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Abstract: Computationally intensive simulations are being extensively used across engineering and science in

various design optimization problems. To alleviate the high computational load associated with each simulation

run metamodels are used, as they provide predicted objective values at a lower computational cost. However,

the optimal metamodel variant is typically unknown and is problem-dependant. In an attempt to alleviate this

ensembles use multiple metamodels concurrently and aggregate their predictions. However the optimal ensemble

configuration is also problem-dependant and typically unknown. To address this issue, this paper proposes an

approach in an optimal ensemble configuration is selected during the search out of a family of candidate ensembles,

without a need for user intervention or a-priori domain knowledge. Performance analysis shows that the proposed

approach improved the search effectiveness over a range of test problems.
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1 Introduction

The current availability of high performance comput-

ing allows engineers and researchers to evaluate can-

didate designs with computer simulations instead of

using laboratory experiments, thereby reducing the

duration and cost of the design process. In this setup,

a candidate design is parameterized as a vector of de-

sign of variables, and is sent to the simulation for eval-

uation. Such computer simulations, which still need

to be validated with laboratory experiments, transform

the design process into an optimization problem hav-

ing several distinct features (Tenne and Goh, 2010):

• The simulation acts as the objective function as

it assigns objective values to candidate designs

(input vectors), but it is a ‘black-box’, namely,

the analytic expression of this mapping is un-

known. This can occur since the simulation in-

volves intricate calculations, or the simulation’s

code might be inaccessible to the user. In any

case, the lack of an analytic expression presents

an optimization challenge.

• Each simulation run is often computationally ex-

pensive, and hence only a small number of de-

signs can be evaluated.

• Both the real-world physics being modelled, and

the numerical simulation process itself, can yield

a black-box function with complicated features,

such as multiple optima or discontinuities, which

add an additional optimization challenge.

An established solution methodology in such sce-

narios is to incorporate a metamodel into the opti-

mization search. The latter is a mathematical approx-

imation of the true expensive function which provides

predicted objective values at a much lower compu-

tational cost (Tenne and Goh, 2010). A variety of

metamodels have been proposed, but the optimal type

is problem-dependant and is typically not known a-

priori. To alleviate this issue, ensembles use several

metamodels concurrently and aggregate their predic-

tions into a single one (Muller and Shoemaker, 2014;

Goel et al., 2007; Muller and Piché, 2011). How-

ever, the effectiveness of ensembles depends on their

topology, namely, which metamodels they incorpo-

rate, but again, the optimal topology is typically un-

known. To address this issue, this paper proposes

an approach in which an optimal ensemble configura-

tion is selected during the search, such that an optimal

configuration is continuously being used without the

need for user intervention or a-priori domain knowl-

edge. Also, since metamodels are inherently inaccu-

rate, the proposed algorithm operates within a Trust

Region (TR) approach to ensure convergence to an

optimum of the true expensive function. Performance

analysis using both mathematical test functions and a

simulation-driven engineering problem shows the ef-

fectiveness of the proposed algorithm, and highlights

the merit of the proposed dynamic topology adapta-
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tion.

The remainder of this paper is organized as fol-

lows: Section 2 provides the pertinent background in-

formation, Section 3 describes in detail the proposed

algorithm, and Section 4 provides an extensive per-

formance evaluation. Lastly, Section 5 concludes this

paper.

2 Background

As mentioned above, metamodels (also termed in the

literature as response surfaces or surrogates) are used

as computationally cheaper approximations of an in-

tensive numerical simulation. Metamodels are trained

with previously evaluated vectors, and some variants

include Artificial Neural Networks (ANNs), Krig-

ing, polynomials, and radial basis functions (RBFs)

Muller and Shoemaker (2014); Tenne (2012). A typi-

cal metamodel-assisted optimization search begins by

sampling an initial set of vectors, followed by the

main iterative loop in which a metamodel is trained

based on the vectors evaluated so far, then an opti-

mization search to locate an optimum of the meta-

model, and lastly evaluation of the obtained solution

and possibly additional vectors. The process repeats

until convergence or when the number of allowed sim-

ulation calls is reached. Fig. 1 gives a pseudocode of

a typical metamodel-assisted algorithm, while more

involved frameworks have also been proposed (Regis

and Shoemaker, 2013; Tenne, 2013a).

