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1 Introduction

Various notions in universal algebra expand
upon the structure of an associative ring ([]; +,
.). Among these, nearrings(NR’s) and different
forms of semirings have proven to be highly
valuable. An algebra ([J;+,.) is defined as a
semiring (SR) when ([J; +) and ([0; .) form
semigroups and necessarily adhere to the
distributive lawsx.(y + 7) = #.y + .z and (¥ +
7)-» = y.» + z.» without exception for %, ¥, and 7
in [J. A SR is deemed additively commutative
if ® + ¥ =y + % is true without exception for %, ¥
in [J. Furthermore, a SR[Imight include a
distinguished identity element 1, where 1.%x = %
=x.1, and a zero element 0, where 0 + ® =% =%«
+ 0 and %.0 = 0 = 0.% hold without exception for
» in [J. After L.A. Zadeh introduced fuzzy
sets(FS’s) in his work [19], scholars began
exploring extensions of  this idea.
[16,17]Smarandache, in publications from 2002
and 2005, put forth Neutrosophic fuzzy set
(NFS) as an innovative philosophical
perspective. Later, S. Abou Zaid [1] introduced
the notions of fuzzy subnearrings(SNR) and
ideals.. The concept of intuitionistic fuzzy
subset(IFS) was introduced by K.T. Atanassov |
7,8], as a generalization of the notion of FS. In
this paper, we introduce the some theorems in
neutrosophicintuitionistic  fuzzy subsemiring
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(NIFSSR) of a SR under homomorphism and
anti-homomorphism.

2 Preliminaries

2.1 Definition[14]: A NFS D over a universal set
X is described in terms of a truth membership
functionTp(x), an indeterminacy function Ip(x),
and a falsity membership function Fp(x),
represented as B = { <, To(x), In(%), Fo(x) > ;
® € X }, where Tp, Ip, Fp : X — [0, 1] and the
condition 0 < Tp(x) + In(x) + Fa(x) < 3 holds.
2.1.1 Example: Let (N, +,.)bea SR . Then
NFSP = {< %, To(®), In(%), Fo(%) > ; % € X } of

N, where
To (x) = { 0.4 if niseven
if »is odd
Ip (%)= 1f ® is even
{ 0.3 if »isodd
and
Fp ()= {O 3 if wis even
if »is odd

Clearly B is a Neutrosophic anti-fuzzy SSR
(NAFSSR).

2.2 Definition: Let R be a SR. An NIFSD of R
is said to be an neutrosophic intuitionistic
fuzzy SSR (NIFSSR) of R if it satisfies the
following conditions:

(1) (@) up (% +y) 2min{ pp (%), un(y) §,

(b) vp(x +¥) <max { vb (%), vo(¥) },
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(c) ip(x +¥) < max { in(»), in(y) },

(i) (a) o (xy) 2min{ up (%), Ue(¥y) §,

(b) vo(uy) <max { vo (%), vo(¥) },

(c) io(xy) <max { ip(»), ib(¥) }, for all ¥ and ¥
in R.

2.2.1 Example: Let (Zs, +,.)bea SR . Then
NIFSP = { (( x, up(x), ip(x),vp(X) ) / x€ Z3 } of
75, where

up(x) = 0.6 if x=0

0.3 if x=1,2
ip(x) = 0.2 if x=0

0.2 if x=1,2

and
vp(X) = {02 if x=0
if x=1,2

Clearly D is a NIFSSR.

2.3 Definition: Let (R, +, - )and (R, +, - ) be
any two SR’s. Let f: R — R' be any function
and D be an NIFSSR in R, V be an NIFSSR in

f(R) =R/, defined by uv(y)= SUP ma(x) , vv(y)

xef'(y)
= Inf ve(®) and iv(y) = Inf i), for all
xefL(y) xef 7 (y)

x in R and y in R'. Then P is called a preimage
of V under f and is denoted by f-!(V).

