
The components used in the rail track structure (e.g. rails, 
fixing systems and supports) and rail failures significantly 
affect vibration behavior and hence the safety and comfort of 
trains. 

The impact on the vibration behaviour caused by wheel-
rail interaction and suspansion system design is therefore an 
especially important task to achieve travel safety and optimal 
travel conditions in high speed trains [1-2]. 

Different railway car-bogie designs and bogie 
constructions as seen in Figure 1 are commonly used in 
applications [3]. 

 

Figure 1. Different Type of Car Bogie Designs. 

Before production, designer develops a suitable design 
that meets the requirements and research-engineer then 
creates relevant and suitable mathematical model in order to 
calculate the desired values and to test theoretically evaluated 
results. 

The designer consciously tries to set the natural vibration 
frequencies (natural frequencies) in such a way that no 
disruptive resonance phenomena occur under normal 
operating conditions [4-5]. In this study, a mathematical 
model based on the bogie-chassis construction as shown in 
Figure 2 is selected and the natural frequencies of the system 
with relevant vibration modes are calculated. The self-excited 
vibration tendency of the model is analyzed using the complex 
eigenvalue method [6]. 

 

 

Figure 2. Mathematical model of bogie-chasse construction. 

For various damping coefficients the vertical motions of 
susupension System of the track consisting of mass damper 
and spring can be represented with a seconnd degree of 
freedom model as shown in Figure 2. 

 

Figure 3. One dimensional model and free motions with different damping 
effects. 

Considering the vertical motions the susupension of the 
track can be modelled as a second degree of freedom system 
existing of  mass-damper–spring as represented in Figure 2. 
The vertical motion depending on different kind of excitations 
from railway can be described by following differential 
equation with M as mass, C damping coefficient, K as spring 
stiffness and F as ground forces [3]. 

𝑀�̈� + 𝐶�̇� + 𝐾𝑥 = 𝐹 (1) 

The natural frequency ωn damping constant D and 
resonance frequency ωr can be calculated as follows: 

𝜔𝑛 = √𝐾/𝑀  (2) 
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𝜔𝑟 = 𝜔𝑛√1 − 2𝐷2 (4) 

 

There are different kind of excitations which cause to 
vibrations on railway tracks; these can occur depending on 
wheel-rail interactions because of disturbances through rail 
failures, unbalanced mass effects and assembly-maintenance 
failures etc. [2-8]. Especially periodical excitations in form of 
frequency-spectrum influence the system parts with different 
Eigen-frequencies and amplitudes producing pulse train 
effect. 

Assuming a harmonic disturbance with constant amplitude 
a0 free vibration tests of track with different damping ratios 
can be applied and frequency response can be investigated by 
using the following differential equation (with  a=x and 
a0=x0): 

𝑀�̈� + 𝐷�̇� + 𝐾𝑥 = 𝐷𝑥0̇ + 𝐾𝑥0  

In frequency domain with: 

𝑋(𝑠)

𝑋0(𝑠)
=

𝐷𝑠 + 𝐾

𝑀𝑠2 + 𝐷𝑠 + 𝐾
  

Speed which is ϑk corresponds to natural frequency of 
track is taken as critical speed; Ratio of measured value a to 
input amplitude a0 for various travel speed ratios ϑ/ϑk and 
damping rates can be calculated with: 

𝑎
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The simulation result for different vehicle speed ratios ϑ/ϑk 
and damping rates is  illustrated in Figure 4. In the same figure 
the change of the vibrating force with the driving speed ratio 
and for different damping rates is also given. It is evident from 
Figure 4 that resonance occurs for ϑ=ϑk. In order to avoid 
critical driving conditions, these graphics provide highlighted 
information [3-8]. 

 

Figure 4. Change of Amplitude with speed depending on various damping 
Coefficients 

When analyzing a mechanical system composed of mass, 
spring, and dampers, it is important to model the configuration 
of these elements that make up the system. 

This combination can be described with a Linear 
Mechanical Network Operator (LMNO) model [5]. As an 
example, a network model of a second-order system with 
transfer function is shown in Figure 5. 

