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Abstract: - This work develops a categorical pipeline that connects the algebraic semantics of fuzzy logic with 
the ordered K-theory of AF 𝐶∗-algebras (Approximately Finite-Dimensional 𝐶∗-algebras). Starting from the 
classical equivalence between MV-algebras (Many-Valued algebras, i.e., algebras of Łukasiewicz logic) and 
unital ℓ-groups (lattice-ordered abelian groups with a strong unit) established by Mundici, we show how these 
ordered structures naturally embed into dimension groups (ordered abelian groups with interpolation and 
unperforation), the ordered K0 invariants (Grothendieck ordered K-theory group of projections) that classify AF 
algebras. By composing the functors Ξ, F, and 𝐾0−1, we construct a functorial correspondence: 
 

𝑀𝑉 → 𝑢𝑙𝐺 → 𝐷𝑖𝑚𝐺𝑟𝑝 → 𝐴𝐹 
 

that assigns to each MV-algebra a unique AF 𝐶∗-algebra whose ordered 𝐾0-group recovers its underlying 
fuzzy-logical structure. This provides an operator-algebraic semantics for many-valued reasoning, where MV-
operations correspond to projection structure and truncated addition in the associated AF-algebra. As an 
illustrative example, we compute explicitly the AF algebra associated with the three-valued Łukasiewicz 
algebra Ł3 and show that it corresponds to the matrix algebra 𝑀2(𝐶). The developed framework clarifies the 
conceptual and categorical role of ordered K-theory in fuzzy logic and suggests new connections between 
many-valued reasoning, dimension groups, and the structure theory of 𝐶∗-algebras. 
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1 Introduction 
1.1 Why 𝐶∗-algebra is the best match from the 

main 4 categories in K-theory? 

 Fuzzy logic algebraic structures (MV-algebras, 
residuated lattices) → ordered abelian groups. The 
central algebraic formalism in K-theory for fuzzy 
logic is the MV-algebra, i.e. Łukasiewicz logic. 
Mundici’s theorem establishes a categorical 
equivalence between MV-algebras and unital ℓ-
groups (lattice-ordered abelian groups with a strong 
unit). This correspondence already lifts fuzzy truth 
values from the interval [0, 1] into the world of 
ordered abelian groups, the natural domain where 
the functorial invariant 𝐾0 (the Grothendieck 
ordered K-theory group of projections) lives.  

Also, this correspondence rests on the classical 
foundations [[1], [2], [3], [4], [5], [6], [8], [9]]. 

The link of K-Theory to Fuzzy-logic is not that new 
see [7]-this paper generalizes fuzzy sets using 
lattices (L), which is mathematically closer to 
algebraic structures and might serve as a bridge 

toward K-theoretic formalism. 

1.2 AF 𝐶∗-algebras ↔ dimension groups 

(ordered 𝐾0). 

AF (Approximately Finite-Dimensional) 𝐶∗-
algebras possess 𝐾0 groups (Grothendieck ordered 
K-theory groups) that are scaled, ordered abelian 
groups — the so-called dimension groups. Elliott’s 
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classification theorem states that for AF algebras, 
the ordered group (𝐾0(𝐴),𝐾0(𝐴)+, [1𝐴]) is a 
complete invariant. Consequently, the algebraic 
invariants of AF 𝐶∗-algebras coincide precisely with 
the ordered groups arising naturally from MV-
algebras via Mundici’s equivalence. This establishes 
a direct conceptual and categorical bridge between 
fuzzy logic and operator K-theory. 

2 Problem Formulation 

The central objective of this work is to construct a 
functorial and mathematically rigorous pipeline that 
translates fuzzy logical structures—expressed as 
MV-algebras (Many-Valued algebras) — into 
operator-algebraic structures governed by ordered 
K-theory and AF 𝐶∗-algebras (Approximately 
Finite-Dimensional 𝐶∗-algebras). Formally, given 
an MV-algebra M, we seek to identify an AF algebra 
A(M) such that: 

P1. Logical structure preservation.  

The algebraic operations of M (MV-sum and 
negation) correspond functorially to ordered-group 
operations inside the associated dimension group 
(ordered abelian group with interpolation). 

P2. Categorical compatibility.  

The construction must respect morphisms: every 
MV-homomorphism  𝜑:𝑀 → 𝑁 must induce a 
unital -homomorphism 𝐴(𝜑): 𝐴(𝑀) → 𝐴(𝑁). 
Thus, the resulting assignment must be a functor: 

𝐴:𝑀𝑉 → 𝐴𝐹. 

P3. Ordered 𝐾0 reconstruction.  

The AF algebra A(M) must recover the ordered-
group structure that encodes the semantics of M: 

(𝐾0(𝐴(𝑀)),𝐾0(𝐴(𝑀))
+
, [1]) ≅ (𝐺𝑀, 𝐺𝑀

+, 𝑢𝑀) 

where (GM, uM) = Ξ(M) is the unital ℓ-group 

associated to M via Mundici’s equivalence. 

P4. Computability (finite case).  