3 Properties of neutrosophic
intuitionistic fuzzy subsemiring of a
semiring

3.1 Theorem: Intersection of any two NIFSSR
of a SR R is a NIFSSR of R.
Proof:

Let D1 and B1 be any two NIFSSR’s of a
SR R and % and ¥ in R. Let D1 = { ( %, up1(»),
vpi(®),ip1(®) )/ %eR } and Bl = { ( %, usi(»),
vei(»),i81(%) ) / ®eR } and also let C=D1nB1 =
{ (%, pc(®), ve(»),ic(») )/ »eR }, where min {
Hp1(%), HBi(%) § = pe(x) , thax { vei(x), vei(%) }
= ve(x) and max { iei(x), Bux) } =
ic(»).Now,(i) (a) pe( % +y ) = phin { ppi(x + ¥),
(% +y) ;= min{ pin { ppi(%), pei(y) }, hin {
ue11(%), uen(y) ;1= min{ min{ pei(x), peii(%)
§o in { ppi(y), uen(y) } 3= min { pe(x),uc(y)
}.Consequently, pc(x +y) 2 min { pc(%), pe(y) §,
without exception forx and ¥ in R.(b) ve( » + ¥)
=thax { vei(® + ¥), vei(® + ¥) }< mhan{ max {
vpi(%), vei(¥) }, hax { vei(x), vei(¥) } }= thax{
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max{ vei(x), vei(x) }, ax { vei(y), vei(y) } }=
max { ve(®),ve(y) }.Consequently, ve(x + ¥) <
max { ve(n), ve(y) }, without exception for » and
¥ in R.(c) ic( % + ¥ ) = vhax { ipi(x + ¥), tBi(» +
y) 1< max{ mhax { ipi(»), ibi(y) }, max { isi(»),
si1(y) } }= max{ max{ ipi(»), i8i1(») }, max {
bi(y), y) } }= max { ic()icy)
}+.Consequently, ic(» + ¥) < max { ic(»), ic(¥) },
without exception for » and ¥ in R And, (ii) (a)

pe(xey) = mhin { ppi(xy), usi(>y) } = thin { min{

woi(®),  pei(y) ), min {  pei(%),
uei(y)} }=min{min{ pei(x), psi(x) }, min {
poi(¥), mei(y) }  }= min{ pc®), pe(y)

j.Consequently, pc(xy) = min{ pc(»),uc(y) },
without exception for % and ¥in R. (b) vc(xy) =
max { vpi(®y), vei(xy) } < max{ max{ vpi(x),
vei(¥) }, tax { vei(%), vei(y) } } = max{ max {
voi(%), vBi(®) }, hax { vei(¥), vei(¥) } }= hax{
ve(®), ve(y) }.Consequently, ve(xy) <max{
ve(®),ve(y) }, without exception for » and yin R.
(¢) ic(ny) = man{ tpi(ny), isi1(ny) }< max{ maxn{
p1(%), tp1(y) }, thax{ isi(x), Bi(y) } }= phax{
max{ ipi(x), i) }, max{ ioi(y), Bi(y) } }=
max{ ic(»), ic(y) }.Consequently,ic(xy) <mhax{
ic(»),ic(y¥) }, without exception for ® and ¥in
R.Consequently C is an NIFSSR of a SR
R.Hence the intersection of any two NIFSSR’s of
a SR R is an NIFSSR of R.
3.2 Theorem: The intersection of a family of
NIFSSR‘s of SR R is an NIFSSRof R.
Proof:

Let { Vi: iel} be a family of NIFSSR’s
of a SR R and let D1 = NV,. Let x and ¥ in

iel

R.Then, (i) (a) poi(x +y) = inf pvi(x + y)zinf
min { pvi(), pvily) }= min { inf pyi(), inf

uvi(y) ;= min { ppi(x), pei(y) }.Consequently,

wpi(®xty) > min { upi(®),upi(y) }, without

exception for ® and yin R.(b) vpi(» + ¥) = sup

iel

wi(x + y)ssupmax { wi(x), wi(y) }= max {
iel

sup vvi(x), supwvi(y) }= max{ vei(®), vei(¥)
iel iel

}.Consequently, vei(x+y) <max{ vpi(%),vpi(¥)

}, without exception forx and yin R.(¢) ipi1(% + ¥)

= supivi(x +y) <sup max { tvi(»), tvi(y) }= max

iel iel
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{ supivi»), supivi(y) }= thax{ ibi(»), ipi(y)
iel iel

