
A

Improving Intrusion Detection with Federated Learning for Enhanced

Privacy Protection

SAHAAYA ARUL MARY S. A., SAMEER CHAUHAN, LUV SACHDEVA

School of Computer Science and Engineering
Vellore Institute of Technology, Vellore,

Vellore - 632014, Tamilnadu, INDIA

Abstract: There are legitimate privacy and security issues with the processing of massive amounts of sensitive data required to detect
breaches, abnormalities, and security risks in network traffic (including IoT). Federated learning, a type of distributed machine
learning, lets many people work together to train a single model while keeping data privacy and independence. An alternative to
training and assessing the model on a central computer is a federated educational setting, whereby each client learn a local
model having the same structure that is trained on its own dataset. After that, an aggregation server receives these local models and
uses federated averaging to create an optimal global model. Designing efficient and effective solutions for intrusion detection
systems (IDS) is greatly facilitated by this technique. We evaluated the efficacy of federated instruction for IDSs to that of
conventional deep learning models in this study. Through the implementation of random client selection, our research shows that
federated learning outperformed deep learning in terms of accuracy and loss, especially in data privacy and security-focused
situations. We demonstrate via experiments how federated learning may build global models without exposing sensitive data,
reducing the dangers of data leaks and breaches. The results show that federated average in federated learning could change the
way IDS solutions are made, making them safer, more efficient, and more useful.

Key-words: security of communication networks, federated learning, anomaly detection, intrusion detection systems, and data
privacy

Received: March 11, 2024. Revised: August 12, 2024. Accepted: September 11, 2024. Published: October 31, 2024.

1. Introduction

S a potent instrument for identifying intrusions in
computer networks, machine learning (ML) has gained

prominence in recent times. Nevertheless, the efficacy of
conventional machine learning methodologies is significantly
impacted by the accessibility of extensive and varied datasets,

which may prove to be arduous to procure in practical
applications [1,2]. The aforementioned difficulty is com-
pounded by the dynamic and dispersed characteristics of
contemporary computer networks, which produce enormous
volumes of data in an inconsistent and real-time fashion
[3]. Furthermore, the centralized structure of classic machine
learning algorithms poses substantial issues about the privacy
and security of data, particularly in sensitive settings such as
the healthcare industry, the financial sector, and the national
security sector. The potential consequences of data breaches,

leakage, and illegal utilization of sensitive information are
such that they can erode confidence and hinder the imple-
mentation of machine learning strategies in these fields, con-
sequently restricting their overall effectiveness and potential
[4]. Federated learning has come up as a promising solution
to tackle these challenges by facilitating distributed machine
learning while ensuring the preservation of data privacy and
security[24].

Federated learning is a viable method for creating effec-
tive intrusion detection systems. Federated learning makes it
possible for several parties or customers to participate in the
training of a shared model in a collaborative manner while
maintaining the confidentiality and decentralization of their
data [5,24]. In order to train the model, every client educates
its model individually on its own information, and only
changes to the model are shared with a central aggregators

,

Sahaaya Arul Mary S. A. et al.
International Journal of Communications

http://www.iaras.org/iaras/journals/ijoc

ISSN: 2367-8887 11 Volume 9, 2024

or server. This is done rather than transmitting data to a
centralized server for training purposes. The server collects
the model changes from a number of different clients and
then updates the global model. The updated global model is
then given back to the clients for more iterations for further
development. To improve the global model, this procedure is
repeated in an iterative manner, but the raw data is not shared
with any of the customers [6]. In the context of distributed
computing or Internet of Things network computing, such a
paradigm is thought to be advantageous. Traditional machine
learning algorithms for intrusion detection systems (IDSs)
have a number of benefits that federated learning does not. In
the first place, it makes it possible to create models that are
more precise and reliable by using the variety of data that is
collected from a number of different customers. The second
benefit is that it makes it possible to develop global models
without jeopardizing the confidentiality and safety of critical
data information. Thirdly, it has the potential to save the
energy and money needed to train massive machine learning
models by reducing the transmission costs. Fourth, it opens
up IDS solutions to various customers with different data
heterogeneity, improving their scalability and efficiency [6].

The purpose of our research was to assess the efficacy
of federated learning techniques in creating IDSs using the
widely used NSL-KDD dataset [7,8], which is a dataset for
network hacking detection. We used the horizontal federated
learning framework that aggregates client data and uses ran-
dom sampling to accomplish this goal in each training cycle.
Our federated learning model’s performance was contrasted
with that of a conventional deep learning model trained on
a central dataset. Based on our experimental findings, the
federated learning method achieved better accuracy and loss
than the conventional deep learning method. Because
federated learning enabled us to create a strong IDS solution
while protecting the confidentiality of the specific client data,
this enhancement was especially apparent in situations when
data security and privacy were paramount.

Our research shows that federated learning is a great way
to build intrusion detection systems (IDS) for situa- tions
where data security and privacy are paramount. For both
accuracy and loss, our trials showed that the federate learning
model was superior than the classic deep learning model.
When contrasted with the conventional deep learning model,
the federate learning model outperformed it with a 98.067%
accuracy rate and a reduced loss rate. Since the federate
learning model outperforms the conventional deep learning
model in terms of accuracy and loss rate, it may be concluded
that it is superior at identifying network intrusions. As a result,
intrusion detection systems may become more precise and
trustworthy, which is great news for industries like
healthcare, banking, and national security that deal with
sensitive data and want to keep it safe from prying eyes.
One way to make federated learning even more efficient
and successful for intrusion detection systems is to employ
a horizontal design with average aggregation and client se-

lection at random. To avoid overfitting and make the model
more generalizable, this design makes sure that all clients
have access to different types of training data. The average
aggregation approach is a great tool for dealing with local
dataset variability and making sure that the global model ac-
curately represents the client data. Furthermore, by selecting
customers at random, we can guarantee that each client has an
equal chance to take part in the training and provide feedback
on the final model.