 

Figure 5. Representation Network Model of a Second Order System 

𝑋(𝑠) =
𝐹(𝑠)

𝑀𝑠2 + 𝐷𝑠 + 𝐾
 (6) 

Similarly, network modelling can be used and applied to 
solve vibration equations and to calculate natural frequencies 
with different motion modes of more complicated systems 
with several degrees of freedom. 

The following example of the calculations and solutions 
for a reduced track system with three degrees of freedom is 
shown in Figure 6. 

By considering the orbital disturbances Ya, Yb, Yc and Yd 
as system inputs, vertical movements in the z-direction with 
lateral and longitudinal rotational movements around the x (θ) 
and y (ϕ) axes as outputs, the network model of this system 
can be combined with dynamic Equations are described as 
given in Equation (7) 

The mass spring damper connections in the network model 
are described by network operators Z.  

Further analysis of the system as determination of the free 
vibrations and natural frequencies etc. can then be found by 
solving these equations. 

 

Figure 6. Three Degree of Freedom Network Suspension Model. 

Network models of more complicated systems with 
several degrees of freedom can be described also with 
Network models as shown in Figure 7. 

𝐷 =
𝑐

2𝑀𝜔𝑛

 (3) 

3. Network Modelling 
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Figure 7. Seven degree of freedom track suspension network models 

Assuming a three degree of freedom system with x1, x2 and 
x3 as variables and L, M, N as inputs, system dynamic 
equations of motion and solutions can be described and 
obtained in following form: 

𝐴𝑥1 + 𝐷𝑥2 + 𝐺𝑥3 = 𝐿 
𝐵𝑥1 + 𝐸𝑥2 + 𝐻𝑥3 = 𝑀 
𝐶𝑥1 + 𝐹𝑥2 + 𝐼𝑥3 = 𝑁 

(7) 

Q as characteristic determinant: 

𝑄 = |
𝐴 𝐷 𝐺
𝐵 𝐸 𝐻
𝐶 𝐹 𝐼

|  (8) 

Solution of equations (8) can be evaluated as: 

𝑥1 = |
𝐿 𝐷 𝐺
𝑀 𝐸 𝐻
𝑁 𝐹 𝐼

| + 𝑄  

𝑋2 = |
𝐴 𝐿 𝐺
𝐵 𝑀 𝐻
𝐶 𝑁 𝐼

| + 𝑄   

𝑋3 = |
𝐴 𝐷 𝐿
𝐵 𝐸 𝑀
𝐶 𝐹 𝑁

| + 𝑄  

This model can be further described with a reduced system 
at the center of mass and with free body model shown in Fig.8 
The suspensions of each of the four Wheels consisting of 
spring and dampers can be expressed with network operators 
Zi and inputs Yi which present disturbances from road 
conditions.   

The motions (z, θ, ϕ) of the car body with mass M and 
inertias Jϕ, Jθ with reduced spring and dampers at real and front 
sides can be described with network operators.   

 

Figure 8. Reduced free body model. 

In order to investigate the natural frequencies and 
neglecting damping effects, the suspension system can be 
thought consisting of only reduced springs on the front and 
back side. 

The Network operators can be written then as Zi=Ki and 
Fi=KiYi. Including translation and rotation the acting forces Fa 
and Fb at the front and back side can be expressed as following 
(Ka=Za; Kb=Zb):  

𝐹𝑎 = 𝑍𝑎(𝑌𝑎 − (𝑌 − 𝜃𝐿𝑎))  

𝐹𝑏 = 𝑍𝑏(𝑌𝑏 − (𝑌 − 𝜃𝐿𝑏))  

According to Newton Law with zero initial conditions; it 
can be written as: 

∑ 𝐹 = 𝑀�̈� → 𝐹𝑎 + 𝐹𝑏 = 𝑀𝑠2𝑌(𝑠) 

(9) (𝑀𝑠2 + 𝑍𝑎 + 𝑍𝑏)𝑌
− (𝑍𝑎𝐿𝑎 − 𝑍𝑏𝐿𝑏)ɵ
= 𝑍𝑎𝑌𝑎 + 𝑍𝑏𝑌𝑏  

Similarly sum of the Torques about center of mass with 
zero initial conditions: 

