive; may require 
specialized hardware. 

 
Requires similar data 
distributions across clients, 
which may lead to bias if 
clients have vastly different 
data. 

 
 

 

TABLE 2. Shows aggregation approaches in federated learning. 
 
 

Method 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2. Weighted Federated Averaging: An improvement on 
FedAvg, Weighted Federated Averaging gives various clients 
varying amounts of weight while aggregating their data. 
Weights may be determined by a variety of factors, including 
sample size or the efficiency of customers’ offline models. 
When updating the local model, the central server takes 
the provided weights into consideration and computes the 
weighted average. Clients may be treated differently depend- 
ing on their contributions or skills using weighted federated 
averaging [8]. 

FedAvgM; Federated Averaging using Momentum:An im- 
provement on federated averaging, federated averaging with 
momentum (FedAvgM) updates the system by factoring in 
the current moment. By considering previous gradients, mo- 
mentum speeds up the point of convergence of the optimi- 

 
sation process in classic gradient descent [10]. Similarly, 
FedAvgM uses the participating devices’ prior gradients to 
speed up the federated optimization algorithm’s convergence. 

The updating equation for FedAvgM is as follows: 

vt = mu ∗ vt−1 + lr ∗ gt, (1) 

wt = wt−1 − vt, (2) 

where v_t is the momentum vector at time t, mu is the 
momentum coefficient, lr is the learning rate, g_t is the 
average gradient of the participating devices at time t, and 
w_t is the updated model at time t. 

FedAvgM has been shown to improve the convergence 
rate and final accuracy of the federated learning algorithm, 
especially in scenarios where the participating devices have a 

Aggregation Description Use Cases 

Federated Averag- Average of the model parameters from Image classification, speech recogni- 
ing all participating devices is taken as the tion, natural language processing. 

 updated model.  
Federated Aggregation of   stochastic   gradients - 
Stochastic Gradient from all participating devices to update  

Descent (FSGD) the global model.  
Federated Learning Encrypted data and model parameters Privacy-sensitive applications such as 
with Secure Aggre- are transferred from participating de- healthcare and finance. 
gation (FSA) vices to a central server, where the ag-  

 gregation is performed with the help of  

 secure multiparty computation (MPC).  
Federated Distilla- Model compression technique where Healthcare, finance, edge computing. 
tion a smaller, more lightweight model is  

 trained on the global model using  

 knowledge distillation.  
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heterogeneous data distribution. To provide a deeper under- 
standing of FedAvgM, we defined the following variables: 

• θ= Current global model parameters; 
• θ i = Current global model parameters; 
• θ prev = the previous global model parameters; 
• gi = local model update of device i; 
• m = the momentum term; 
• Li = the local loss. 
(a) Initialization: 
• θ and m are initialized by the central server. 
(b) Client Update: 
• Each client device i updates its local model parameter θ i 

by minimizing its local loss function Li(θ i). 
• The local model update for the device i is given by 

g i = θi−θ. (3) 

(c) Server Aggregation: 
• The central server aggregates the local model updates 

from all the devices to obtain the current aggregated local 
model update, which is denoted as G. The aggregation is 
performed by summing up all the local model updates across 
all client devices and dividing by the total number of client 
devices (N) to obtain the average: 

 
G = ( g i)/N. (4) 

(d) Momentum Update: 
• The momentum term m is updated using the formula: 

m←−βm + (1−β)(θ−θprev) + G (5) 
where, β is the momentum parameter. The formula combines 
the previous value of m, the difference between the current 
and previous global model parameters, and the aggregated 
local model update to calculate the new value of m. 

1. Aggregation Security: When it comes to FL, one aggre- 
gation approach that prioritizes privacy and security is secure 
aggregation. Secure multiparty computations (SMPC) and 
homomorphic encryption are two examples of cryptographic 
methods that are often used to safeguard local model changes 
while they are being aggregated. While secure aggregation 
offers robust privacy protections, it may be more difficult and 
incur computational burden than alternative aggregation 
approaches. 