What follows is an outline of the rest of the paper. Follow-
ing this, we will give you the rundown on federated learning
and how it helps IDSs. As a follow-up, we will demonstrate
relevant research. Next, we will go over the steps that were
taken to gather data for this study. Last but not least, we
outline the results and importance of this study.

2. Background

2.1 System for Federated Learning in

Anomaly Intrusion Detection

Federated learning presents a multitude of benefits in the
context of devising IDS (intrusion detection system) solu-
tions that are both effective and efficient [9]. The subsequent
advantages emphasize the potential of federated learning as a
viable strategy for intrusion detection system (IDS) solutions:

Federated learning guarantees privacy by enabling the
building of a global intrusion detection system (IDS) model
without requiring the exchange of sensitive security records
from particular branches or organizations. This is accom-
plished via the process of data sharing. The privacy and
security of sensitive information is safeguarded via the use
of federated learning, which involves training on dispersed
data without transferring the actual data itself. In an intrusion
detection system (IDS), where data on network traffic &
security events might be very sensitive, this is of the utmost
importance.

• Protection of Personal Rights: Federated learning guar-
antees privacy by enabling the building of a global intrusion
detection system (IDS) model without requiring the exchange of
sensitive security records from particular branches or
organizations. This is accomplished via the process of data
sharing. The privacy and security of sensitive information is
safeguarded via the use of federated learning, which involves
training on dispersed data without transferring the actual data
itself. In an intrusion detection system (IDS), where data on
network traffic & security events might be very sensitive, this
is of the utmost importance.

• Increased Safety & Protection: Federated learning offers
advantages in terms of data security since it stores the infor-
mation on local devices & reduces the amount of data that
is sent to a centralized server. In IDS applications, one of
the most major concerns is the possibility of illegal access,
interception, or theft of data while it is being sent. This
strategy helps to limit the likelihood of these happening.

• Enhanced efficiency: Traditional server-based IDS pro-
grams may involve transmitting significant volumes of data
to a centralized server for processing, which increases com-

Sahaaya Arul Mary S. A. et al.
International Journal of Communications

http://www.iaras.org/iaras/journals/ijoc

ISSN: 2367-8887 12 Volume 9, 2024

munication expenses. Federated learning share just model
updates, reducing data transfers and communication costs.
With limited network capacity and large data quantities, this
efficiency advantage is crucial.

• Ability to grow: Federated learning is very flexible,
which means it can be used for IDS apps where data is spread
out across many devices or places. In smart city wireless
networks with many sensors that track traffic, for example,
federated learning can create a global IDS model that looks at
data from every sensor while keeping the data local. It makes
it possible to analyze and find incidents of security across the
whole network.

• Approach Based on Collaboration: Federated learning
makes it possible for several companies to work together
without jeopardizing the confidentiality and safety of their
confidential information. With federated learning, several en-
tities in an IDS may train their local models on their own data
while still contributing to a common global model. This is
especially useful when multiple departments or organizations
need to collaborate. By embracing a wide variety of data
sources and points of view, this partnership improves the
overall effectiveness of the intrusion detection system (IDS).

• Updating in Real-Time: Federated learning allows for the
simultaneous training of local models on all devices and their
instantaneous transmission of training results to a central
server. The intrusion detection system can thus quickly adjust to
the evolving network environment and identify emerging
threats as they happen.

• Better accuracy: Federated learning makes use of a bigger
and more varied collection, which improves performance and
accuracy. By giving the model different types of data from
various sources to learn from, the IDS can find more types of
threats, which makes it more accurate overall.

• Shorter Training Time: Federated learning decreases
training time and resources compared to centralized meth-
ods. IDS improves efficiency and speeds model training by
training on local devices.

• Cost reduction: By using networked devices that are al-
ready in place for model training, federated learning reduces
costs. Organizations may use their existing infrastructure
without requiring extra expenditures in hardware or software,
leading to a cost-effective implementation and upkeep of
intrusion detection systems (IDS).

Federated learning is an attractive strategy for creating
cutting-edge, efficient, collaborative IDS solutions because
it takes use of these benefits.

2.2 The Architecture of Federated Learning
The federated learning architecture comprises two discrete
methodologies: vertical federated learning and horizontal
federated learning. These approaches both facilitate the col-
laborative training of models while safeguarding data pri-
vacy.

Horizontal federated learning comprises numerous clients,
such as various enterprises or network segments, who share
the same set of features but use diverse examples of those

characteristics. For instance, it’s very uncommon for differ-
ent companies to keep identical network traffic records, but
from their own networks. Clients in this architecture work
together to build an intrusion detection model, but they don’t
exchange raw traffic data directly. Customers usually do this
by updating their models on a central server after training
them locally on their own traffic data. The server combines
these modifications and returns the modified model to the
clients. When applied to several networks, horizontal feder-
ated learning improves intrusion detection accuracy without
compromising data privacy.

However, in vertical federated learning, a shared collection of
examples is used by several clients, each of which may have
a unique set of characteristics. These clients may be network
monitoring tools or sensors. For example, these clients may
access many data sources, including system logs, sensor
readings, and network traffic logs, but they all relate to the
same system or network. Without sharing any raw data, the
clients work together to build an intrusion detection model
that uses a combination of characteristics. Clients train local
models using their own data sources and then share changes
with each other. By exploiting these enhancements, the
clients work together to create an integrated model that
combines various sources of information while maintaining
each source’s anonymity. By adding a wider variety of data
while yet protecting the confidentiality of the data source,
vertical federated learning improves the accuracy of intrusion
detection.

2.3 Techniques for Federated Learning

Federated learning methods have become strong ways to
train machine learning models together while keeping data
private and preventing unauthorized access[24]. By using
these methods, businesses can use the knowledge of many
autonomous devices without putting private data at risk.
Table 1 compares the four main federated learning methods:
averaging, differential privacy, safe aggregation, and transfer
learning.

Table 2 provides a summary and comparison of the various
aggregation techniques that are used in federated learning.