}.Consequently, ipi(xt+y) <max{ ipi(»),b1(¥) },

without exception for » and yin R.And, (ii) (a)

kp1Cey) = inf pvi(ey) = inf min{ pvi(e), pvily)
}= thin{ 12|f Hvi(x), 12|f uvi(y) }= min{ ppi(x),

upi(y¥)  }.Consequently, upi(xy) > min{
up1(»),up1(¥) }, without exception for » and ¥yin
R.(b) vpi(xy) = sup vvi(xy) < supmax{ vvi(»),
iel icl
valy) = et SUp VG0, SUpvwiy) }= ma|
le le
vpi(®), vpi(¥) }.Consequently, vpi(»y) <phax{
vpi(%),vpi(¥) }, without exception for ® and ¥in
R.(c) fpi(»y) = supivi(xy) < supmax{ ivi(»n),
iel iel
ivi(¥) }=mau{$ull) tvi(»), S.ulp tvi(y) }= max{
tp1(»), ipi(y) }.Consequently, ipi(»y) <phax{
tp1(»),ip1(¥) }, without exception for » and ¥in
R.That is, P1 is an NIFSSR of a SR R.Hence, the
intersection of a family of NIFSSR’s of R is an
NIFSSRof R.
3.3 Theorem: If Bl and Bl are any two
NIFSSR‘s of the SR’s R; and Rorespectively,
then D1xB1 is an NIFSSRof R;xR..
Proof:
Let B1 and B1 be two NIFSSR’s of the
SR’s R; and Rorespectively.Let »; and %> be in
Ri, y1 and ¥, be in R,.Then ( %1, %1 ) and ( %2, ¥2)
are in RixRa.Now, (i) (2) wpixsi[(%1, ¥1) + (%2, ¥2)
] = wpixBi( %1 + %2, ¥1F+ ¥2 )= thin { ppi(31+%2 ),
pei( y1ty2 ) j2min{ min{ pei(), pei(x2 ) },
min{psi(y1), pei(y2) } }= min{ min { ppi(x),
usi(¥1) }, min { ppi(®2), usi(y2) }}= min{
upixsi(®1, ¥1), Wpixsi(®2, ¥2) }.Consequently,
wpixsi[ (1, ¥1) + (%2, ¥2) | 2mnin { pupis1(%1, ¥1),
upixB1(%2, ¥2) }.(b) versi[(%1, ¥1) + (2, ¥2) | =
voigi( ®1 + %2, it ¥ ) = max { vei(t %),
vei( ¥it+ ¥2 ) 1< thax{ mhan{ vpi(»1), vei(x2 ) },
thax{vei(y1), vei(y¥2) } }= max{ max{ vpi(»1),
vei(y1) }, max { vei(x2), vei(y2) }}=thax{
voixB1(®1, ¥1), VpixBl(X2, ¥2) }.Consequently,
vpixei[ (1, ¥1) + (%2, ¥2) 1 < mhax{ veixei(®1, ¥1),
voixBi(%2, ¥2)}.(€)  IprBi[(M1,y1) T (2, ¥2) ] =
tpix1(®1 + %2, ¥+ ¥ ) = mhax { tpi(i+ %2 ), iBi(
vt ¥y ) 1< man{ max{ pi(*1), pi(x2 ) },
max{isi(y1), Bi(y2) } = max{ max{ ii(),
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i(y1) }, max { {bi(x2), Bi(y2) }}= max{
tpixei(®1, ¥1), tixBi(®2, ¥2) }.Consequently,
toixBi[ (%1, ¥1) + (%2, ¥2) 1< vhax{ ipixei(%1, ¥1),
{Dlxgl(}cz, yz) }.AlSO,(ii) (a) MDlel[ (%1, YI)(%z, yz)
1 = peixBi( ®1%2, F1y2 ) = min { ppi( ®ix2 ), wsi(
yiy2 )zthin{ min{ pei(x1), pei(x2 ) }, phin{
usi(¥1), He1(y2) } }=nhin { 1hin
{up1(1),1e1(y1) §,min{ ppi(%2), psi(y2) }}=min{
HleBl(%l, yl), HDIXBI(%Z, Y2)
}+.Consequently, upixsi[ (%1,51)(%2,¥2)|2min{
HDIXBI(%I,YI), ualel(%z,Y2)}.(b) VleBl[ (%1,
y)(H2, ¥2) 1 = veusi( ®ix2,yiy2)=mhan{vei(
w1%2),VB1(¥1¥2)< thax { ax{ vpi(%1), vpi(x2) },
max{ vei(y1), vei(y2) }}= max{hax
{vp1(x1),vB1(¥1) } ,shax{vp1(%2),vBi(¥2)} } =mhax{vp
1 xBl(%l ,yl),vm xB1 (%2,3’2)} .Consequently,vm xB1 [(%1
¥ (2,32) [Sthan {ves1(%1¥1),Vo1xB1(#2,¥2) } .(C)
tpixei[ (%1, ¥1)(®2, ¥2) | = bixei( Hin2, F1¥2 ) =
max{ bi( ®in2 ), Bi( y¥iy2 ) < max{ man{
1(x1),l1(%2 ) }, man{ isi(y1), Bi1(y2) }}=max{
max{ ipi(%1), Bi(y1) }, mhax{ ipi(%2), iBi(¥2)
=man{ bei(®i,  ¥1),  lpixei(®2,  ¥2)
+.Consequently,ipixsi| (%1, ¥1)(%2, ¥2) | < max{
VD1xB1(%1, Y1), VDlel(%z, yz) }.Hence P1xB1 is an
NIFSSR of SR of R xRs.