Figure 1: A typical metamodel-assisted algo-

rithm.

sample an initial set of vectors;

while stopping criterion not met do
train a metamodel based on the cached

vectors;

seek an optimum of the metamodel;

evaluate with the intensive simulation the

solution found and possibly additional

vectors;

return the best solution found;

While metamodels offer several merits, they also

introduce new optimization challenges:

• Prediction inaccuracy: Due to the computation-

ally intensive simulation runs only a small num-

ber of vectors can be evaluated by it, and hence

the resultant metamodel will inherently be in-

accurate. Therefore it is necessary to manage

the metamodel so as to ensure convergence to a

valid solution (Jin et al., 2002). An established

approach to safeguard the optimization search

is provided by the TR framework (Conn et al.,

1997; Powell, 2003), in which a series of trial

optimization searches is performed, where each

search is confined to a region in which the meta-

model is assumed to be adequate. Based on the

success or failure of these trials the TR is up-

dated, which in turns ensures asymptotic conver-

gence to a solution of the true expensive objec-

tive function Conn et al. (2000). Section 3 gives

a detailed description of the TR approach imple-

mented in this study.

• Metamodel suitability: An assorted number of

metamodels variants have been proposed in the

literature, but the optimal variant is problem-

dependant and is typically unknown prior to the

actual optimization search (Gorissen et al., 2009;

Tenne, 2013a). In an attempt to alleviate this,

ensembles use multiple metamodels and aggre-

gate the individual predictions into a single com-

bined response (Muller and Piché, 2011; Tenne,

2013b). However, the ensemble configuration or

topology is also problem dependant, and an in-

adequate topology can decrease the search ef-

fectiveness. To demonstrate this aspect, en-

sembles were generated based on three meta-

models: RBFs, radial basis functions neural net-

work (RBFN), and Kriging, as shown in Ta-

ble 1. The respective prediction accuracy of each

metamodel was approximated based on the Root

Mean Square Error (RMSE) measure across four

test functions in dimensions ranging from 5 to

30. From the test results in follows that the op-

timal ensemble, namely, that having the small-

est Root Mean Square Error (RMSE) varied be-

tween the functions, and no single configuration

was the overall best. Therefore a-priori fixing

a configuration may result in an unsuitable en-

semble being used and accordingly diminished

performance. To address this issue the following

section proposes a dedicated approach.

TABLE 1. THE ROOT MEAN SQUARE ERROR (RMSE) OF

DIFFERENT ENSEMBLES CONFIGURATIONS

Ensemble topology

Function R+RN R+K RN+K R+RN+K

Ackley-5D 4.258e-013.702e-014.151e-012.967e-01

Rastrigin-10D 1.223e+028.198e+011.312e+021.097e+02

Rosenbrock-20D 1.791e+061.666e+061.648e+061.693e+06

Schwefel 2.13-30D 1.882e+062.179e+062.343e+062.079e+06

R:RBF, RN:RBF neural network, K:Kriging.
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3 Proposed approach

Leveraging on the preceding discussion, the approach

proposed in this study relies on continuous selection

of the ensemble configuration throughout the opti-

mization search so that an optimal configuration is

maintained. The proposed approach operates in five

main steps, as follows:

Step 1) Initialization: An initial sample of vectors

is generated to enable construction of an

initial metamodel. In this study the Opti-

mal Latin Hypercube Sampling (OLHS) sam-

pling method was used to ensure an adequate

space-filling sample is obtained, as this in

turn improves the prediction accuracy of the

metamodels (Viana et al., 2009).

Step 2) The vectors which have been sampled and

cached so far are split into a training and test-

ing set, and for each prospective metamodel

variant a metamodel is trained and tested,

thereby yielding an estimated RMSE score.

