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Abstract: - Paper describes  a mathematical model for the temperature of a heat collector in a system with a solar 
collector and heat tank. We use first order differential equations to model it. The obtained formula defines the 
temperature in the time domain and allows us to determine in advance the final temperature of the process. 
Determination of the temperature at the end of the process enables us to plan the energy consumption and achieve 
noticeable savings. In this paper we present a mathematical derivation that is a model and example that enables  
development of other formulas for different processes. 
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1  Introduction 

In a previous paper [1] the work was motivated by 
the need to design a heating system where we can 
easily determine how efficient is a solar thermal 
system. We determined what are its characteristics i.e. 
how quick it can heat a certain heat tank and to which 
temperature. In this paper the work is continued with 
the solar collector temperatures in order to predict the 
reaching of the critical evaporation temperature. 
When we know the characteristics of the system in the 
time domain we can select the power of the thermal 
solar collector. We can also select the appropriate 
mass of a heat tank so that it meets the desired 
requirements. 

   As in the previous paper [1] we will derive the 
process formula by a first-order differential equation. 

  The ideal process we will define as heat transfer 
from a hotter tank of mass m2, which is a solar 
collector for heat energy of power P, to a colder heat 
tank of mass m1. 
The formula for the ideal process is expanded and thus 
can be very close to the actual process with 
introduction of additional coefficients. 
 
 

2 Obtaining the formula for the 
temperature of a heat storage tank in 
ideal process 

 

The system consists of colder tank which is a heat tank 
of mass m1 of a substance of specific heat capacity c1 
and a hotter tank which is a thermal solar collector of 
mass m2 with a substance of specific heat capacity c2 

and a system of exchangers passing through them 
within which the liquid flow qm of specific heat 
capacity c3. 
 
 

2.1. Declaring variables: 

 

Index 1 - lower temperature, 
index 2 - higher temperature, 

 1p  - initial temperature of colder tank,         [K] 

 2p - initial temperature of hotter tank,          [K] 

 1 - temperature of colder tank variable in time,  [K] 

 2 - temp. of hotter tank variable in time,            [K] 

c - specific heat capacity of the substance in the         
system when the same substance is used in all parts of 
the system,                                                        [J/kgK] 

c1 - specific heat capacity of the substance in the 
colder tank,                                                      [J/kgK] 

c2 - specific heat capacity of the substance in the 
hotter tank,                                                       [J/kgK] 

c3 -  specific heat capacity of the substance inside the 
tube and heat exchanger,                                 [J/kgK] 

mq - fluid flow rate in pipes per second,            [kg/s] 

m1 - mass of colder tank medium,                        [kg] 
m2 - mass of hotter tank medium,                         [kg] 
P – power of solar collector,                                 [W] 
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2.2. Differential equations and substitution of 
variables 

 

Differential substitution is derived from the 
differential equation of the system [1][2]. 
 

( ) 1 2
3 2 1 1 1 2 2m

d d
q c m c m c

dt dt

 
   − =   = −    

                   (1) 
 

( )3 2 1 1 1 1 2 2 2mq c dt m c d m c d     − =   = −    

                   (2) 
 

   From the equality (3) 

                1 1 1 2 2 2m c d m c d   = −                  (3) 

 

we define temperature change differentials in tanks 
determined by their masses and specific heat capacity 
of the substance, the differential for temperature 
change in a colder tank is equal to: 

      2 2
1 2

1 1

m c
d d

m c
 


= −


      (4) 

while the temperature change differential in a hotter 
tank is defined by: 

1 1
2 1

2 2 2 2

m c Pdt
d d

m c m c
 


= − +

 
   (5) 

From the differential we get the temperature of the 
colder tank: 

        2 2
1 1 1 1 2

1 10 0

t t

p p

m c
d d

m c
    


= + = −

   (6) 

The temperature of the hotter tank is: 

1 1
2 2 1

2 2 2 20 0

t t

p

m cP
dt d

m c m c
  


= +  − =

    

 

1 1
2 2 1

2 2 2 2 0

t

p

m cP
t d

m c m c
  


= +  −

       

2 2 2
2 2 0

t

p

P
t d

m c
  = +  +

   (7) 

 

2.3. Derivation of the formula for a thermal 
solar collector 

 

   We then determine the general formula for the 
temperature of the thermal solar collector in the ideal 
process [3][4]. 
     The differential equation for the temperatures of 
the heat collector is: 
 

( )32
1 2

2 2 2 2

mq cd P

dt m c c m


 


= − + =

 
       