 
2.5 Autoencoder 

Often called "deep learning," deep neural networks (DNNs) 
represent a state-of-the-art branch of machine learning at 
the forefront of artificial intelligence (AI). They are built 
on multi-level representation learning techniques for mod- 
elling intricate interactions between data. Thus, traits and 
concepts at higher levels are defined in terms of those at 
lower levels. The back-propagation (BP) approach, so termed 
because it propagates the error in the neural network’s es- 
timate backward from the output layer towards the input 
layer, has historically been used to train neural networks. 
Along the process, we can modify the model parameters 

using BP. Regretfully, the BP algorithm has a number of 
flaws that prevented it from working effectively with DNNs. 
Autoencoders (AE) are type of artificial neural network that 
aims to copy their inputs to their outputs . They work by 
compressing the input into a latent-space representation also 
known as bottleneck, and then reconstructing the output from 
this representation.Autoencoder is an unsupervised machine 
learning algorithm. We can define autoencoder as feature 
extraction algorithm. The input data may be in the form of 
speech, text, image, or video. An Autoencoder finds a repre- 
sentation or code in order to perform useful transformations 
on the input data.The Decoder generates the output sequence 
by predicting the next output yt given the hidden state ht. 

The hidden states h_i are computed using the formula: 
 

ht = f (W (hh)ht-1). (6) 

The output y_t at time step t is computed using the formula: 

yt = softmax (W Sht). (7) 

The output is calculated using the hidden state at the current 
time step together with the respective weight W(S). Softmax 
is used to create a probability vector that will help us deter- 
mine the final output. 

 
3. Related Literature 
In the area of breach detection, federated learning has gotten 
a lot of interest as a way to protect privacy that lets various 
groups train models together without sharing private data. 
This part talks about the linked works on intruder detec- 
tion using collaborative learning. This shows the efforts and 
progress scholars have made in this area. 

FELIDS, an intrusion detection system based on feder- 
ated learning and specifically developed to safeguard agri- 
cultural IoT infrastructures, was introduced by Friha et al. 
[18]. Aiming to protect data privacy, the system uses local 
learning, where devices share model changes with a central 
computer to make the recognition model better. Three types 
of deep learning models are used by the FELIDS system 
to make the farm IoT safer: neural networks that are deep, 
neural networks with convolution, and neural networks with 
recurrence. Three different sets of data were used to test the 
suggested intrusion detection system: CSE-CIC-IDS2018, 
MQTTset, as well as InSDN. The testing findings showed 
that when compared to standard centralized machine learning 
approaches, FELIDS was far better at identifying assaults 
and protecting the privacy of data from Internet of Things 
devices[24]. 

Attota et al. [19] suggested MV-FLID as a way to find in- 
trusions in IoT networks using multiview federated learning. 
The writers talked about the problems with current breach 
detection methods and emphasized the need for smarter, 
more private methods. MV-FLID uses multiview learning 
and distributed learning to better find and classify attacks 
while protecting the privacy of data. The test results showed 
that MV-FLID was more accurate than other ways. The 
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writers said that MV-FLID protected data privacy through 
shared learning, but this paper didn’t go into detail about how 
privacy was protected or talk about possible flaws. To make 
the suggested method for protecting personal IoT data more 
credible, it would be helpful to talk more about privacy- 
preserving techniques, such as methods of encryption or 
differential privacy. 

For Internet of Things (IoT) networks, Rahman et al. [20] 
presented a federated learning (FL)–based intrusion detection 
system (IDS). Using the NSL-KDD dataset, they did three 
different tests: centralized learning, device-based learning, 
and shared learning. Compared to the centralized model, the 
FL-based IDS performed quite similarly in their experimental 
assessment, reaching an accuracy of around 83.09%. 