3.4 Theorem: Let D1 be an NIFS of a SR R and
V be the strongest NIFR of R. Then D1 is an
NIFSSRof R if and only if V is an NIFSSR of
RxR.

Proof:Suppose that D1 is an NIFSSR of a SR R.
Then for any» = ( %1, ®2 ) and ¥ = ( ¥1, ¥2 ) are in
RxR.Wehave, (i) (a) pv (2+y) = pv [(%1, %2) +
Gri, ¥ = wv( ot y1, %2+ y2)= thin { pei(x +
¥1),pp1( ®2t ¥2) f2rhin { min { ppi(x1), poi(y1) },
min { upi1(%2), wei(y2) } } = thin { in { ppi (1),
wp1(®2) }, min { upi(y1 ), wpi(y2) } }= min { uv
(1, ®2), Wv (y1, ¥2) }= min {pyv (o),uv (¥)
}.Consequently, pv ( % + ¥) 2min { pyv (%), Ly (¥)
}, without exception for % and ¥ in RxR.(b) vv
(tty) = wl, %) + (7, ¥2)] = vt ¥,
Hot ¥2 )= hax { vei(xi + ¥1),vei( ®ot ¥2) }< thax
{ max { vei1(»1), voi(¥1) }, thax { vei1(%2), vei(¥2)
y = max{ max { vei(1), vei(x2) }, thax {
vpi(¥1), Voi(¥2) } }= mhax{ vv (xi, %2), Vv (¥1, ¥2)
}=maxn{vv (»),vv (¥) }.Consequently, vv ( % + ¥)
< max{ vv (»), vv (¥) }, without exception for »
and ¥ in RxR.(c) iv (u+ ¥) = iv[(%1, ®2) + (31,
¥2)] = v( 2t ¥, 2t y2 )= max { tpi(n +
¥1),ip1( %2t ¥2) }< mhax { mhax { ip1(%1), tb1(y1) },
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max { ipi(%2), ipi(y2) } } = max{ max { ipi(x1),
p1(®2) }, max { tpi(y1), tp1(¥2) } }= max{ iv (%,
), v (1, y) (= max{lv ()iv (¥
}+.Consequently, iv ( % + ¥) < max{ iv (%), iv(¥) },
without exception for ® and ¥ in RXR.And,(ii) (a)
v (y) = pv [(e1, %2) (31, ¥2)] = pv( vy, %oy
)= min { pei(1y1), pei(x2y2) p2min { pin{
up1(x1), tpi(y1) }, min{ ppi(%2), ppi(y2) | } =
min{ min { ppi(%1), wp1(®2) }, vhin{ upi(yv1 ),
upi(y2) } 1= min{ pv (%1, %2), pv (1, ¥2) }= min{
v (%),uv (¥) }.Consequently, pv (ay) 2min{ py
(»), pv (¥) }, without exception for ® and ¥ in
RXR.(b) vv (xy) = vv[(x1, %2) (¥1, ¥2)] = vv(
NI¥1 , ®o¥2 )= thax { vei(®iy1), vei(®oy2) }< thax
{ max{ vpi(t1), voi(y1) }, thax{ vei(x2), vei(¥2)
b} = man{ max { vpi(®1), vei(x2) }, tax{
voi(¥1), Voi(¥2) } }= man{ vv (w1, %2), Vv (¥1, ¥2)
}=max{ vv (n),vv (¥) }.Consequently, vy (»y) <
max{ vv (»), vv (¥) }, without exception for %
and y in RxR.(c) iv(xy) = iv[(w1, %2) (1, ¥2)]=
tv( niyr , ®oy2 )= max { pi(xryr), bi(dey2) 1<
max { max{ ipi(»1), bi(y1 ) }, max{ ipi(%2),
ipi(y2) } }= max{ max { ibi(x1), boi(x2) }, thax{
p1(y1), b1(y2) } }= mand iv (w1, %), tv (1, 72) }=
max{ tv (»),iv (¥) }.Consequently, iv (xy) < mhax{