The RMSE of the jth metamodel is calculated

as

ej =

√

√

√

√

1

l

l
∑

i=1

(

mj(xi)− f(xi)
)2

, (1)

where mj(x) is the metamodel generated

based on the training set, and xi , i = 1 . . . l
are the testing vectors.

Step 3) The sampled vectors are re-split again into

training and testing sets, each metamodel

variant is re-trained with the new training set,

but now each ensemble topology is evaluated.

The aggregated prediction of the kth ensem-

ble configuration is then

f̂k(x) =

nk
∑

j=1

ujm̂j(x) , uj =
e−1
j

∑nk
j=1 e

−1
j

,

(2a)

where m̂j , j = 1 . . . nk are the metamodels

incorporated in the ensemble and which have

been trained with the training set. The weight

assigned to each member metamodel is in-

versely proportional to its estimated RMSE

error obtained earlier. Now the estimated

RMSE of the complete ensemble is estimated

as

ǫk =

√

√

√

√

1

l

l
∑

i=1

(

f̂(xi)− f(xi)
)2

(2b)

where xi , i = 1 . . . l are the testing vectors in

the current testing set, and ǫk is the estimated

RMSE of the kth ensemble configuration.

Step 4) Amongst all the candidate ensemble config-

urations the one having the lowest estimated

RMSE is chosen as the ‘active’ configuration

for the current iteration. Based on this config-

uration a new ensemble is trained but using all

the evaluated vectors so far, namely, without

any splitting.

Step 5) Following the Trust Region (TR) framework,

a TR is defined around the current best vector

(xb), and an optimization search is invoked to

find the optimal vector based on the ensem-

ble prediction in the TR. To obtain both an

efficient global and local search the search is

performed by an evolutionary algorithm (EA)

followed by a deterministic SQP solver. Dur-

ing each trial search predicted objective val-

ues are obtained only from the ensemble, and

no runs of the intensive computer simulation

are performed.

Step 6) The optimal vector obtained (x⋆) is sent for

evaluation with the true expensive function,

that is, the simulation, and based on this eval-

uation the following actions are performed:

• If f(x⋆) < f(xb): The trial step is

considered successful since the vector

found is indeed better than the current

best one. This implies that the ensemble

is accurate and the TR radius is doubled.

• If f(x⋆) > f(xb) and there are suf-

ficient vectors inside the TR: The trial

step was unsuccessful since the solu-

tion predicted by the ensemble to op-

timal was not in fact so. This implies

that the ensemble prediction is inaccu-

rate and since the number of vectors in

the TR is deemed as sufficient to sup-

port a valid approximation, the failure

is attributed to the TR being too large.

Accordingly, the TR radius is halved.

• If f(x⋆) > f(xb) and there is an insuf-

ficient number of vectors in the TR: as

above the trial step was unsuccessful but

now the failure is attributed to a poor ap-

proximation quality resulting from too

few vectors in the TR. Accordingly, a

new vector is add in the TR and is eval-

uated with the true expensive function.
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As a change from the classical TR approach, in

the approach proposed here the TR radius is reduced

only if the number of vectors in the TR is sufficient, to

ensure the search is not terminated prematurely. Also,

the approach proposed is completely flexible with the

metamodels and ensemble configurations. While in

this study the metamodels RBF, RBFN, and Kriging

were used any other variants or ensemble configura-

tions can equally be incorporated. To complete this

section, Fig. 2 presents the pseudocode of an imple-

mented algorithm.

4 Performance analysis

To evaluate the performance gains of the proposed ap-

proach the implemented algorithm was applied to both

mathematical test functions and a simulation-driven

engineering problem, as described in the following

text.

4.1 Tests with on mathematical functions

In the first round of tests the well-established set of

functions by (Suganthan et al., 2005) was used and

which are shown in Table 2, in dimensions in the range

of 5 to 40.

For a thorough evaluation the implemented algo-

rithm was benchmarked against four reference algo-

rithms:

• V1 : A variant of the implemented algorithm

which is identical in operation but used only a

single metamodel (RBF) and no ensembles. This

variant was used to highlight the impact of using

ensembles versus using a single metamodel.