For finite or finitely presented MV-algebras, the 
construction must produce explicit, finite-
dimensional matrix realisations (e.g. Mk(C) or small 
inductive limits), suitable for use in computer-
scientific applications and numerical 
experimentation. 

These requirements lead directly to the categorical 
pipeline  

𝑀𝑉 →
𝛯
𝐹 →
𝐾0
−1

𝐴𝐹, 

whose construction and properties form the core of 
the present work. 

 
3 Background 

This section provides the mathematical background 
required for the conceptual bridge developed later: 
from MV-algebras (the algebraic semantics of 
Łukasiewicz fuzzy logic) to ordered abelian groups, 
and further to AF 𝐶∗-algebras via their ordered 𝐾0 

invariants. We review the four pillars underlying 
this correspondence: MV-algebras, unital ℓ-groups 
and the Mundici equivalence, AF algebras, and 
ordered K-theory.  

3.1 MV-Algebras 

MV-algebras were introduced by Chang see also 
[CDM00, Mun86].) as an algebraic semantics for 
infinite-valued Łukasiewicz logic. An MV-algebra 
(Many-Valued algebra) is a structure  

(𝑀,⊕,∗ ,0) 

satisfying the following axioms:  

1. (𝑀,⊕ ,0) is a commutative monoid; 

2. the unary operation * (the Łukasiewicz negation) 
satisfies:  

(𝑥∗)*= 𝑥,        𝑥 ⊕ 0∗ = 0∗ ; 
3. the Łukasiewicz law 

(𝑥∗⊕ 𝑦∗) ⊕ 𝑦 = (𝑦∗⊕ 𝑥∗) ⊕  𝑥 
 
holds for all 𝑥, 𝑦 ∈ 𝑀. 
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The canonical example is the real unit interval [0, 1] 
with operations:  

 
𝑥 ⊕ 𝑦 = min (1, 𝑥 + 𝑦),   𝑥∗ = 1 − 𝑥 

 
MV-algebras capture the semantics of fuzzy truth 
values and allow algebraic treatment of connectives 
such as conjunction, disjunction, 
and negation. Crucially, they admit a faithful 
representation in terms of lattice-ordered Abelian 
groups, enabling the use of ordered algebra and K-
theory. 
 
3.2 ℓ-Groups and the Mundici Equivalence 

 

A lattice-ordered abelian group (ℓ-group) is an 
Abelian group G equipped with a lattice order 𝐺+ 
such that translation preserves the order.  
A unital ℓ-group Unital ℓ-groups [Goo86] … is a 
pair (G, u) where  𝑢 ∈  𝐺+  is a strong order unit, 
meaning that for every 𝑔 ∈  𝐺 
there exists  𝑛 ∈ 𝑁 such that: 

−𝑛𝑢 ≤ 𝑔 ≤ 𝑛𝑢 
 
Mundici’s celebrated equivalence establishes a 
categorical duality: 
 
 

𝑴𝑽− 𝒂𝒍𝒈𝒆𝒃𝒓𝒂𝒔 ⋍ 𝐮𝐧𝐢𝐭𝐚𝐥 𝓵 − 𝒈𝒓𝒐𝒖𝒑𝒔 
 
The functor  
 

𝛤(𝐺, 𝑢) = {𝑔 ∈ 𝐺: 0 ≤ 𝑔 ≤ 𝑢} 
equipped with operations: 

𝑥 ⊕ 𝑦 = min (𝑢, 𝑥 + 𝑦),     𝑥∗ = 𝑢 − 𝑥 
 
turns each unital ℓ-group into an MV-algebra.  
Conversely, every MV-algebra M can be uniquely 
(up to isomorphism) represented as the unit interval 
of a unital ℓ-group. 
Thus, every fuzzy algebraic structure arising from 
Łukasiewicz logic has a canonical ordered-group 
representation, which interfaces naturally with 
operator algebras and ordered K-theory. 
 
3.3 AF Algebras 

An AF 𝐶∗-algebra (Approximately Finite-
Dimensional) is a separable 𝐶∗-algebra obtained as 
an inductive limit of finite-dimensional 𝐶∗-algebras:  

𝐴 =
lim
→ (𝐴𝑛, 𝛷𝑛 ),   𝐴𝑛 =⊕𝑖=1

𝑘𝑛 𝑀𝑚𝑛,𝑖(𝐶) 
 
 

AF algebras form a tractable yet structurally rich 
class of 𝐶∗ −algebras. One of the central results of 
the classification theory of 𝐶∗ −algebras is: 
 
Elliott’s Theorem (AF case). (Elliott’s 
classification [Ell76]) 
Two AF algebras A and B are * - isomorphic if and 
only if their ordered scaled  𝐾0 groups: 
  

(𝐾0(𝐴),𝐾0(𝐴)
+, [1𝐴]) and 

(𝐾0(𝐵),𝐾0(𝐵)
+, [1𝐵]) 

 
are order-unit isomorphic. 
 