Nguyen et al. [21] suggested an IDS (intrusion detection 
system) for the IoT that uses federated learning, or FL, and 
a computerized method that is tailored to different types 
of devices. When tried on real devices that had the Mirai 
malware on them, this work had an amazing average success 
rate of 95.6 percent for finding threats, and it did so with 
an average response time about 257 ms. Also, the system 
didn’t give off many fake alarms. It’s important to keep in 
mind, though, that the suggested model was only made to 
find attacks on IoT devices. It wasn’t thought about any other 
possible threats that could affect different parts of the 
environment, like advanced networking technologies like 
SDN and services like FTP and SSH. 

 
4. Protecting Privacy in Intrusion 

Detection with Federated Learning 
Finding Anomalies with Autoencoder Model: For the pur- 
pose of constructing an intrusion detection system, an au- 
toencoder was used. One kind of neural network that in- 
trusion detection systems may use for anomaly detection 
is an autoencoder. In this method, autoencoders are trained 
only on data that is representative of typical network traf- 
fic activities. Using an encoder network, the autoencoder 
learnt to compress the regular traffic patterns during training. 
The representation was then decoded by a decoder network, 
which resulted in the data being returned to its original state. 
Reconstruction error, defined as the discrepancy between 
input and reconstructed data, was the primary metric for the 
training aim. 

An autoencoder that had been trained was applied to fresh 
instances of network traffic that had not been observed before 
during the phase of anomaly detection. In order to determine 
the degree of similarity in the observed traffic with the usual 
patterns that were learnt, the system was able to calculate 
the reconstruction error that occurred from the input and 
the output that was rebuilt. The instances that had larger 
reconstruction errors were categorized as anomalies, which 
indicated that there was a possibility of intrusions or assaults 
taking place. To discriminate between typical and aberrant 
cases, a threshold was chosen. Anomalies were identified as 
instances that had reconstruction errors that were higher than 
the threshold, whereas instances that had errors that were 

lower than the threshold were judged to be normal. 
The autoencoder consists of an encoder and decoder net- 

work, where the encoder maps the input data X to a lower- 
dimensional representation Z through the encoding function 
h such that Z = h(X)„ and the decoder maps the lower- 
dimensional representation Z to the output data Ythrough the 
decoding function g such that Y = g(Z). The autoencoder’s 
job is to learn how to reduce the input data so that it keeps 
only the most important parts while reducing the difference 
between it and the recovered data as much as possible. This 
is also known as lowering the reconstruction error. 

L(X, Y ) = ||X − Y ||2. (8) 
where X represents the data that was supplied, and Y the 

data that was rebuilt. 
During the training phase, it is necessary to minimize the 

error in reconstruction L(X, Y) among the input data & the 
reconstructed data. This may be accomplished by adjusting 
the parameters of the decoder and encoder networks via the 
use of descent gradients or other optimization algorithms. 
After the autoencoder has been trained, it may be used for 
a variety of activities, including the encoding of input data in 
order to produce representations with lower dimensions, the 
generation of new data samples based on the representations 
that have been learnt, and the utilization of the encoder as 
a module for extraction of features for jobs that are further 
down the line. An anomaly detection method employed the 
trained autoencoder to rebuild fresh network traffic data and 
compare the reconstruction error to a threshold. It was 
determined that the network traffic was considered to be an 
anomaly if the amount of reconstruction error was more than 
the threshold. This method excels at uncovering previously 
unseen anomalies since the autoencoder can pick up on any 
changes from the typical patterns it learnt during training. 
Figure 1 is a graphical depiction of the method that is used for 
the purpose of identifying anomalies using an autoencoder 
device. 

The visualization of anomaly identification using autoen- 
coders is shown in Figure 1. 