( )32
2 1

2 2 2 2

mq cd P

dt m c c m


 


= − − +

 
                    (8) 

 

    By substituting the temperatures   1 and  2 
defined in (6) and (7), we get the differential equation 
for the temperature of the thermal solar collector 
expressed only by the variable higher temperature: 
 

32 2 2
2 2 1 2

2 2 2 2 1 1 2 2

m
p p

q cd m cP P
t d d

dt m c m c m c m c


   
   

= − +  + − − +  
     

 
 

 

32 2 2
2 1 2

2 2 2 2 1 1 2 2

1m
p p

q cd m cP P
t d

dt m c m c m c m c


  
   

= − − +  + + +  
     


 

 

32 1 1 2 2
2 1 2

2 2 2 2 1 1 2 2

m
p p

q cd m c m cP P
t d

dt m c m c m c m c


  
    + 

= − − +  + +  
     


 

(9) 
 

When we solve the integral we get: 

 2 2 1d k = +                    (10) 

 
Let's include it in the equation and get: 
 

( )32 1 1 2 2
2 1 2 1

2 2 2 2 1 1 2 2

m
p p

q cd m c m cP P
t k

dt m c m c m c m c


  
    + 

= − − +  + + +  
     

 

Krešimir Orozović, Branko Balon
International Journal of Mechanical Engineering 

http://www.iaras.org/iaras/journals/ijme

ISSN: 2367-8968 74 Volume 6, 2021



( )

( )

32 1 1 2 2
2 1

2 2 1 1

3 3
2 1

2 2 2 2 2 2 2 2

m

m m
p p

q cd m c m c
k

dt m c m c

q c q c P P
t

m c m c m c m c




 

   + 
= −  + 

  

 
−  − −   +

   

 

 

( )

( )

32 1 1 2 2
2 1

2 2 1 1

3 3
2 1

2 2 2 2 2 2 2 2

m

m m
p p

q cd m c m c
k

dt m c m c

q c q c P P
t

m c m c m c m c




 

   + 
+  + = 

  

 
= −  − −   +

   

 

 

32 1 1 2 2
2

2 2 1 1

3 1 1 2 2
2 1 1

2 2 2 2 1 1 2 2

m

m
p p

q cd m c m c

dt m c m c

q c m c m cP P
t k

m c m c m c m c




 

   + 
+   = 

  

   + 
= −  − +  +  + 

    

 

 

( )3 1 1 2 22
2

1 1 2 2

3 1 1 2 2
2 1 1

2 2 2 2 1 1 2 2

m

m
p p

q c m c m cd

dt m c m c

q c m c m cP P
t k

m c m c m c m c




 

   + 
+  =

  

   + 
= −  − +  +  + 

    

     

                      (11) 

 
   Using equation (12) to solve the 1st order 
differential equation   

 

                      ( ) ( )
dy

p x y q x
dx

+  =                 (12) 

 

From (11) we define polynomials p(t) (13),  q(t) (14) 
and a polynomial µ(t) (15):+ 

 

             ( )
( )3 1 1 2 2

1 1 2 2

mq c m c m c
p t

m c m c

   + 
=

  
          (13) 

 

( ) 3 1 1 2 2
2 1 1

2 2 2 2 1 1 2 2

m
p p

q c m c m cP P
q t t k

m c m c m c m c
 
   + 

= −  − +  +  + 
    

               (14) 

 

( )
( )

( )3 1 1 2 2

1 1 2 2

mq c m c m c
dtp t dt m c m c

t e e

   + 


  = = =   

      
( )3 1 1 2 2

1 1 2 2

mq c m c m c
t

m c m c
e

   + 


  
=            (15) 

 

we get the equation for the temperatures of the 
colder tank written in the form: 

 

             
( )

( ) ( )2
1

q t t dt konst
t

 


 =   +
         (16) 

 

After including all polynomials, the first-order 
differential equation to be solved takes the form: 

 
 

( )

( )3 1 1 2 2

1 1 2 2

3 1 1 2 2

1 1 2 2

3 1 1 2 2
2 2 1 1 2

2 2 2 2 1 1 2 2

1 m

m

q c m c m c
t

m c m cm
p pq c m c m c

t
m c m c

q c m c m cP P
t k e dt k

m c m c m c m c
e

  

   + 


  

   + 


  

     +  
=  −  − +  +  +  +   

       
  

 
  

( )

( )

( )