∑ 𝑇 = 𝐽ɵ + 𝐾𝜃𝜃(𝑡)

→ 𝐹𝑏𝐿𝑏 − 𝐹𝑎𝐿𝑎

= 𝐽𝑠2𝜃(𝑠)
+ 𝐾𝜃𝜃(𝑠) 

(10) 

(𝐽𝑠2 + 𝑍𝑏𝐿𝑏 + 𝑍𝑎𝐿𝑎 + 𝐾𝜃)𝜃(𝑠)
− (𝑍𝑎𝐿𝑎 − 𝑍𝑏𝐿𝑏)𝑌
= 𝑍𝑏𝐿𝑏𝑌𝑏 − 𝑍𝑎𝐿𝑎𝑌𝑎 

Finally sum of the Torques about center of mass with zero 
initial conditions: 

∑ 𝑇 = 𝐽�̈� + 𝐾ϕϕ(t) → 𝐹𝑐𝐿𝑐 − 𝐹𝑑𝐿𝑑

= 𝐽𝑠2𝜑(𝑠) + 𝐾ϕϕ(𝑠) 

(11) 
(𝐽𝑠2 + 𝑍𝑐𝐿𝑐 + 𝑍𝑑𝐿𝑑 + 𝐾ϕ)ϕ(𝑠)

− (𝑍𝑑𝐿𝑑 − 𝑍𝑐𝐿𝑐)𝑌
= 𝑍𝑐𝐿𝑐𝑌𝑐 − 𝑍𝑑𝐿𝑑𝑌𝑑 

According to the Chasse-Bogie design like type a given in 
Figure 1, a simplified but more precise mathematical model of 

4. Equations of Reduced Model Motions 

5. Network-model of the Track Suspension System 
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one of the four suspensions can be described with a two 
degrees of freedom second order system as shown in Figure 9. 

 

Figure 8. Bogie-car model with free-body diagram. 

Describing the carriage and bogie masses as Mw and Mb; 
coordinates with Yw and Yb, the spring constants with Kw and 
Kb, and the damping coefficients with Dw and Db following 
expressions can be written as: 

 𝐹𝐾𝐵
= 𝐾𝐵(𝑌 − 𝑌𝐵) 𝐹𝐷𝐵

= 𝐷𝐵(�̇� − �̇�𝑏)

𝐹𝐾𝑊
= 𝐾𝑊(𝑌𝐵 − 𝑌𝑊) 𝐹𝐷𝑊

= 𝐷𝐵(�̇�𝐵 − �̇�𝑊)

𝐹𝑀𝑊
= 𝑀𝑊�̈�𝑊 𝐹𝑀𝐵

= 𝑀𝐵(�̇� − �̇�𝐵)

 

According to above expressions, road disturbance is Y as 
input and YW, YB are outputs and the equations of motion and 
Network Table of the system can be written as: 

𝐹 = 𝐹𝑌 = 𝐹𝐾𝐵
+ 𝐹𝐷𝐵

 (12) 

𝑀𝑊�̈�𝑊 = 𝐹𝐾𝑊
+ 𝐹𝐷𝑊

 (13) 

𝑀𝐵�̇�𝐵 = 𝐹𝐾𝐵
+ 𝐹𝐷𝐵

− 𝐹𝐾𝑊
− 𝐹𝐷𝑊

 (14) 

(𝑀𝑊𝑠2 + 𝐷𝑊𝑠 + 𝐾)𝑌𝑊(𝑠) − (𝐾𝑊 + 𝐷𝑊𝑠)𝑌𝑏

= 0 

(15) 

−(𝐾𝑊 + 𝐷𝑊𝑠)𝑌𝑊(𝑠)

+ (𝑀𝐵𝑠2 + (𝐷𝐵 + 𝐷𝑊)𝑠

+ (𝐾𝐵 + 𝐾𝑊))𝑌𝐵(𝑠)
= (𝐾𝐵 + 𝐷𝐵𝑠)𝑌(𝑠) 

(16) 

The resonance frequencies and damped motions of the two 
degrees of freedom system can be obtained from following 
table and equations: 