2.4 Federated Learning Aggregation

Usually, the aggregation process takes place at a centralized
server or aggregator, which is in charge of gathering client-
provided local model changes and integrating them to create
a global model. In FL, there are a several popular techniques
for aggregation:

1. FedAvg, or Federated Averaging: FedAvg is a technique
of aggregation that is used often in FL. The global model
update in FedAvg is the average of client local model updates,
usually gradients or model weights. In order to update the
global model, the central server averages the local changes.
FedAvg is easy to implement and has the potential to achieve
high performance in a wide variety of real-world circum-
stances.

Sahaaya Arul Mary S. A. et al.
International Journal of Communications

http://www.iaras.org/iaras/journals/ijoc

ISSN: 2367-8887 13 Volume 9, 2024

TABLE 1. Techniques for federated learning compared[24].

Technique Description Advantages Disadvantages

Federated
eraging

Av- Central server aggregates
model updates from multi-
ple clients and sends up-
dated model back to clients.

Efficient, scales well to a
large number of clients, and
preserves the privacy of
client data.

Slow convergence due to
communication bottleneck;
potential bias towards more
frequently updated clients.

Federated
Learning

with

Adds noise to model up-
dates to protect client pri-

Provides strong privacy
guarantees; allows for more

Introduces noise to model
updates, which may reduce

Differential
Privacy

Federated
Learning
with Secure
Aggregation

Federated
Transfer
Learning

vacy.

Utilizes secure multiparty
computation to aggregate
model updates without re-
vealing client data.

Clients transfer knowledge
learned from their local data
to a shared model.

diverse client participation.

Provides strong privacy
guarantees; preserves client
data privacy, even in case
of compromised server.

Enables learning across do-
mains and improves model
generalization.

model accuracy.

Computationally
expensive; may require
specialized hardware.

Requires similar data
distributions across clients,
which may lead to bias if
clients have vastly different
data.

TABLE 2. Shows aggregation approaches in federated learning.

Method

2. Weighted Federated Averaging: An improvement on
FedAvg, Weighted Federated Averaging gives various clients
varying amounts of weight while aggregating their data.
Weights may be determined by a variety of factors, including
sample size or the efficiency of customers’ offline models.
When updating the local model, the central server takes
the provided weights into consideration and computes the
weighted average. Clients may be treated differently depend-
ing on their contributions or skills using weighted federated
averaging [8].

FedAvgM; Federated Averaging using Momentum:An im-
provement on federated averaging, federated averaging with
momentum (FedAvgM) updates the system by factoring in
the current moment. By considering previous gradients, mo-
mentum speeds up the point of convergence of the optimi-

sation process in classic gradient descent [10]. Similarly,
FedAvgM uses the participating devices’ prior gradients to
speed up the federated optimization algorithm’s convergence.

The updating equation for FedAvgM is as follows:

vt = mu ∗ vt−1 + lr ∗ gt, (1)

wt = wt−1 − vt, (2)

where v_t is the momentum vector at time t, mu is the
momentum coefficient, lr is the learning rate, g_t is the
average gradient of the participating devices at time t, and
w_t is the updated model at time t.

FedAvgM has been shown to improve the convergence
rate and final accuracy of the federated learning algorithm,
especially in scenarios where the participating devices have a

Aggregation Description Use Cases

Federated Averag- Average of the model parameters from Image classification, speech recogni-
ing all participating devices is taken as the tion, natural language processing.

 updated model.
Federated Aggregation of stochastic gradients -
Stochastic Gradient from all participating devices to update

Descent (FSGD) the global model.
Federated Learning Encrypted data and model parameters Privacy-sensitive applications such as
with Secure Aggre- are transferred from participating de- healthcare and finance.
gation (FSA) vices to a central server, where the ag-

 gregation is performed with the help of

 secure multiparty computation (MPC).
Federated Distilla- Model compression technique where Healthcare, finance, edge computing.
tion a smaller, more lightweight model is

 trained on the global model using

 knowledge distillation.

Sahaaya Arul Mary S. A. et al.
International Journal of Communications

http://www.iaras.org/iaras/journals/ijoc

ISSN: 2367-8887 14 Volume 9, 2024

Σ

heterogeneous data distribution. To provide a deeper under-
standing of FedAvgM, we defined the following variables:

• θ= Current global model parameters;
• θ i = Current global model parameters;
• θ prev = the previous global model parameters;
• gi = local model update of device i;
• m = the momentum term;
• Li = the local loss.
(a) Initialization:
• θ and m are initialized by the central server.
(b) Client Update:
• Each client device i updates its local model parameter θ i

by minimizing its local loss function Li(θ i).
• The local model update for the device i is given by

g i = θi−θ. (3)

(c) Server Aggregation:
• The central server aggregates the local model updates

from all the devices to obtain the current aggregated local
model update, which is denoted as G. The aggregation is
performed by summing up all the local model updates across
all client devices and dividing by the total number of client
devices (N) to obtain the average:

G = (g i)/N. (4)

(d) Momentum Update:
• The momentum term m is updated using the formula:

m←−βm + (1−β)(θ−θprev) + G (5)
where, β is the momentum parameter. The formula combines
the previous value of m, the difference between the current
and previous global model parameters, and the aggregated
local model update to calculate the new value of m.

1. Aggregation Security: When it comes to FL, one aggre-
gation approach that prioritizes privacy and security is secure
aggregation. Secure multiparty computations (SMPC) and
homomorphic encryption are two examples of cryptographic
methods that are often used to safeguard local model changes
while they are being aggregated. While secure aggregation
offers robust privacy protections, it may be more difficult and
incur computational burden than alternative aggregation
approaches.