3 1 1 2 2

1 1 2 2

3 1 1 2 2 3 1 1 2 2

1 1 2 2 1 1 2 2

3

2 2 2 2
2

3 1 1 2 2
2 1 1 2

2 2 1 1 2 2

1

m

m m

q c m c m c
t

m c m cm

q c m c m c q c m c m c
t t

m c m c m c m cm
p p

q c P
t e dt

m c m c

q c m c m c P
e k e dt k

m c m c m c



 

   + 


  

   +     + 
 

     

 
 −   

  
=  

    +  
−  − +  +  +        



 

 

            (17) 
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( )

( )

( )3 1 1 2 2 3 1 1 2 2

1 1 2 2 1 1 2 21 1 2 2
2

3 1 1 2 2

m mq c m c m c q c m c m c
t t

m c m c m c m c

m

m c m c
e dt e k

q c m c m c

   +     + 
 

       
=  +

   + 
 

 
One part within a first-order differential equation 
needs to be solved by partial integration 
 

( )3 1 1 2 2

1 1 2 23

2 2 2 2

mq c m c m c
t

m c m cmq c P
t e dt

m c m c

   + 


  
−   

  
     

                                                  (18) 
 

Partial integration: 
 

( ) ( ) ( ) ( ) ( ) ( )' 'u x v x dx u x v x v x u x dx =  −    

                (19) 
 
We define u(t) i v(t):  
 

( )

( )

( )

3 1 1 2 2

1 1 2 2

3 1 1 2 2

1 1 2 21 1 2 2

3 1 1 2 2

,

,

m

m

q c m c m c
t

m c m c

q c m c m c
t

m c m c

m

u t dv e dt

m c m c
du dt v e

q c m c m c

   + 


  

   + 


  

= =

  
= = 

   + 

 

 

Then we solve the partial integral: 
 

( )3 1 1 2 2

1 1 2 23

2 2 2 2

mq c m c m c
t

m c m cmq c P
t e dt

m c m c

   + 


  
−    =

  
 

 

( )

( )

( )

( )

3 1 1 2 2

1 1 2 2

3 1 1 2 2

1 1 2 2

1 1 2 2

3 1 1 2 23

2 2 2 2
1 1 2 2

3 1 1 2 2

m

m

q c m c m c
t

m c m c

mm

q c m c m c
t

m c m c

m

m c m c
t e

q c m c m cq c P

m c m c m c m c
e dt

q c m c m c

   + 


  

   + 


  

   
  

   +  
= −   = 

     
−     +  


 

 

( )

( )

( )

( )

3 1 1 2 2

1 1 2 2

3 1 1 2 2

1 1 2 2

1 1 2 2

3 1 1 2 23

2 2 2 22 2 2 2 1 1 2 2
22 2

3 1 1 2 2

m

m

q c m c m c
t

m c m c

m
m

q c m c m c
t

m c m c

m

m c m c
t e

q c m c m cq c P

m c m c m c m c
e

q c m c m c

   + 


  

   + 


  

   
  

   +  
= −   = 

     
−  

   +  

 

( )

( )

( )

( )

3 1 1 2 2

1 1 2 2

3 1 1 2 2

1 1 2 2

1 1

2 2 1 1 2 2

2 2
1 1

2
3 1 1 2 2

m

m

q c m c m c
t

m c m c

q c m c m c
t

m c m c

m

P t m c
e

m c m c m c

P m c
e

q c m c m c

   + 


  

   + 


  

  
= − 

   + 

 
+ 

   + 

  

               (20) 
then we include the solution of partial integration in 
the equation and get: 
 

( )

( )

( )

( )

( )3 1 1 2 2 3 1 1 2 2

1 1 2 2 1 1 2 2

3 1 1 2 2

1 1 2 2

2 2
1 1 1 1

2
2 2 1 1 2 2 3 1 1 2 2

2

3 1 1 2 2
2 1 1

2 2 1 1

1

m m

m

q c m c m c q c m c m c
t t

m c m c m c m c

m

q c m c m c
t

m c m c m
p p

P t m c P m c
e e

m c m c m c q c m c m c

q c m c m c
e k

m c m c



 

   +     + 
 

     

   + 


  

    
−  + 

   +     + 
= 

   + 
−  − +  

   ( )

( )3 1 1 2 2

1 1 2 21 1 2 2
2

2 2 3 1 1 2 2

mq c m c m c
t

m c m c

m

m c m cP
e k

m c q c m c m c

   + 


  

 
 
 
 

    
+   +  

    +   

 

 
The solution of the differential equation for a heat collector finally has the form: 
 

( ) ( )

( )