𝑌𝑤 𝑌𝐵 𝑌
𝑀𝑤. 𝑠2 + 𝐷𝑤. 𝑠 + 𝐾𝑤   −(𝐾𝑤 + 𝐷𝑤. 𝑠) 0 

−(𝐾𝑤 + 𝐷𝑤. 𝑠) 𝑀𝑏. 𝑠2 + (𝐷𝑏 + 𝐷𝑤)𝑠 + (𝐾𝑏 + 𝐾𝑤) (𝐾𝑏 + 𝐷𝑏. 𝑠)
 

The vertical motions of car body and bogie of the two 
degrees of freedom system with the given model and 
parameters is simulated in MATLAB-Simulink as shown in 

Figure 10. [9-11].Given Parameters are MW=40t, MB=10t, 
KW=1500kN/m, KB=2500kN/m, DW=50kNs/m, DB=10kNs/m 

 

Figure 9. Simulink simulation of vertical suspension motion 

Simulation results respect to time responses and natural 
frequencies of Bogie and car body as time and Bode Plots with 
above parameters are given in Figure 11 and 12 (vibration 
modes). 

 

Figure 10.Time response of Bogie-Wagon 

The natural frequencies can be calculated from above 
equations and following table by neglecting the damping 
effects. 

𝑌𝑊 𝑌𝐵 𝑌

𝑀𝑊𝑠2 + 𝐾𝑊   −(𝐾𝑊) 0 

−(𝐾𝑊) 𝑀𝐵𝑠2 + (𝐾𝐵 + 𝐾𝑊) 0

 
6. Simulations and Solutions of the System 
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The roots of characteristic equation as natural frequencies 
can be found as ωn1=4.66 rad/s and ωn2=20.43 rad/s. These 
values can also be identified from simulated Bode Plot in 
Figure 12. 

 

Figure 11. Bode Plot and Natural Frequencies of Vertical Motion 

As mentioned in introduction free motions of suspension 
system according to various speed and damping coefficients 
can be investigated and described with above simulations. The 
calculation of natural frequencies has great importance to 
estimate resonance conditions and critical speeds for ride 
safety and comfort. 

Under consideration the reduced model shown in Figure 8 
and the relevant equations given in table and with (9), (10), 
(11) the system natural frequencies for lateral and longitudinal 
motions can be obtained from: 

𝜔𝑛𝑙
= √𝐾𝑙/𝐽𝜃 𝑎𝑛𝑑 𝜔𝑛𝑙𝑔

= √𝐾𝑙𝑔/𝐽𝜙 

Values in formula above; Kl as reduced lateral spring 
constant, Klg as reduced longitudinal spring constant, Jθ  as 
reduced lateral inertia of moment, Jϕ as reduced longitudinal 
inertia of moment.  

Both inertias can be calculated from the specified railway 
and wagon data, since the lateral and longitudinal vibrations 
are less important than the displacements in the z direction, 
the details of the movements in these directions have not been 
further investigated. 

According to the calculated natural frequencies the 
relevant critical speeds for the case of disturbances caused by 
rail connections (with const. length of 20m) can be obtained 
by using following expressions: 

𝑉 =
𝐿

𝑇
=

𝐿

2𝜋/𝜔𝑛

=
𝐿𝜔𝑛

2𝜋
 (17) 

For the first natural frequency. ωn = 4.66 rad/s seen in 
Figure 12 the corresponding critical speed will be calculated 
with (17) as V = 14.84 m/s or as V = 53.5 Km/h. 

Assuming that the nominal speed of the car is around 120 
km/h which corresponds to V = 33.33 m/s, the vibration 
frequency at this speed is ω = Vπ/20 = 10 rad/s which is quite 
far from the resonance state. 

The car vibrations reach the highest amplitude value 
around ω = 4.66 rad/s, as can be seen from the curves of figure 
13 obtained against harmonic inputs with different 
frequencies based on the simulation model given in Figure 10. 

 

Figure 12. Frequency responses of car for ω=1.6 and 10 rad/s 

To obtain best results for safe and comfortable travel 
conditions the above mentioned modelling methods with 
equations and simulations can provide practical and 
reasonable preliminary design properties for the constructor. 
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