• V2 : A variant of the implemented algorithm

which is identical in operation but used a sin-

gle fixed ensemble of RBF, RBFN, and Kriging

metamodels. This variant was used to highlight

the impact of the ensemble selection versus using

a fixed configuration.

• EA with Periodic Sampling (EA–PS): A

metamodel-assisted algorithm which leverages

on the concepts in (Ratle, 1999; de Jong, 2006).

A metamodel-assisted algorithm which uses a

Kriging metamodel and an EA, and manages

the metamodel by periodically evaluating a small

subset of the EA population with the true ob-

jective function and thereby refreshing the meta-

model. This algorithm is representative of a large

variety of metamodel-assisted algorithms in the

literature.

Figure 2: An implemented algorithm.

/* initialization */

generate an initial sample of vectors and evaluate

them with the true objective function;

/* main loop */

repeat

/* metamodel evaluation */

split the cached vectors into training and

testing sets;

for each candidate metamodel do

train a metamodel with the training set;

estimate its prediction accuracy based on

the testing set;

/* ensemble evaluation */

re-split the cached vectors into training and

testing sets;

re-train the metamodels using the new

training set;

for each candidate ensemble do
calculate the ensemble weight of each

metamodel incorporated;

estimate the ensemble prediction

accuracy based on the testing set;

select the most accurate ensemble as the

active one;

re-train the ensemble using all cached

vectors;

centre the TR on the best vector found so far;

perform an optimization search in the TR

using EA+SQP;

evaluate the vector found with the true

expensive function;

/* TR updates */

if the new vector is better than the current

best then
double the TR radius

else if the new vector is not better than the

current best and there the number of vectors

in the TR is sufficient then

halve the TR radius;

else if the new solution is not better than the

current best and the number of vectors in the

TR is insufficient then

add a new vector in the TR;

until maximum number of simulation calls;
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Table 2. Mathematical Test Functions

Function Definition, f(x) = Domain

Ackley
− 20 exp

(

−0.2

√

√

√

√

d
∑

i=1

x2
i /d

)

−

exp
(

d
∑

i=1

cos(2πxi)/d
)

+ 20 + e

[−32, 32]d

Rastrigin

d
∑

i=1

{

x2
i − 10 cos(2πxi) + 10

}

[−5, 5]d

Rosenbrock

d−1
∑

i=1

{

100(x2
i − xi+1)

2 + (xi − 1)2
}

[−10, 10]d

Weierstrass

d
∑

i=1

20
∑

k=0

0.5k cos
(

2π3k(xi + 0.5)
)

−

d
20
∑

k=0

0.5k cos(π3k)

[−0.5, 0.5]d

• Expected Improvement with Covariance Ma-
trix Adaptation Evolutionary Strategy (CMA-

ES) (EI–CMA-ES): An involved metamodel-

assisted algorithm which uses the CMA-ES opti-

mization algorithm within the expected improve-

ment framework (Büche et al., 2005). This al-

gorithm represents more advanced metamodel-

assisted implementations.

This set of algorithms was used to allow allow eval-

uation of the dynamic ensemble selection and to al-

low comparison to existing algorithms from the lit-

erature. For each algorithm–test function combina-

tion 30 runs were repeated so that there were suffi-

cient runs on which a valid statistical analysis could

be made. The number of simulations calls, namely,

evaluations of the expensive function, was limited to

200, to represent a tight limit on the number of eval-

uations of the true objective function. Table 3 gives

the resultant test statistics of mean, standard devi-

ation (SD), median, minimum (best) and maximum

(worst) objective value in each optimization test case.

It also gives the statistic α which indicates the sig-

nificance level (either 0.05, 0.01) at which the per-

formance of the proposed algorithm was better than

that of the other algorithms, where an empty entry in-

dicates that there was no statistically significant per-

formance advantage. The α statistic was determined

with the Mann–Whitney nonparametric test (Sheskin,

2007).