Federated-Learning-Based Intrusion Detection System, or 
FELIDS: 

Figure 2 shows one approach to construct federated aver- 
aging using federated machine learning’s horizontal design. 
Here, N devices get the input, and they individually train their 
own model using the data that is physically available to them. 
Each client may train their own compressed data representa- 
tion using a deep autoencoder as a local model. Following 
client-device-specific model training, the federated server 
receives model parameters and uses a federated averaging 
procedure to aggregate them with all client-device parame- 
ters. Maintaining the confidentiality of individual client data 
is made possible by this method, enabling the server to 
incorporate all clients’ collective knowledge into the global 
model. 

For the federated-learning-based system for intrusion de- 
tection (FELIDS) to start its federated-learning (FL) pro- 
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FIGURE 1. The visualization of anomaly identification using autoencoders is shown . 
 
 

 

FIGURE 2. Intruder detection system with a horizontal design. . 
 
 

cess, the FELIDS server chooses C out of K edge nodes 
(FELIDS clients) to take part in the calculation for R FL 

 
rounds. A strong intrusion detection model is to be trained 
cooperatively. Using a secure gRPC channel (Google remote 
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procedure call), clients and servers may communicate data 
securely. Both the client and the server can be authenticated 
and their communication can be encrypted since this channel 
has built-in support for SSL/TLS (transport layer security). 
During the FL process, all data transmitted is protected by 
this secure channel, ensuring its secrecy and integrity. Figure 
2 shows the FL process following the steps and algorithms 
mentioned in Algorithm 1 and 2, both of which are based 
on the Fed Average algorithm [22]. This is done once all the 
chosen clients have connected over the secure gRPC channel. 

 
Here is how the FL procedure operates: 

 
 

Algorithm 1: StartServer Algorithm 
 

 

1 Procedure STARTSERVER(K, C, R) 

2 while K length(ConnectedClients()) do 

// Loop until all clients are connected loop; 
3 end 

4 FedAvg(); 
5 ReleaseClients(); 
6 Procedure FedAvg () 

7 w1 GenericModel(); 
8 for t = 1, . . . , R do 

9 St ← Subset(max(C · K, 1), random); 
10 for k ∈ St do 

1. The parameters of the global model are initialized by the 
server. 11 

k 
t+1 

end 
← Clientk · FedAvg(wt) 

12 wt+1 ← 
Σnt

 

 1 wk; 

individually, using the FL training approach. 
 

3. Through the use of the secure gRPC channel, the clients 
submit their local model modifications to the server in a 
secure manner. 

 
4. The federated averaging (FedAvg) technique is often 

used by the server in order to aggregate the local model 
updates that have been received. 

 
5. The server implements the aggregate model updates in 

order to update the global model parameters. 
 

6. Steps 2-5 are repeated for R FL rounds, enabling models 
to develop and converge into a superior intrusion detection 
model. 

 
7. Following the FL procedure, the system-wide intrusion 

detection system uses the final global model. 
 

After the clients have been linked, the algorithm will carry 
out FedAvg, which is a process that includes picking a 
subset of customers and delivering them the parameters of the 
current model. The model is then trained locally by each 
chosen client using the client’s own private data, and after the 
model parameters have been updated, they are sent back to 
the server. Each client transmits their own set of parameters 
to the server, which then calculates a new global model and 
returns the results to the clients. In order to complete a certain 
number of communication cycles, this procedure is repeated. 

 
When everything is said and done, the algorithm is termi- 

nated and the clients are released. By avoiding server-side 
data sharing and storing training data locally, this method 
aims to increase ML model accuracy without compromising 
user privacy. 

The "StartServer" is the component that is used to initiate 
the federated learning process, and Algorithm 1 provides a 
high-level definition of the concept. K, which represents the 
overall amount of FELIDS clients, C, which represents the 
proportion of clients selected to take part in each round, and 
R, which represents the number of rounds that the feder- ated 
learning process is required to complete, are the three 
parameters that are used by the algorithm. The algorithm’s 
main loop continues until K clients connect to the server. The 
"FedAvg" algorithm, which executes R cycles of federated 
learning, is implemented within this iteration. During every 
round, a randomly chosen portion of C *K clients is selected 
to take part in the process. These clients then educate their 
local model by using the global model that is currently func- 
tioning. A fresh global model is then created by combining 
the models that have been changed at the local level. The 
customers are liberated from the procedure after all of the 
rounds have been finished. An explanation of the algorithm 
is provided in the next section: 

•D: The entire dataset used for training the machine learn- 
ing model. 