( )3 1 1 2 2

1 1 2 2

2 2
1 1 1 1

2 2
2 2 1 1 2 2 3 1 1 2 2

3 1 1 2 2 1 1 2 2
2 1 1 2

2 2 1 1 2 2 3 1 1 2 2

m

m

q c m c m c
t

m c m cm
p p

m

P t m c P m c

m c m c m c q c m c m c

q c m c m c m c m cP
k k e

m c m c m c q c m c m c



 

   + 
− 

  

    
= − +

   +     + 

    +    
−  − +  +  +   

      +   

 

 

( ) ( ) ( )
( )3 1 1 2 2

1 1 2 2

2 2
1 1 1 1 1 1

2 2
2 2 1 1 2 2 3 1 1 2 23 1 1 2 2

1 1 2 2 1 1
2 1 1 2

1 1 1 1 2 2

m

mm

q c m c m c
t

m c m c

p p

P t m c P m c P m c

m c m c m c q c m c m cq c m c m c

m c m c m c
k k e

m c m c m c



 

   + 
− 

  

      
= − + −

   +     +    + 

  +  
− − +   +  

  +  

 

 

( ) ( ) ( )

( ) ( )3 1 1 2 2

1 1 2 2

2 2
1 1 1 1 1 1

2 2
2 2 1 1 2 2 3 1 1 2 23 1 1 2 2

1 1 2 1
1 2

1 1 2 2

m

mm

q c m c m c
t

p p m c m c

P t m c P m c P m c

m c m c m c q c m c m cq c m c m c

m c
k k e

m c m c



 
   + 

− 
  

      
= − + −

   +     +    + 

  −
− − + 

 + 

   (21) 
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3   Calculation of the coefficient k1 and       

k2 using boundary conditions  

It is necessary to determine the coefficients k1 and k2, 
using boundary conditions. 

The first boundary condition is defined at the initial 
moment: 

for  =>  ( )2 20 p =         (22) 

The parts containing t are equal to zero, the 
temperature has an initial value ϑ2p, and the 
exponential part containing t is equal to 1, after 
including that t = 0 in equation (22) we get the 
equation of the first boundary condition: 

( ) ( )

( )

2 2
1 1 1 1

2 2
3 1 1 2 23 1 1 2 2

1 1 2 1
1 2

1 1 2 2

p

mm

p p

P m c P m c

q c m c m cq c m c m c

m c
k k

m c m c



 

   
= −

   +    + 

  −
− − +

 + 

               (23) 

If we single out the coefficients on the left side, then 
the equation has the form: 

( )

( )

( )

2 2
1 1

1 2 2 2
3 1 1 2 2

1 1 2 11 1

3 1 1 2 2 1 1 2 2

p

m

p p

m

P m c
k k

q c m c m c

m cP m c

q c m c m c m c m c



 

 
− + = −

   + 

  − 
+ +

   +   + 

 

               (24) 

If we take the finite boundary condition for t = ∞, we 
will define it so that we have a known solution and 
not an infinite temperature. We will do this using a 
special case so that the power of the solar collector is 
equal to P = 0, so we will know the final temperature 
in the ideal process equal to the temperature of the 
mixture which will be equal to: 

( ) 1 1 1 2 2 2
2

1 1 2 2

p pm c m c

m c m c

 


  +  
 =

 + 
                           (25) 

 

In the solution of the differential equation (22) when 
we include that , the term containing P=0 is 
equal to 0, the exponential part is equal to zero, and 
with it the coefficient k2 = 0: 

( )
( )1 1 2 1

2 1
1 1 2 2

p pm c
k

m c m c

 


  −
 = − −

 + 
           (26) 

We include (25) on the left side of the equation, so 
the equation of the second boundary condition takes 
the form: 

( )1 1 2 11 1 1 2 2 2
1

1 1 2 2 1 1 2 2

p pp p
m cm c m c

k
m c m c m c m c

     −  +  
= − −

 +   + 

 

                                                (27) 

Also, when the coefficient is separated to the left side 
we get: 

( )1 1 2 1 1 1 1 2 2 2
1

1 1 2 2 1 1 2 2

p p p p
m c m c m c

k
m c m c m c m c

     −   +  
= − −

 +   + 
 

1 1 1 1 1 1 2 1 1 2 2 2
1

1 1 2 2

p p p pm c m c m c m c
k

m c m c

   −   +   +   +  
= −

 + 
 

2 1 1 2 2 2
1

1 1 2 2

p pm c m c
k

m c m c

   +  
= −

 + 
 

( )2 1 1 2 2
1

1 1 2 2

p m c m c
k

m c m c

   + 
= −

 + 
 

1 2 pk = −                          (28) 