From the test results in follows that the proposed

algorithm performed well as it obtained the best mean

and median statistics in three out of four test func-

tions, while achieving statistics which were very near

best in other cases. Also, its performance had a statis-

tically significant advantage in 13 out of 24 compar-

isons, namely over 50% of the cases, which further

demonstrates its performance advantage. The pro-

posed algorithm also achieved good SD scores which

shows that its performance was robust across different

test problems.

The test results highlight the performance gains

of selecting an optimal ensemble during the search,

as evident from the comparisons to the V1 and V2

variants, which used a fixed metamodel and a fixed

ensemble, respectively.

Beyond the test statistics also the pattern of en-

sembles updates was examined to gauge if a single

ensemble was dominant or whether multiple config-

urations were used. Accordingly, Fig. 3 shows plots

of the different ensembles configurations which were

selected during an optimization test with the Ackley-

10D function and with the Rosenbrock-20D function.

It follows that the Kriging metamodel was chosen rel-

atively more often than others, but other ensembles

were also used throughout, which shows that adap-

tively selecting the ensemble during the search im-

proved the search effectiveness.

4.2 Engineering test problem

Beyond the tests with mathematical test functions also

included was a test with an engineering simulation-

driven problem, as it more closely represents a real-

world problem. Here the goal was to generate an

airfoil shape which maximizes its lift while minimiz-

ing its aerodynamic friction, namely, the drag, at the

prescribed operating conditions. Candidate airfoils

were represented with the method of Hicks and Henne

(1978) so that an airfoil profile was defined as

y = yb +
h
∑

i=1

αibi(x) , (3a)

bi(x) =

[

sin

(

πx
log(0.5)

log(i/(h+1))

)]4

, (3b)
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Function evaluations
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Figure 3. Selected ensemble topologies (R:RBF, RN:RBFN,

K:Kriging) .
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TABLE 3. TEST STATISTICS–MATHEMATICAL TEST FUNCTIONS

Proposed V1 V2 EA–PS EI–CMA-ES

Ackley-10

Mean 7.523e+00 1.398e+01 1.198e+01 5.271e+00 1.781e+01

SD 8.352e+00 5.037e+00 8.301e+00 5.943e-01 1.617e+00

Median 2.314e+00 1.585e+01 1.249e+01 5.408e+00 1.793e+01

Min(best) 1.894e-01 2.383e+00 3.457e+00 4.098e+00 1.443e+01

Max(worst) 1.836e+01 1.780e+01 2.044e+01 6.010e+00 1.988e+01

α 0.05 0.05

Rastrigin-5

Mean 6.923e+00 1.110e+01 9.172e+00 7.490e+00 2.371e+01

SD 3.739e+00 9.495e+00 1.143e+01 5.677e+00 6.053e+00

Median 6.629e+00 9.535e+00 4.731e+00 6.172e+00 2.390e+01

Min(best) 2.028e+00 1.148e+00 3.647e+00 1.827e+00 1.459e+01

Max(worst) 1.166e+01 2.975e+01 3.690e+01 1.703e+01 3.501e+01

α 0.01

Rosenbrock-20

Mean 5.791e+02 1.011e+03 6.857e+02 7.578e+02 4.024e+03

SD 2.228e+02 6.461e+02 2.805e+02 2.375e+02 1.049e+03

Median 5.956e+02 7.944e+02 7.429e+02 7.012e+02 3.685e+03

Min(best) 2.143e+02 5.483e+02 3.078e+02 4.676e+02 3.141e+03

Max(worst) 8.905e+02 2.517e+03 1.184e+03 1.186e+03 6.144e+03

α 0.05 0.01

Weierstrass-40

Mean 2.946e+01 4.222e+01 4.541e+01 3.224e+01 3.763e+01

SD 4.740e+00 4.556e+00 3.357e+00 1.699e+00 1.542e+01

Median 2.651e+01 4.341e+01 4.567e+01 3.221e+01 2.708e+01

Min(best) 2.533e+01 3.470e+01 4.042e+01 3.030e+01 2.207e+01

Max(worst) 3.586e+01 4.913e+01 4.970e+01 3.486e+01 5.935e+01

α 0.01 0.01

where yb is a baseline profile, taken here to be the

NACA0012 symmetric profile, bi are geometric basis

functions (Wu et al., 2003), and αi ∈ [−0.01, 0.01]
are weights to be calibrated, namely, the problem vari-

ables. To visualize the problem formulation, Fig. 4

shows the layout of the airfoil problem.