tv (»), iv (¥) }, without exception for » and ¥ in
RxR.Thisprovesthat v isanNIFSSRof
RxR.Conversely asume that V isanNIFSSRof
RxR, thenforanyx = (%1, %2) and ¥ = (¥1, ¥2) are
in RxR, wehave(i) (a) thin{ up1(®1 + ¥1), up1(d2+
y2) } = w ot yi, wt y2 )= py [(n, %2) + (371,
¥2)I= pv (¢ + y)2ming pyv (%), py (¥) }= min{ py
(t1, ®2) , Ky (71, ¥2) }= min{ min{ pei(x),
up1(x2) }, hin { puei(y1), Uoi1(y2) } 3 Ifpei(ert y1)
< w1t ¥2), upi(®1) < upi(%2), ppi(yr ) <
HDl(yZ), Weget, “Dl(%1+ y1) Zmll’l{ HDI(%I),
upi(¥1 ) }, without exception for ; and ¥ in
R.(b) max{ vpi(xi+ ¥1), ve102t ¥2) } = vv( wit
¥i, %ot y2)= vy [(1, ®2) + (Y1, ¥2)IF Vv (»+
y)Smax{ vv (»), vv (¥) }= thax{ vv (%1, %2) , Vv
(v1, ¥2) } = thax{ mhax{ vei(x1), vei(x2) }, thax {
vpi(¥1 ), vei(32) } }.Ifvei(it 1) = vei1(xat ¥2),
vpi(®1) = vpi(®2), vei(y¥1 ) = vei(y2), Wweget,
vpi(nit y1) < max{ vepi(x1), vei(y1 ) }, without
exception for »; and ¥ in R.(c) mmax{ ipi(»1+ ¥1),
b1t y2) } = vt yi, 2ot y2 )= v [(n, %2) +
(y1, ¥2)] = v (et y)sman{ tv(»), iv (¥) } = mhax{
tv (1, ®2) , tv (y1, ¥2) }= max{ max{ pi(x),
p1(%2) }, max { ipi(y1), bi(y2) } }.Ifle1(a+ 1) >
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p1(®2t 72), th1(®1) = o1(%2), to1(¥1) = o1(¥2), we
get, ip1(x1t y1) < mhax{ ipi1(»1), tp1(y1) }, without
exception for % and ¥y in R.And,(ii) (a) min {
Hp1(21¥1), Hpi(®2y2) } = pv( iy, %ay2)= pv[(x,
%) (¥, ¥2)I=  wv (uy)zmin{ py (%), uv (y) =
min{ pv (%1, %2), pv (¥1, ¥2) = min{ min {
upi(1), ppi(x2) §, min { pei(yr ), wei(y2) }
JIfueiGay)) < pei(2y2), pei(1) < pei(%2),
Hp1(¥1) < Wpi(y2),we getupi(xiy1) 2phin{ ppi(x1),
wp1(¥1) }, without exception for »; and ¥; in R.(b)
max { vpi(iy1), vei(2y2) | = v wiyr, %oy2 )=
w1, %2) (31, ¥2)I= vy (wy)<max{ vv (%), vv (¥)
y= max{ vv (x1, ®2), Vv (¥1, ¥2) }= max{ hax {
vpi(®1), vei(®2) }, hax { vei(y1 ), vei(¥2) }
Ifvei(y) > vei(®ey2), vei(®1) > vei(®2),
vpi(¥1 ) = vei(y2), we getvpi(uy)S man{
vpi(®1), vpi(¥1) }, without exception for %; and ¥
in R.(C) max { {51(%1yl), ﬁ)1(%2¥2) } = iv( iy,
ny2 )= WG, %) (1, ¥2)] = iv (ey)<mhax{ iv
(%), tv(y) } = max{ iv(x1, %), v (¥1, y2) }= mhan{
thax { tp1(%1), tb1(%2) }, max { bi(y1), bi1(y2) }
}Ifipi(xy1) = bi(®2¥2), bi1(%1) > 1p1(%2), tpi1(¥1)
> pi(y2), we getipi(xry)<max{ ipi1(»1), io1(¥1) },
without exception for »; and ¥ in
R.Consequentlyb lisanNIFSSRof R.