•B: The number of clients or subsets into which the dataset 
is divided during training. 

•E: The number of local training epochs for each client 
during each round of FedAvg. 

•P: The preprocessed dataset obtained after applying the 
preprocess function to D. 

• w: The model parameters (weights and biases) shared 
between clients and the server. 

• B: The local dataset batch on each client obtained by 
splitting P into B subsets. 

• η: The learning rate, which controls the step size of the 
model parameter updates. 

• f (w, b): The gradient of the loss function f (w, b) with 
respect to w 

Federated-learning-based intrusion detection systems em- 
ploy FIELDS client algorithm 2 for federated averaging 
(FedAvg). When training the global model with their private 

w 

2. Using their own local data, each client trains a model 13 end 
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data, this procedure is done by every FELIDS client k. 
Initially, the client communicates with the FELIDS server in 
order to get the generic model. Local weights are generated 
by the client after parallelly training the generic model with 
their private data. Every user has a preprocessed database 
that is divided into localized mini batches of size B. The 
client then calculates the fresh weights by upgrading the 
previous ones utilizing the rate of learning, averaged gra- 
dient, and minibatch. This procedure is repeated until the new 
weights are computed. In the event that the settings have been 
modified, after being calculated, the client then transmits 
them to the FIELDS server. FIELDS clients, in contrast to 
centralized learning, only exchange the updated model 
parameters, which were trained on the local data. This is in 
contrast to centralized learning. A new updated global model 
is generated by the FIELDS server by applying the average 
update to the aggregated updated parameters that are received 
from the various FELIDS clients. Last but not least, the 
FELIDS server sends the revised global model parameters to all 
of the FELIDS clients so that they may get further 
enhancements based on their newly acquired local data. 

 
 

  Algorithm 2: Client Algorithm  
Input: Parameters D, B, E 

Output: None 
1 Algorithm StartClient(D, B, E): 

2 P PreProcess(D); 
3 while ServerConnect() do 

4 FedAvg(w FetchParams()); 
5 end 

6 SaveParams(w); 
7 Function FedAvg(w): 

8 B Split(P, B); 
9 for i = 1, . . . , E do 

10 for b B do 

11 w w η   f (w, b); 
12 end 

13 end 
14 return w to Server; 

the central server to communicate with the clients while 
encrypting and authenticating their data. We specified the hy- 
perparameters and global model architecture for the federated 
learning system. 

Here are the steps involved in the local model update: The 
local datasets were used to train the models by each client. 
After deciding on an appropriate machine learning technique, 
we used the datasets from each client to train a local model. 
For every customer, the particular model parameters, denoted 
as θi, were revised. 

The NSL-KDD dataset was employed to train our model. 
The training set comprised 125,973 records, while the test set 
comprised 22,544 records. To train and verify the model, we 
divided the training dataset into two sets, one for training and 
one for validation, using a 4:1 ratio. After the training was 
finished, we used the test dataset to see how well the model 
performed. The global model M was obtained by aggregating 
the local model updates θ1, θ2,..., θN through the utilization 
of federated averaging as well as a customized aggregation 
function. 

To examine how well the global model M performed, we 
used the NSL-KDD dataset’s test dataset to quantify the 
model’s accuracy and several intrusion detection measures. 

In terms of accuracy and loss values, Table 3 compares 
federated learning with deep learning. In general, and par- 
ticularly as training continued, the findings showed that 
federated learning might outperform deep learning in terms 
of accuracy. Keep in mind that larger loss values could 
accompany this enhanced precision. 