2.5 Autoencoder

Often called "deep learning," deep neural networks (DNNs)
represent a state-of-the-art branch of machine learning at
the forefront of artificial intelligence (AI). They are built
on multi-level representation learning techniques for mod-
elling intricate interactions between data. Thus, traits and
concepts at higher levels are defined in terms of those at
lower levels. The back-propagation (BP) approach, so termed
because it propagates the error in the neural network’s es-
timate backward from the output layer towards the input
layer, has historically been used to train neural networks.
Along the process, we can modify the model parameters

using BP. Regretfully, the BP algorithm has a number of
flaws that prevented it from working effectively with DNNs.
Autoencoders (AE) are type of artificial neural network that
aims to copy their inputs to their outputs . They work by
compressing the input into a latent-space representation also
known as bottleneck, and then reconstructing the output from
this representation.Autoencoder is an unsupervised machine
learning algorithm. We can define autoencoder as feature
extraction algorithm. The input data may be in the form of
speech, text, image, or video. An Autoencoder finds a repre-
sentation or code in order to perform useful transformations
on the input data.The Decoder generates the output sequence
by predicting the next output yt given the hidden state ht.

The hidden states h_i are computed using the formula:

ht = f (W (hh)ht-1). (6)

The output y_t at time step t is computed using the formula:

yt = softmax (W Sht). (7)

The output is calculated using the hidden state at the current
time step together with the respective weight W(S). Softmax
is used to create a probability vector that will help us deter-
mine the final output.

3. Related Literature
In the area of breach detection, federated learning has gotten
a lot of interest as a way to protect privacy that lets various
groups train models together without sharing private data.
This part talks about the linked works on intruder detec-
tion using collaborative learning. This shows the efforts and
progress scholars have made in this area.

FELIDS, an intrusion detection system based on feder-
ated learning and specifically developed to safeguard agri-
cultural IoT infrastructures, was introduced by Friha et al.
[18]. Aiming to protect data privacy, the system uses local
learning, where devices share model changes with a central
computer to make the recognition model better. Three types
of deep learning models are used by the FELIDS system
to make the farm IoT safer: neural networks that are deep,
neural networks with convolution, and neural networks with
recurrence. Three different sets of data were used to test the
suggested intrusion detection system: CSE-CIC-IDS2018,
MQTTset, as well as InSDN. The testing findings showed
that when compared to standard centralized machine learning
approaches, FELIDS was far better at identifying assaults
and protecting the privacy of data from Internet of Things
devices[24].

Attota et al. [19] suggested MV-FLID as a way to find in-
trusions in IoT networks using multiview federated learning.
The writers talked about the problems with current breach
detection methods and emphasized the need for smarter,
more private methods. MV-FLID uses multiview learning
and distributed learning to better find and classify attacks
while protecting the privacy of data. The test results showed
that MV-FLID was more accurate than other ways. The

Sahaaya Arul Mary S. A. et al.
International Journal of Communications

http://www.iaras.org/iaras/journals/ijoc

ISSN: 2367-8887 15 Volume 9, 2024

writers said that MV-FLID protected data privacy through
shared learning, but this paper didn’t go into detail about how
privacy was protected or talk about possible flaws. To make
the suggested method for protecting personal IoT data more
credible, it would be helpful to talk more about privacy-
preserving techniques, such as methods of encryption or
differential privacy.

For Internet of Things (IoT) networks, Rahman et al. [20]
presented a federated learning (FL)–based intrusion detection
system (IDS). Using the NSL-KDD dataset, they did three
different tests: centralized learning, device-based learning,
and shared learning. Compared to the centralized model, the
FL-based IDS performed quite similarly in their experimental
assessment, reaching an accuracy of around 83.09%.

Nguyen et al. [21] suggested an IDS (intrusion detection
system) for the IoT that uses federated learning, or FL, and
a computerized method that is tailored to different types
of devices. When tried on real devices that had the Mirai
malware on them, this work had an amazing average success
rate of 95.6 percent for finding threats, and it did so with
an average response time about 257 ms. Also, the system
didn’t give off many fake alarms. It’s important to keep in
mind, though, that the suggested model was only made to
find attacks on IoT devices. It wasn’t thought about any other
possible threats that could affect different parts of the
environment, like advanced networking technologies like
SDN and services like FTP and SSH.

4. Protecting Privacy in Intrusion

Detection with Federated Learning
Finding Anomalies with Autoencoder Model: For the pur-
pose of constructing an intrusion detection system, an au-
toencoder was used. One kind of neural network that in-
trusion detection systems may use for anomaly detection
is an autoencoder. In this method, autoencoders are trained
only on data that is representative of typical network traf-
fic activities. Using an encoder network, the autoencoder
learnt to compress the regular traffic patterns during training.
The representation was then decoded by a decoder network,
which resulted in the data being returned to its original state.
Reconstruction error, defined as the discrepancy between
input and reconstructed data, was the primary metric for the
training aim.

An autoencoder that had been trained was applied to fresh
instances of network traffic that had not been observed before
during the phase of anomaly detection. In order to determine
the degree of similarity in the observed traffic with the usual
patterns that were learnt, the system was able to calculate
the reconstruction error that occurred from the input and
the output that was rebuilt. The instances that had larger
reconstruction errors were categorized as anomalies, which
indicated that there was a possibility of intrusions or assaults
taking place. To discriminate between typical and aberrant
cases, a threshold was chosen. Anomalies were identified as
instances that had reconstruction errors that were higher than
the threshold, whereas instances that had errors that were

lower than the threshold were judged to be normal.
The autoencoder consists of an encoder and decoder net-

work, where the encoder maps the input data X to a lower-
dimensional representation Z through the encoding function
h such that Z = h(X)„ and the decoder maps the lower-
dimensional representation Z to the output data Ythrough the
decoding function g such that Y = g(Z). The autoencoder’s
job is to learn how to reduce the input data so that it keeps
only the most important parts while reducing the difference
between it and the recovered data as much as possible. This
is also known as lowering the reconstruction error.