3.5 Theorem:If B1 is an NIFSSR of a SR (R, +,
=), then H ={ » / ®eR: ppi(%) = 1, vei(») =
0,ip1(») = 0} is either empty or is a SSR of R.
Proof: If no element of the underlying set
satisfies the stated condition, H is empty.Ifx and
¥ in H, then(i) (a) upi( ® + ¥) 2min { upi(x),
wpi(¥) } =min { 1,1 } = 1.Consequently, upi( %
+y) = 1.(b) vei( nty) <mhax { vei(%),vei(¥) } =
max { 0,0} = 0.Consequently, vpi( ®t+ y) =
0.(c)lpi( ®ty) <max{ ipi(n),ipi(y) } = mhan{
0,0}= 0.Consequently, ipi( %+ ¥) = 0.And (ii)
() ppi( »y) 2min { ppi(%),pe1(y) }=in{ 1,1 }=
1.Consequently, upi( ®¥) = 1.(b) vei( ®y) <mhax
{ vbi1(®),vpi(¥) } = mhax{ 0,0}=0.Consequently,
vei( %y) =0.(c) tpi( ny) <mhax{ ipi(x),ipi(y) } =
max{ 0,0}=0.Consequently, ipi( ®¥) =0.We get
wty,uyinH.Consequently, H is a SSR of R.
Hence H is either empty or is a SSR of R.

3.6 Theorem:If D1 be an NIFSSR of a SR (R,
+, ), then

(1) if upi(»+ty) = 0, then either upi(x) = 0 or
up1(¥) = 0, without exception forx and ¥ in R.

(i) if upi(n+ ¥) = 1, then either upi(%) =1 or
ppi(y) = 1, without exception forx and y in R.
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Proof:Let » and ¥inR.(i) Bly thedefinition
ppi(x+y )=min { upi( %),up1(¥) },this entails that
0 2min {up1(»),up1(¥) }.Consequently, either
upi(x) = 0 or wei(y) = 0.(11)Bly the
definitionupi(x+ )<max { upi( %),upi(¥)
},which implies that 1 <phax {upi(»),un1(¥)
}+.Consequently, either ppi(») =1 or ppi(y) = 1.
3.7 Theorem:If B1 is an NIFSSR of a SR( R, +,
-), then H={(x,pup1(%)):0<pp1(»)<1,vpi(%)=0 and
ip1(»)=0 } is either empty or a FSSRof R.
Proof:If no element of the underlying set
satisfies the stated condition,H is empty.If ® and
ysatisfies this
condition,thenvpi(x+y)<max {vei(»),vpi(¥)}=ma
®{0,0}=0.Consequently, vpi(»x+y)=0, without
exception forr and ¥ in R. And, vei(xy)
<man{vei(x),vpi1(¥) }=max{0,0}=0.
Consequently, vpi( ®y) = 0, without exception
for r * and ¥ in R.We have, ipi(
wty)<max {ipi(%),lp1(¥) } =mhax {0,0}=0.Conseque
ntly, ip1( ®x+y) = 0, without exception forx and ¥
in R.And,ipi(xy)<phax{
tp1(»),ip1(¥) }=max{0,0}= 0. Consequently, ipi(
»y) = 0, without exception forx and ¥ in R.And,
upi( »ty)=min{upi(%),up1(¥)}. Consequently,
ppi( wty) 2min { ppi(x),upi(y) }, without
exception forr and ¥y in  R.And,
up1(y)=mhin { pp1 (%), Lp1(¥) } Consequently,
upi(xy) 2min{upi(»),up1(¥)},without exception
for » and ¥ in R.Hence H is a FSSR of
R.Consequently, H is either empty or a FSSR of
R.