In terms of accuracy and loss values, Table 3 compares 
federated learning with deep learning. In general, and par- 
ticularly as training continued, the findings showed that fed- 
erated learning might outperform deep learning in terms of 
accuracy. Taking into consideration the possibility that this 
enhanced accuracy would be accompanied by greater loss 
values is an essential consideration. 

It must be noted, nevertheless, that the dataset and model 
architectural choices might impact these results. This means 

   that these variables may affect the outcomes. There is a deep 
learning column and a federated learning column in this 

5. Findings and Experiments 
To train deep learning & federated learning models, the NSL- 
KDD dataset had been preprocessed and divided into test and 
training sets. The federated learning configuration ensures 
data confidentiality and safety by establishing an encrypted 
communication protocol among the central server & clients. 
The test dataset was used to assess the global model that was 
created by aggregating local model changes. With 125,973 
records for training and 22,544 records for testing, we ac- 
quired and prepared the NSL-KDD dataset. For the objectives 
of training and validating the model, the dataset for training 
was divided into two sets: one for validation and the other for 
training [7]. 

The following was involved in the federated learning 
setup: To protect the confidentiality of the information, we 
developed a secure communication protocol that would allow 

table. In this training table, each row stands for a distinct 
iteration. Deep learning had an initial accuracy of 78.33% 
and federated learning of 94.40%, while the loss values were 
1.9984% and 0.5441%, respectively, as shown in the first row 
of the table. 

During the course of the training, both models significantly 
improved in terms of their accuracy and loss. The results of 
the fifth phase or epoch demonstrate that federated learning 
did better than deep learning, with an accuracy rate of 96.54% 
as well as a loss of 18.1923%. This is in contrast to the 
outcomes of deep learning, which had an effectiveness of 
85.37% as well as a loss of 0.6459%. 

In the tenth round, or epoch, federated learning main- 
tained its superiority over deep learning, which had a loss 
of 38.5893% and an accuracy of 97.15%. In contrast, the 
deep learning results had a loss of 0.4505. In conclusion, the 
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results from the twentieth round, also known as the epoch, 
showed that deep learning had a loss of 0.2824% and an 
accuracy of 94.53%, while federated learning had the best 
overall performance at 97.77%. 

Table 3 displays the results of the testing conducted on 
federated learning and deep learning. 

 
TABLE 3. Accuracy and Loss for Deep Learning and Federated Learning 

The confusion matrix for federated learning is shown in 
Figure 6. Additionally, a confusion matrix graphic is shown 
in the supplied text. Viewed here are the true positive (TPR) 
and false positive (FPR) rates for a federated learning model 
over a range of threshold settings.Based on the data shown in 
the figure, the accuracy is 98.067%, the precision is 0.974%, 
the F1-score is 98.210, the TPR is 0.99058%, and the FPR 
is 0.03075% at the threshold that was previously selected. 

   Based on these measures, it seems that the model performs 
Learning Types Deep Learning Federated Learning 

 
 

Accuracy Loss Accuracy Loss 
 

1st (round/epoch) 78.33% 1.9984% 94.40% 0.5441% 
5th (round/epoch) 85.37% 0.6459% 96.54% 18.1923% 
10th (round/epoch) 91.19% 0.4505% 97.15% 38.5893% 
20th (round/epoch) 94.53% 0.2824% 97.77% 58.3108% 

 
In general, the table illustrates that federated learning has 

the potential to attain a better level of accuracy than deep 
learning, especially as the training process advances. 
However, this may come at the expense of a larger loss 
rate. On the other hand, it is important to keep in mind that 
the outcomes may differ based on the particular dataset and 
model architecture that was used. 

In contrast to the deep learning technique, which might 
take up to fifteen epochs to get equivalent performance, 
the federated learning strategy achieved acceptable loss and 
accuracy already in the first round (Figures 3 and 4). Fur- 
thermore, the findings show that both methods used the same 
amount of data every round or epoch, but federated learning 
achieved better outcomes than deep learning. On the other 
hand, federated learning’s validation loss rose in tandem with 
the number of rounds, suggesting that overfitting happened 
sooner with this method. 