L(X, Y) = ||X − Y ||2. (8)
where X represents the data that was supplied, and Y the

data that was rebuilt.
During the training phase, it is necessary to minimize the

error in reconstruction L(X, Y) among the input data & the
reconstructed data. This may be accomplished by adjusting
the parameters of the decoder and encoder networks via the
use of descent gradients or other optimization algorithms.
After the autoencoder has been trained, it may be used for
a variety of activities, including the encoding of input data in
order to produce representations with lower dimensions, the
generation of new data samples based on the representations
that have been learnt, and the utilization of the encoder as
a module for extraction of features for jobs that are further
down the line. An anomaly detection method employed the
trained autoencoder to rebuild fresh network traffic data and
compare the reconstruction error to a threshold. It was
determined that the network traffic was considered to be an
anomaly if the amount of reconstruction error was more than
the threshold. This method excels at uncovering previously
unseen anomalies since the autoencoder can pick up on any
changes from the typical patterns it learnt during training.
Figure 1 is a graphical depiction of the method that is used for
the purpose of identifying anomalies using an autoencoder
device.

The visualization of anomaly identification using autoen-
coders is shown in Figure 1.

Federated-Learning-Based Intrusion Detection System, or
FELIDS:

Figure 2 shows one approach to construct federated aver-
aging using federated machine learning’s horizontal design.
Here, N devices get the input, and they individually train their
own model using the data that is physically available to them.
Each client may train their own compressed data representa-
tion using a deep autoencoder as a local model. Following
client-device-specific model training, the federated server
receives model parameters and uses a federated averaging
procedure to aggregate them with all client-device parame-
ters. Maintaining the confidentiality of individual client data
is made possible by this method, enabling the server to
incorporate all clients’ collective knowledge into the global
model.

For the federated-learning-based system for intrusion de-
tection (FELIDS) to start its federated-learning (FL) pro-

Sahaaya Arul Mary S. A. et al.
International Journal of Communications

http://www.iaras.org/iaras/journals/ijoc

ISSN: 2367-8887 16 Volume 9, 2024

FIGURE 1. The visualization of anomaly identification using autoencoders is shown .

FIGURE 2. Intruder detection system with a horizontal design. .

cess, the FELIDS server chooses C out of K edge nodes
(FELIDS clients) to take part in the calculation for R FL

rounds. A strong intrusion detection model is to be trained
cooperatively. Using a secure gRPC channel (Google remote

Sahaaya Arul Mary S. A. et al.
International Journal of Communications

http://www.iaras.org/iaras/journals/ijoc

ISSN: 2367-8887 17 Volume 9, 2024

←

∇

k=1 nt

procedure call), clients and servers may communicate data
securely. Both the client and the server can be authenticated
and their communication can be encrypted since this channel
has built-in support for SSL/TLS (transport layer security).
During the FL process, all data transmitted is protected by
this secure channel, ensuring its secrecy and integrity. Figure
2 shows the FL process following the steps and algorithms
mentioned in Algorithm 1 and 2, both of which are based
on the Fed Average algorithm [22]. This is done once all the
chosen clients have connected over the secure gRPC channel.

Here is how the FL procedure operates:

Algorithm 1: StartServer Algorithm

1 Procedure STARTSERVER(K, C, R)

2 while K length(ConnectedClients()) do

// Loop until all clients are connected loop;
3 end

4 FedAvg();
5 ReleaseClients();
6 Procedure FedAvg ()

7 w1 GenericModel();
8 for t = 1, . . . , R do

9 St ← Subset(max(C · K, 1), random);
10 for k ∈ St do

1. The parameters of the global model are initialized by the
server. 11

k
t+1

end
← Clientk · FedAvg(wt)

12 wt+1 ←
Σnt

 1 wk;

individually, using the FL training approach.

3. Through the use of the secure gRPC channel, the clients
submit their local model modifications to the server in a
secure manner.

4. The federated averaging (FedAvg) technique is often

used by the server in order to aggregate the local model
updates that have been received.

5. The server implements the aggregate model updates in

order to update the global model parameters.

6. Steps 2-5 are repeated for R FL rounds, enabling models
to develop and converge into a superior intrusion detection
model.

7. Following the FL procedure, the system-wide intrusion

detection system uses the final global model.

After the clients have been linked, the algorithm will carry
out FedAvg, which is a process that includes picking a
subset of customers and delivering them the parameters of the
current model. The model is then trained locally by each
chosen client using the client’s own private data, and after the
model parameters have been updated, they are sent back to
the server. Each client transmits their own set of parameters
to the server, which then calculates a new global model and
returns the results to the clients. In order to complete a certain
number of communication cycles, this procedure is repeated.

When everything is said and done, the algorithm is termi-

nated and the clients are released. By avoiding server-side
data sharing and storing training data locally, this method
aims to increase ML model accuracy without compromising
user privacy.

The "StartServer" is the component that is used to initiate
the federated learning process, and Algorithm 1 provides a
high-level definition of the concept. K, which represents the
overall amount of FELIDS clients, C, which represents the
proportion of clients selected to take part in each round, and
R, which represents the number of rounds that the feder- ated
learning process is required to complete, are the three
parameters that are used by the algorithm. The algorithm’s
main loop continues until K clients connect to the server. The
"FedAvg" algorithm, which executes R cycles of federated
learning, is implemented within this iteration. During every
round, a randomly chosen portion of C *K clients is selected
to take part in the process. These clients then educate their
local model by using the global model that is currently func-
tioning. A fresh global model is then created by combining
the models that have been changed at the local level. The
customers are liberated from the procedure after all of the
rounds have been finished. An explanation of the algorithm
is provided in the next section:

•D: The entire dataset used for training the machine learn-
ing model.

•B: The number of clients or subsets into which the dataset
is divided during training.

•E: The number of local training epochs for each client
during each round of FedAvg.

•P: The preprocessed dataset obtained after applying the
preprocess function to D.

• w: The model parameters (weights and biases) shared
between clients and the server.

• B: The local dataset batch on each client obtained by
splitting P into B subsets.

• η: The learning rate, which controls the step size of the
model parameter updates.