3.8 Theorem:If B1 is an NIFSSR of a SR( R, +,
- )then H = {(%, pp1(%)): O<upi(»)<1} is either
empty or aFSSRof R.

Proof:If no element of the underlying set
satisfies the stated condition,H is empty.If » and
¥ satisfies this condition, then
up1(+y)=min{pp1(%),up1(¥) } .Consequently,

ppr( - xt y)2phin{pei(%),upi(y)},  without
exception for X and ¥ in
R.Andppi(»y)2min {up1(»),up1(¥) } .Consequently
. bei(xy) 2min { pei(x),uei(y) }, without
exception for » and ¥ in R.Consequently, H is
either empty or a FSSR of R.

3.9 Theorem:If P1 is an NIFSSR of a SR(R, +,
), then H={(%,vpi(»)):0<vpi(»)<1} is either
empty or anAFSSRof R.
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Proof:If no element of the underlying set
satisfies the stated conditionH is empty.If % and ¥
satisfies this condition, thenvp(
wty)<phax {vpi(»),vpi(¥)} .Consequently, vpi(
wty)<phax {vpi(»),vpi(¥) }, without exception for
R and ¥ in R. And
vpi(xy)<hax {vpi1(®),vpi1(¥)} Consequently,
vpi(xy)<thax{vei(®),vpi1(¥) }, without exception
for » and ¥ in R.Hence H is either empty or an
AFSSR of R.

3.10 Theorem:If D1 is an NIFSSR of a SR (R,
+, ), then H={(x,ip1(»)):0<ip1(%) < 1} is either
empty or anAFSSRof R.

Proof:If no element of the underlying set
satisfies the stated condition,H is empty.If » and
¥ satisfies this condition, thenip:(
wty)<max{ipi1(x),ip1(y¥)}.Consequently,
ip1(x+y)<max{ip1(»),ip1(y¥) }, without exception
for » and ¥ in R.Andipi(»y)<max{ipi(%) ,ipi(¥)
}.Consequently, 1ipi1( ®y) <phax {ip1(»),ipi(¥) },
without exception for » and ¥ in R.Hence H is
either empty or an AFSSR of R.

3.11 Theorem:If D1 is an NIFSSRof a SR( R, +,
-), then (D1 is an NIFSSRof R.

Proof: Let D1 be an NIFSSRof a SRR.Consider
DP1={(,pp1(x),vp1(%),lp1(%)) }, without exception
for ® n R, we take b1
=BI1={(%,up1(%),vBi1(%),ip1(%))}, Where usi(») =
poi(®), vei(®) = l-ppi(®), tBi1(%) = I—ppi(%).
Clearly, psi(xty)= min { usi(®),usi(y) },
without exception for » and ¥ in R and psi(xy) >
min { usi(%),usi(¥) }, without exception for
and ¥ in R. Since D1 is an NIFSSRof R, we have
ppi( ®ty ) = phin { pei(x),uei(y) }, without
exception for » and ¥ in R,this entails that 1—
vei(xty) 2 min { (1-vei(x) ), ( 1= vei(¥) ) },this
entails that vei(»+y) < 1- min{ ( 1- vei(») ), ( 1-
vei(¥) ) }=max { vei(»),vei(¥) }.Consequently,
vei(xty) < max { vei(x),vei(y¥) },without
exception for ® and ¥ in R.Also, we have upi(
wty ) > mhin { upi(x),up1(¥) }this entails that 1—
{pi(xty) 2 mhin { (1= isi(%) ), (1= iei(y) ) J,this
entails that ig(#+y) < 1- min{ ( 1- igi(%) ), ( 1-
iBi1(y) ) }=max { isi(»),izi(y¥) }.Consequently,
fpi(ety) < max { isi(®),isi(y) },without
exception for % and ¥ in R.And ppi(xy) > min {
wp1(®),upi(¥) }, without exception for »# and ¥ in
R.,this entails that 1— vgi(%y) > min { ( 1- vei(x%)
), ( 1— vei(y¥) ) }this entails that vei(xy)<1—
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min{(1- vai1(®)), (1- vei(¥)) } =max
{vei(»),vei1(¥) }.Consequently, vei(»y) < max {
vei(»),vei(¥) },without exception for » and ¥ in
R.Also, we have upi1(»y) > min { ppi(%),1e1(¥) },
without exception for x and y in R,this entails
that 1— igi(»y) > min { ( 1- Bi(%) ), ( 1- tBi(¥) )
}this entails that igi(xy) < 1— min{ ( 1- si(%) ), (
1—- ei(y) ) }=max {izi(»),isi1(y)}.Consequently,
tB1(xy) < max { is1(%),z1(¥) },without exception
for » and ¥ in R.Hence Bl = [IP1 is an
NIFSSRof a SRR.