Two optimization scenarios were examined: i) a

low dimensional case where each of the upper and

lower airfoil profiles were defined by three basis func-

tions, thereby resulting in a total of six design vari-

ables, and ii) a high dimensional case where 10 basis

were used per profile, thereby resulting in a total of 20

design variables. The lift and drag coefficients of can-

didate airfoils were obtained by using XFoil, a com-

putational fluid dynamics simulation for analysis of

subsonic isolated airfoils (Drela and Youngren, 2001).

Also incorporated was structural integrity requirement

that the minimum airfoil thickness (t) between 20% to

80% of its chord line had to be at above a critical value

of t⋆ = 0.1 . Accordingly, the objective function used

was

f = −
cl

cd
+ p , p =







t⋆

t
·

∣

∣

∣

∣

cl

cd

∣

∣

∣

∣

if t < t⋆

0 otherwise

(4)

where p is a penalty for violation of the thickness con-

straint. The aircraft operating conditions were an al-

titude of 30,000 ft, a speed of Mach 0.7, namely 70%

of the speed of sound, and an angle of attack (AOA)

of 2◦ , which is roughly the angle between the airfoil

AOA

chord line

velocity

Lift

Drag

0.2 0.4 0.6 0.8 1

−0.2

−0.1

0

0.1

0.2

+

x

z

baseline airfoil: NACA0012

0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x

z
basis functions

Figure 4. The layout of the airfoil optimization problem.
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chord line and the aircraft velocity. These represent

typical and common operating conditions.

The evaluation was performed following the setup

of Section 4.1, and Table 4 gives the obtained test

statistics. It follows that the trends observed with the

mathematical functions persist also here as the imple-

mented algorithm again performed well in compari-

son to the reference algorithms.

Also inline with Section 4.1, Fig. 5 shows the

ensembles configurations which were selected during

one run from the six dimensional case and one from

the 20 dimensional case, respectively. As before, the

configurations varied throughout the search. Overall

the test statistics and the ensemble updates show that

the optimal ensemble configuration is strongly prob-

lem dependant also varies during the search itself, and

that selecting the optimal configuration improved the

search effectiveness.

5 Conclusion

The extensive use of computer simulations in engi-

neering and science has motivated the development

of dedicated optimization techniques which perform

more effectively in such settings. Specifically, meta-

models are used to alleviate the high computational

load associated with each simulation run. Since a

variety of metamodel variants have been proposed

and the optimal metamodel is problem dependant, en-

sembles try to address this by incorporating multi-

ple metamodels simultaneously. Still, the optimal en-

semble configuration is also problem dependant and

is typically unknown prior to the actual optimiza-

tion search. To address this issue this study has pro-

posed an approach in which the ensemble configura-

tion is selected continuously throughout the optimiza-

tion search such that an optimal configuration is con-

sistently used. The approach also operates within the

TR framework to manage the metamodel and to en-

sure convergence to a valid solution in face of inherent

metamodel inaccuracies. In an extensive performance

analysis based on both mathematical test function and

0 100 200

R

RN

K

R+RN

R+K

RN+K

R+RN+K

Function evaluations

S
el

ec
te

d
to

p
o
lo

g
y

Airfoil-6

0 100 200

Function evaluations

Airfoil-20

Figure 5. Ensemble configurations selected in two runs of the

airfoil problem (R:RBF, RN:RBFN, K:Kriging).

a simulation-driven engineering problem the proposed

approach was found to improve the search effective-

ness, while the ensemble configuration continuously

varied during the search, which highlight the neces-

sity of this procedure. Overall, analysis shows that

the proposed approach of continuously selecting an

optimal ensemble configuration improved the search

performance.
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