• f (w, b): The gradient of the loss function f (w, b) with
respect to w

Federated-learning-based intrusion detection systems em-
ploy FIELDS client algorithm 2 for federated averaging
(FedAvg). When training the global model with their private

w

2. Using their own local data, each client trains a model 13 end

Sahaaya Arul Mary S. A. et al.
International Journal of Communications

http://www.iaras.org/iaras/journals/ijoc

ISSN: 2367-8887 18 Volume 9, 2024

←

←

←

← − ∇
∈

data, this procedure is done by every FELIDS client k.
Initially, the client communicates with the FELIDS server in
order to get the generic model. Local weights are generated
by the client after parallelly training the generic model with
their private data. Every user has a preprocessed database
that is divided into localized mini batches of size B. The
client then calculates the fresh weights by upgrading the
previous ones utilizing the rate of learning, averaged gra-
dient, and minibatch. This procedure is repeated until the new
weights are computed. In the event that the settings have been
modified, after being calculated, the client then transmits
them to the FIELDS server. FIELDS clients, in contrast to
centralized learning, only exchange the updated model
parameters, which were trained on the local data. This is in
contrast to centralized learning. A new updated global model
is generated by the FIELDS server by applying the average
update to the aggregated updated parameters that are received
from the various FELIDS clients. Last but not least, the
FELIDS server sends the revised global model parameters to all
of the FELIDS clients so that they may get further
enhancements based on their newly acquired local data.

 Algorithm 2: Client Algorithm
Input: Parameters D, B, E

Output: None
1 Algorithm StartClient(D, B, E):

2 P PreProcess(D);
3 while ServerConnect() do

4 FedAvg(w FetchParams());
5 end

6 SaveParams(w);
7 Function FedAvg(w):

8 B Split(P, B);
9 for i = 1, . . . , E do

10 for b B do

11 w w η f (w, b);
12 end

13 end
14 return w to Server;

the central server to communicate with the clients while
encrypting and authenticating their data. We specified the hy-
perparameters and global model architecture for the federated
learning system.

Here are the steps involved in the local model update: The
local datasets were used to train the models by each client.
After deciding on an appropriate machine learning technique,
we used the datasets from each client to train a local model.
For every customer, the particular model parameters, denoted
as θi, were revised.

The NSL-KDD dataset was employed to train our model.
The training set comprised 125,973 records, while the test set
comprised 22,544 records. To train and verify the model, we
divided the training dataset into two sets, one for training and
one for validation, using a 4:1 ratio. After the training was
finished, we used the test dataset to see how well the model
performed. The global model M was obtained by aggregating
the local model updates θ1, θ2,..., θN through the utilization
of federated averaging as well as a customized aggregation
function.

To examine how well the global model M performed, we
used the NSL-KDD dataset’s test dataset to quantify the
model’s accuracy and several intrusion detection measures.

In terms of accuracy and loss values, Table 3 compares
federated learning with deep learning. In general, and par-
ticularly as training continued, the findings showed that
federated learning might outperform deep learning in terms
of accuracy. Keep in mind that larger loss values could
accompany this enhanced precision.

In terms of accuracy and loss values, Table 3 compares
federated learning with deep learning. In general, and par-
ticularly as training continued, the findings showed that fed-
erated learning might outperform deep learning in terms of
accuracy. Taking into consideration the possibility that this
enhanced accuracy would be accompanied by greater loss
values is an essential consideration.

It must be noted, nevertheless, that the dataset and model
architectural choices might impact these results. This means

 that these variables may affect the outcomes. There is a deep
learning column and a federated learning column in this

5. Findings and Experiments
To train deep learning & federated learning models, the NSL-
KDD dataset had been preprocessed and divided into test and
training sets. The federated learning configuration ensures
data confidentiality and safety by establishing an encrypted
communication protocol among the central server & clients.
The test dataset was used to assess the global model that was
created by aggregating local model changes. With 125,973
records for training and 22,544 records for testing, we ac-
quired and prepared the NSL-KDD dataset. For the objectives
of training and validating the model, the dataset for training
was divided into two sets: one for validation and the other for
training [7].

The following was involved in the federated learning
setup: To protect the confidentiality of the information, we
developed a secure communication protocol that would allow

table. In this training table, each row stands for a distinct
iteration. Deep learning had an initial accuracy of 78.33%
and federated learning of 94.40%, while the loss values were
1.9984% and 0.5441%, respectively, as shown in the first row
of the table.

During the course of the training, both models significantly
improved in terms of their accuracy and loss. The results of
the fifth phase or epoch demonstrate that federated learning
did better than deep learning, with an accuracy rate of 96.54%
as well as a loss of 18.1923%. This is in contrast to the
outcomes of deep learning, which had an effectiveness of
85.37% as well as a loss of 0.6459%.

In the tenth round, or epoch, federated learning main-
tained its superiority over deep learning, which had a loss
of 38.5893% and an accuracy of 97.15%. In contrast, the
deep learning results had a loss of 0.4505. In conclusion, the

Sahaaya Arul Mary S. A. et al.
International Journal of Communications

http://www.iaras.org/iaras/journals/ijoc

ISSN: 2367-8887 19 Volume 9, 2024

results from the twentieth round, also known as the epoch,
showed that deep learning had a loss of 0.2824% and an
accuracy of 94.53%, while federated learning had the best
overall performance at 97.77%.

Table 3 displays the results of the testing conducted on
federated learning and deep learning.

TABLE 3. Accuracy and Loss for Deep Learning and Federated Learning

The confusion matrix for federated learning is shown in
Figure 6. Additionally, a confusion matrix graphic is shown
in the supplied text. Viewed here are the true positive (TPR)
and false positive (FPR) rates for a federated learning model
over a range of threshold settings.Based on the data shown in
the figure, the accuracy is 98.067%, the precision is 0.974%,
the F1-score is 98.210, the TPR is 0.99058%, and the FPR
is 0.03075% at the threshold that was previously selected.