As shown in Figure 5, the confusion matrix for federated 
learning is shown. Accuracy, precision, recollection, and the 
F1-score are some of the significant metrics that can be 
calculated with the use of this information since it offers a 
clear split of the true positive results, the real negatives, fake 
positives, and false negatives. Having a higher F1-score im- 
plies that there is a greater balance between the accuracy and 
recall, which suggests that the classifier is more trustworthy 
for tasks that include binary classification [23]. This indicates 
that the model was successful in making accurate predictions 
for about 98.067% of the total cases, as it attained an accu- 
racy of 98.067%. There was a 97.4% percent success rate, 
or 0.974 percent accuracy, in the model’s positive instance 
identification. Taking into account both recall and accuracy, 
the F1 score came out to 98.210%, demonstrating excellent 
overall performance. Furthermore, the rate of true positives 
(TPR), which is sometimes referred to as sensitivities or 
recollection, was 0.99058, which indicates that the model 
accurately detected 99.058 % percentage among the positive 
tests. Furthermore, the model has a low rate of false positives 
(FPR) of 0.03075%, which indicates that it had a very small 
amount of mistakes that were considered to be false positives. 

very well in terms of precision, accuracy, and F1 score, and 
it also has a low percentage of false positives. 

There are a number of limitations and challenges asso- 
ciated with federated learning in systems for intrusion de- 
tection. These include the following: data variation, over- 
head for communication, data imbalance, concerns regarding 
security and privacy, model aggregation weaknesses, client 
availability issues, a lack of a global point of view, and diffi- 
culties in managing model drifting. For FL in IDS to become 
more efficient and safe, it is vital that these difficulties be 
addressed. 

 
6. Conclusions 
In conclusion, the primary objective of our study was to 
assess the efficacy of federated learning in terms of improv- 
ing systems for intrusion detection (IDS) that are designed 
to protect confidential information. The distributed machine 
learning technique known as federated learning makes it 
possible to train a shared model in a collaborative manner 
while yet preserving the decentralization of data and the 
confidentiality of the information. 

Our studies and comparisons with classic deep learning 
models have shown that federated learning, when using a 
randomly chosen group of clients, surpasses deep learning 
both in terms of accuracy and loss in an Intrusion Detection 
System (IDS). This benefit is especially noteworthy in situa- 
tions where the protection and confidentiality of data are of 
utmost importance. 

Through the use of federated learning, we successfully 
created worldwide models minus the need of exchanging 
sensitive data, thus minimizing the potential dangers linked 
to data breaches or unauthorized disclosure. Our research 
findings suggest that federated learning holds the potential to 
transform the creation of IDS solutions, making them more 
powerful, streamlined, and secure. 

The research study used the NSL-KDD dataset, a well 
utilized database for network intrusion detection. It built 
a horizontal learning federation architecture with average 
aggregation & random client selection. The experimental 
results repeatedly showed that the federated learning method- 
ology outperformed traditional deep learning approaches in 
terms of accuracy and loss. 

This finding is very significant, since it enables the 
development of more accurate and reliable intrusion 
detection systems that can effectively prevent security 
breaches and protect sensitive data in several sectors like 
healthcare, fi- nance, and national security. 
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FIGURE 3. shows the outcomes of deep learning. 
 
 

 

FIGURE 4. Results of federated learning are shown. 
 
 

FIGURE 5. Results of federated learning are shown. 
 
 

Subsequent investigation in this field might go deeper into 
improving the federated learning technique, examining its 
implementation on other datasets, and tackling the obsta- cles 
associated with scalability and diverse client settings. In 
summary, federated learning has significant potential in 
enhancing the privacy of systems that detect intrusions and 
bolstering network security. 

FIGURE 6. The confusion matrix for federated learning is shown . 
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