3.12 Theorem:If B1 is an NIFSSRof a SR( R, +,
-), then 0P 1 is an NIFSSRof R.

Proof:Let DB1 be an NIFSSRof a SRR.

That is D1={(&,up1(»),ve1(%),l21(%))}, without
exception for x in R.Let 0P1 = B1 = { (%, usi(»),
VBl(%),iBl(%» }, where Mm(%) = 1—VD(%), VB1(%) =
vp(n), i81(%) = 1-vp(»).Clearly, vei(x+y) < mhan{
vei(»),vei(¥) },without exception for » and ¥ in
R and vei(xy) <max{ vsi(x),vei(¥) }, without
exception for % and ¥ in R.

Since D1 is an NIFSSRof R, we havevpi(x+y) <
max{ vpi(®),vei(¥) },without exception for » and
¥ in R,this entails that 1—upi(»+y) < max { ( 1-
pei(®) ), ( 1— pusi(y) ) }this entails that pgi(%+y)
> 1=max { (1= psi(») ), ( 1= pei(y) ) j=min {
uei(»),us1(¥) }.Consequently, pgi(x+y) > min{
uei1(»),us1(¥) }, without exception for » and ¥ in
R.

Also, we have vpi(xty) < mhax{ vei(»), vei(¥)
}, without exception for » and ¥ in R,this entails
that 1—ig1(»+y) <vhax { ( 1-1gi(%) ), ( 1—isi(¥) )
}this entails that igi(»+y) > 1— mhax { ( 1- i1(%)
) (1= imi(y) ) j= min { usi(x), psi(y)
}.Consequently, psi(xty) > min{ psi(%), usi(y)
}, without exception for » and ¥ in R.And
vpi(xy) < max { vei(x), vei(y) }, without
exception for » and ¥ in R,this entails that 1—
pei(2y) < maxe { (I-psi(%) ) , ( I-pmi(y) ) }.this
entails that ppi(»y) > 1— max { (1-usi(x) ), ( 1-
uei(y) ) }= min { psi(%), pei(y) }.Consequently,
usi(xy) > min { pei(x), psi(y) }, without
exception for » and ¥ in R.Also, vpi(®y) < phax {
vpi(»), vpi(¥) }, without exception for » and ¥ in
R,this entails that 1—igi(%y) < maxn { ( 1-igi(%) )
, ( 1-Bi(¥) ) },this entails that ii(»%y) > 1— mhax
{ (I=tB1(%) ), ( 1=Bi(y) ) = mhin { psi(%), pei(y)
j.Consequently, psi(xy) = min { usi(x), psi(y)
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}, without exception for » and ¥ in R.Hence B1 =
OP1 is an NIFSSRof a SR R.

4 Conclusion

In this paper, we introduced and studied the
concept of Neutrosophic Intuitionistic Fuzzy
Subsemiring (NIFSSR) of a semiring. This
notion combines the ideas of semirings with
neutrosophic and intuitionistic fuzzy theories,
which  helps in  handling uncertainty,
indeterminacy, and inconsistency in algebraic
structures. Basic definitions and properties of
NIFSSR were discussed, and several results
were established to illustrate their algebraic
behavior. The study shows that NIFSSRs
generalize classical fuzzy and intuitionistic
fuzzy subsemirings. Hence, this framework
provides a broader and more flexible
mathematical model, which may be useful for
further theoretical research and potential
applications in decision-making and information
systems under uncertainty.
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