 Based on these measures, it seems that the model performs
Learning Types Deep Learning Federated Learning

Accuracy Loss Accuracy Loss

1st (round/epoch) 78.33% 1.9984% 94.40% 0.5441%
5th (round/epoch) 85.37% 0.6459% 96.54% 18.1923%
10th (round/epoch) 91.19% 0.4505% 97.15% 38.5893%
20th (round/epoch) 94.53% 0.2824% 97.77% 58.3108%

In general, the table illustrates that federated learning has

the potential to attain a better level of accuracy than deep
learning, especially as the training process advances.
However, this may come at the expense of a larger loss
rate. On the other hand, it is important to keep in mind that
the outcomes may differ based on the particular dataset and
model architecture that was used.

In contrast to the deep learning technique, which might
take up to fifteen epochs to get equivalent performance,
the federated learning strategy achieved acceptable loss and
accuracy already in the first round (Figures 3 and 4). Fur-
thermore, the findings show that both methods used the same
amount of data every round or epoch, but federated learning
achieved better outcomes than deep learning. On the other
hand, federated learning’s validation loss rose in tandem with
the number of rounds, suggesting that overfitting happened
sooner with this method.

As shown in Figure 5, the confusion matrix for federated
learning is shown. Accuracy, precision, recollection, and the
F1-score are some of the significant metrics that can be
calculated with the use of this information since it offers a
clear split of the true positive results, the real negatives, fake
positives, and false negatives. Having a higher F1-score im-
plies that there is a greater balance between the accuracy and
recall, which suggests that the classifier is more trustworthy
for tasks that include binary classification [23]. This indicates
that the model was successful in making accurate predictions
for about 98.067% of the total cases, as it attained an accu-
racy of 98.067%. There was a 97.4% percent success rate,
or 0.974 percent accuracy, in the model’s positive instance
identification. Taking into account both recall and accuracy,
the F1 score came out to 98.210%, demonstrating excellent
overall performance. Furthermore, the rate of true positives
(TPR), which is sometimes referred to as sensitivities or
recollection, was 0.99058, which indicates that the model
accurately detected 99.058 % percentage among the positive
tests. Furthermore, the model has a low rate of false positives
(FPR) of 0.03075%, which indicates that it had a very small
amount of mistakes that were considered to be false positives.

very well in terms of precision, accuracy, and F1 score, and
it also has a low percentage of false positives.

There are a number of limitations and challenges asso-
ciated with federated learning in systems for intrusion de-
tection. These include the following: data variation, over-
head for communication, data imbalance, concerns regarding
security and privacy, model aggregation weaknesses, client
availability issues, a lack of a global point of view, and diffi-
culties in managing model drifting. For FL in IDS to become
more efficient and safe, it is vital that these difficulties be
addressed.

6. Conclusions
In conclusion, the primary objective of our study was to
assess the efficacy of federated learning in terms of improv-
ing systems for intrusion detection (IDS) that are designed
to protect confidential information. The distributed machine
learning technique known as federated learning makes it
possible to train a shared model in a collaborative manner
while yet preserving the decentralization of data and the
confidentiality of the information.

Our studies and comparisons with classic deep learning
models have shown that federated learning, when using a
randomly chosen group of clients, surpasses deep learning
both in terms of accuracy and loss in an Intrusion Detection
System (IDS). This benefit is especially noteworthy in situa-
tions where the protection and confidentiality of data are of
utmost importance.

Through the use of federated learning, we successfully
created worldwide models minus the need of exchanging
sensitive data, thus minimizing the potential dangers linked
to data breaches or unauthorized disclosure. Our research
findings suggest that federated learning holds the potential to
transform the creation of IDS solutions, making them more
powerful, streamlined, and secure.

The research study used the NSL-KDD dataset, a well
utilized database for network intrusion detection. It built
a horizontal learning federation architecture with average
aggregation & random client selection. The experimental
results repeatedly showed that the federated learning method-
ology outperformed traditional deep learning approaches in
terms of accuracy and loss.

This finding is very significant, since it enables the
development of more accurate and reliable intrusion
detection systems that can effectively prevent security
breaches and protect sensitive data in several sectors like
healthcare, fi- nance, and national security.

Sahaaya Arul Mary S. A. et al.
International Journal of Communications

http://www.iaras.org/iaras/journals/ijoc

ISSN: 2367-8887 20 Volume 9, 2024

FIGURE 3. shows the outcomes of deep learning.

FIGURE 4. Results of federated learning are shown.

FIGURE 5. Results of federated learning are shown.

Subsequent investigation in this field might go deeper into
improving the federated learning technique, examining its
implementation on other datasets, and tackling the obsta- cles
associated with scalability and diverse client settings. In
summary, federated learning has significant potential in
enhancing the privacy of systems that detect intrusions and
bolstering network security.

FIGURE 6. The confusion matrix for federated learning is shown .

References
[1] Khraisat, A.; Alazab, A. , “A critical review of intrusion detection systems

in the internet of things: Techniques, deployment strategy, validation
strategy, attacks, public datasets and challenges.” Cybersecurity 2021, 4,
18.

[2] Khraisat, A.; Gondal, I.; Vamplew, P.; Kamruzzaman, JSurvey of intrusion
detection systems: Techniques, datasets and challenges. Cybersecurity
2019, 2, 20.

[3] Alazab, A.; Khraisat, A.; Singh, S.“A Review on the Internet of Things
(IoT) Forensics: Challenges, Techniques, and Evaluation of Digital Foren-
sic Tools. In Digital Forensics-Challenges and New Frontiers; Reilly, ’
Reilly,D.D., Ed.; IntechOpen: Rijeka, Croatia, 2023; Chapter 10’

[4] Alazab, A.; Khraisat, A.; Alazab, M.; Singh, S. , “Detection of obfuscated
malicious JavaScript code. Future Internet ” 2022, 14, 217.

[5] Agrawal, S.; Sarkar, S.; Aouedi, O.; Yenduri, G.; Piamrat, K.; Alazab,
M.; Bhattacharya, S.; Maddikunta, P.K.R.; Gadekallu, T.R. “Federated
learning for intrusion detection system: Concepts, challenges and future
directions.” Comput. Commun. 2022, 195, 346–361.