As expected, the coefficient k1 is equal to the initial 
temperature in the hotter tank, ϑ2p and the negative 
sign is because it has -k1 in the formula  

From the two boundary conditions we have a system 
of two equations with two unknown variables: 

( )

( )

( )

2 2
1 1

1 2 2 2
3 1 1 2 2

1 1 2 11 1

3 1 1 2 2 1 1 2 2

p

m

p p

m

P m c
k k

q c m c m c

m cP m c

q c m c m c m c m c



 

 
− + = −

   + 

  − 
+ +

   +   + 

 

1 2 pk = −  

When we solve the equation system we get the 
coefficients: 

1 2 pk = −               (29) 

( ) ( )

( )2 2
1 1 2 11 1 1 1

2 2
3 1 1 2 2 1 1 2 23 1 1 2 2

p p

mm

m cP m c P m c
k

q c m c m c m c m cq c m c m c

   −   
= − + +

   +   +    + 

                         (30) 

By including the coefficients, we obtain the final 
form of the formula for the temperature of the heat 
collector in the ideal process of heat transfer from a 
thermal solar collector of mass m2 of specific heat c2 
to a heat tank of mass m1 of specific heat capacity c1, 
via heat exchanger with specific heat capacity c3 and 
flow qm:  

0t =

t = 
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( ) ( ) ( )

( )

( ) ( )

( )

2 2
1 1 2 11 1 1 1 1 1

2 2 2
2 2 1 1 2 2 3 1 1 2 2 1 1 2 23 1 1 2 2

2 2
1 1 2 11 1 1 1

2
3 1 1 2 2 1 1 2 23 1 1 2 2

p p

p

mm

p p

mm

m cP t m c P m c P m c

m c m c m c q c m c m c m c m cq c m c m c

m cP m c P m c

q c m c m c m c m cq c m c m c

 
 

 

  −      
= − + − − +

   +     +   +    + 

   −   
+ − + +  

   +   +    +   

( )3 1 1 2 2

1 1 2 2

mq c m c m c
t

m c m c
e

   + 
− 

  

or 

( ) ( )

( )

( )

( ) ( )

3 1 1 2 2

1 1 2 2

3 1 1 2 2

1 1 2 2

2 2
1 1 1 1

2 2 2
2 2 1 1 2 2 3 1 1 2 2

1 1 2 11 1

3 1 1 2 2 1 1 2 2

1

1 1

m

m

q c m c m c
t

m c m c

p

m

q c m c m c
t

p pm c m c

m

P t m c P m c
e

m c m c m c q c m c m c

m cP m c
e

q c m c m c m c m c

 

 

   + 
− 

  

   + 
− 

  

     
 = − +  −
    +     +   

    − 
 −  − −  −
    +   + 
 

( )3 1 1 2 2

1 1 2 2

mq c m c m c
t

m c m c
e

   + 
− 

  
 
 
 
 

 

or 

( ) ( ) ( )

( ) ( )3 1 1 2 2

1 1 2 2

2 2
1 1 2 11 1 1 1 1 1

2 2 2
2 2 1 1 2 2 3 1 1 2 2 1 1 2 23 1 1 2 2

1
mq c m c m c

t
p p m c m c

p

mm

m cP m c P m c P m c
t e

m c m c m c q c m c m c m c m cq c m c m c

 
 

   + 
− 

  
    −     
 = −  + − −  − 
    +     +   +    +     

             (31) 

      If we assume that each part of the system has the same type of liquid, and thus the same specific heat 
capacity, we obtain:  

( ) ( ) ( )

( ) ( )1 2

1 2

2
1 2 11 1 1

2 2 2
2 1 2 1 2 1 21 2

1
mq m m

t
p p m m

p

mm

mP m P m P m
t e

m c m m q c m m m mq c m m

 
 

 +
− 


   −  
 = −  + − −  − 
   +   + +  +    

 

             (32) 
 

The time constant of the system in which each part of 
the system may be of another substance is: 

                              (33) 

And the time constant of a system made of the same 
heat medium in each part of the system, ie. equal 
specific heat capacities c = c1 = c2 = c3 is equal to: 

                                           (34) 

 

4 Conclusion 
With introducing real coefficients to derived formula in 
the time domain for the temperature of the thermal solar 
collector of ideal process we can describe the losses in 
the system. With this addition the derived formula 
describes the actual real process. This formula makes it 
possible to predict the temperature of a thermal solar 
collector and allows us to predict the moment when the 

medium in the thermal solar collector will reach the 
evaporation temperature. 
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