[6] Victor, N.; Alazab, M.; Bhattacharya, S.; Magnusson, S.; Mad- dikunta,
P.K.R.; Ramana, K.; Gadekallu, T.R."Federated learning for iout:
Concepts, applications, challenges and opportunities" arXiv 2022,
arXiv:2207.13976.

[7] Tavallaee, M.; Bagheri, E.; Lu, W.; Ghorbani, A.A “A detailed analysis of
the KDD CUP 99 data set. In Proceedings of the 2009 ”IEEE Symposium
on Computational Intelligence for Security and Defense Applications
,Ottawa, ON, Canada, 8–10 July 2009; pp. 1–6.

[8] Khraisat, A.; Gondal, I.; Vamplew, P.; Kamruzzaman, J.; Alazab, AHybrid
Intrusion Detection System Based on the Stacking Ensemble of C5 Deci-

Sahaaya Arul Mary S. A. et al.
International Journal of Communications

http://www.iaras.org/iaras/journals/ijoc

ISSN: 2367-8887 21 Volume 9, 2024

sion Tree Classifier and One Class Support Vector Machine, Electronics
2020, 9, 173.

[9] Ghimire, B.; Rawat, D.B. Recent advances on federated learning for cy- ber
security and cybersecurity for federated learning for internet of things.
IEEE Internet Things J,2022, 9, 8229–8249.

[10] Sun, T.; Li, D.; Wang, B. , “Decentralized federated averaging. ”IEEE
Trans. Pattern Anal. Mach. Intell 2022, 45, 4289–4301.

[11] Wei, K.; Li, J.; Ding, M.; Ma, C.; Yang, H.H.; Farokhi, F.; Jin, S.; Quek,
T.Q.; Poor, H.V; "Federated learning with differential privacy: Algorithms
and performance analysis."IEEE Trans. Inf. Forensics Secur.2020, 15,
3454–3469.

[12] Fereidooni, H.; Marchal, S.; Miettinen, M.; Mirhoseini, A.; Möllering,
H.; Nguyen, T.D.; Rieger, P.; Sadeghi, A.R.; Schneider, T.; Yalame, H.et
al. "SAFELearn: Secure aggregation for private federated learning. In
Proceedings of the 2021" emphIEEE Security and Privacy Workshops
(SPW), San Francisco, CA, USA, 27 May 2021; IEEE: Piscataway, NJ,
USA; pp. 56–62.

[13] Liu, Y.; Kang, Y.; Xing, C.; Chen, T.; Yang, Q.A secure federated transfer
learning framework IEEE Intell. Syst. 2020, 35, 70–82.

[14] Hu, L.; Yan, H.; Li, L.; Pan, Z.; Liu, X.; Zhang, Z. “MHAT: An efficient
model-heterogenous aggregation training scheme for federated learning,”
Inf. Sci. 2021, 560, 493–503.

[15] Elahi, F.; Fazlali, M.; Malazi, H.T.; Elahi, M. “Parallel fractional stochastic
gradient descent with adaptive learning for recommender systems.” IEEE
Trans. Parallel Distrib. Syst,. 2022, 1–14.

[16] So, J.; He, C.; Yang, C.S.; Li, S.; Yu, Q.; Ali, R.E.; Guler, B.; Avestimehr,
S. Lightsecagg: A lightweight and versatile design for secure aggregation
in federated learning. Proc. Mach. Learn. Syst2022, 4, 694–720.

[17] Xing, H.; Xiao, Z.; Qu, R.; Zhu, Z.; Zhao, B., "An efficient federated dis-
tillation learning system for multitask time series classification.emphIEEE
Trans. Instrum. Meas. "IEEE Trans. Instrum. Meas. 2022, 71, 1–12.

[18] Friha, O.; Ferrag, M.A.; Shu, L.; Maglaras, L.; Choo, K.K.R.; Nafaa,
M.“FELIDS: Federated learning-based intrusion detection system for agri-
cultural Internet of Things. ”J. Parallel Distrib. Comput. 2022, 165, 17–31.

[19] 1Attota, D.C.; Mothukuri, V.; Parizi, R.M.; Pouriyeh, S. "An ensemble
multi-view federated learning intrusion detection for IoT. "IEEE Access.
2021, 9, 117734–117745.

[20] Rahman, S.A.; Tout, H.; Talhi, C.; Mourad, A."Internet of things intru- sion
detection: Centralized, on-device, or federated learning?"IEEE Netw.
.2020, 34, 310–317.

[21] Nguyen, T.D.; Marchal, S.; Miettinen, M.; Fereidooni, H.; Asokan, N.;
Sadeghi, A.R. DÏoT: A federated self-learning anomaly detection system
for IoT. In Proceedings of the 2019 IEEE 39th International Conference
on Distributed Computing Systems (ICDCS), Dallas, TX, USA, 7–10 July
2019; pp. 756–767.

[22] McMahan, B.; Moore, E.; Ramage, D.; Hampson, S.; Arcas, B.A.Y
“Communication-efficient learning of deep networks from decentralized
data.” In Proceedings of the Artificial Intelligence and Statistics, PMLR,
Ft. Lauderdale, FL, USA, 20–22 April 2017

[23] Alazab, A.; Khraisat, A.; Singh, S.; Bevinakoppa, S.; Mahdi, O.A. "Rout-
ing Attacks Detection in 6LoWPAN-Based Internet of Things." Electron-
ics 2023, 12, 1320.

[24] Ammar Alazab ,Ansam Khraisat ,Sarabjot Singh and Tony Jan "Enhanc-
ing Privacy-Preserving Intrusion Detection through Federated Learning"
Electronics 8 August 2023

Sahaaya Arul Mary S. A. et al.
International Journal of Communications

http://www.iaras.org/iaras/journals/ijoc

ISSN: 2367-8887 22 Volume 9, 2024