Thus, AF algebras correspond precisely to 
dimension groups, i.e. ordered abelian groups 
satisfying: 

• unperforation, 
• the Riesz interpolation property, 
• existence of a distinguished order unit. 

 
As explained later, the dimension groups that arise 
from MV-algebras via Mundici’s equivalence fit 
naturally into this framework. 
 
3.4 Ordered K0-Theory and the Functor 𝑲𝟎 

For a unital C∗-algebra A, the group K0(A) (the 
Grothendieck ordered K-theory group of 
projections) is defined using Murray–von Neumann 
equivalence classes of projections in matrix algebras 
over A: 
 
K0(𝐴) = ⟨[𝑝] − [𝑞]: p, q projections in 𝑀𝑛(𝐴)⟩ 

 
(see [Bla98, RLL00] for detailed treatments). 
 
The positive cone: 

K0(𝐴)
+ = {[𝑝]: 𝑝 𝑎 𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑖𝑜𝑛} 

 
gives K0(𝐴)  the structure of an ordered Abelian 
group. Identity class,  
 

[1𝐴] ∈  K0(𝐴)
+ 

is a distinguished order unit. 
 
For AF algebras, K0(𝐴)+  is a dimension group, 
and Elliott’s classification gives the 
correspondence” 
 

𝐴 ↔ (K
0
(𝐴), K0(𝐴),

+ , [1𝐴]). 
 
 Because dimension groups coincide with unital 
ℓ-groups (every dimension group is an ℓ-group with 
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interpolation), and MV-algebras correspond to 
unital ℓ-groups via Mundici’s functor Γ, we obtain 
the categorical chain: 
 

MV-algebras 
𝛤−1
→   unital l-groups 

≅
→dimension 

groups 
𝐾0
−1

→   AF 𝐶∗-algebras 
 
This chain provides the theoretical foundation for 
interpreting fuzzy logical structures via ordered K-
theory and AF algebras. 
 
3.5 Further Properties of MV-Algebras 

 

 Beyond their basic algebraic presentation, MV-
algebras possess several structural features that are 
essential for their interaction with ordered groups 
and operator algebras. Each MV-algebra M carries a 
natural partial order defined by 

 
𝑥 ≤ 𝑦 iff  𝑥∗⊕𝑦 = 1 

 
With this order, M becomes a distributive lattice 
where: 
 

𝑥⋀𝑦 = ( 𝑥∗⊕  𝑦∗)∗, 𝑥⋁𝑦 = 𝑥 ⊕ (𝑥∗⋀𝑦). 
 
 
 Moreover, every MV-algebra is a subdirect 
product of MV-chains. Finite MV-chains 
correspond exactly to the algebras: 
 
 

Ł𝑛 = {0,
1

𝑛 − 1
,… , 1} 

 
with truncated addition. This decomposition 
property often allows reducing structural questions 
to the totally ordered case.  MV-homomorphisms 
preserve ⊕,∗ ,  and 0, and therefore preserve the 
induced lattice order.  
 
The category of MV-algebras is complete and 
cocomplete, which is useful for constructing adjoint 
functors and categorical equivalences such as the 
one due to Mundici. 
 
3.6 Additional Structure of ℓ-Groups and the 

Mundici Equivalence 

 
Unital ℓ-groups (G, u) form a rich category whose 
morphisms are positive unital group 
homomorphisms. The presence of a strong order 
unit allows one to define the unit interval 

 

[0, 𝑢] = {𝑔 ∈ 𝐺: 0 ≤ 𝑔 ≤ 𝑢}, 
 

which always forms an MV-algebra under the 
operations inherited from G. 
Mundici’s equivalence is realized by two functors:  
 

(𝐺, 𝑢) ↦ [0, 𝑢], Ξ ↦ (𝐺𝑀 , 𝑢𝑀) 
 
where 𝐺𝑀  is the universal ℓ-group generated by M 

subject to the MV-identities. The unit 𝑢𝑀 

corresponds to the top element 1 ∈ 𝑀. 
A remarkable feature of this equivalence is that 
many MV-algebraic constructions (quotients, 
products, limits) translate cleanly into analogous 
constructions in the category of unital ℓ-groups. In 
particular, simple MV-algebras correspond to 
simple unital ℓ-groups, and finitely generated MV-
algebras correspond to finitely generated dimension 
groups. 
This structural compatibility is what enables the 
bridge to ordered K0-groups of AF algebras. 
 
3.7 Structural and Categorical Aspects of AF 

Algebras 

 

From a categorical viewpoint, AF algebras form a 
coreflective subcategory of all 𝐶∗-algebras. 
Background on 𝐶∗-algebras may be found in 
[Mur90, KR97].  Every AF algebra may be 
described by a Bratteli diagram, an infinite directed 
graph encoding the finite-dimensional building 
blocks and the connecting maps of an inductive 
system. 
A Bratteli diagram determines, and is determined 
by, a scaled ordered dimension group 
(K0(𝐴), K0(𝐴),

+ , [1𝐴]). Thus, both the algebra A 
and its K-theory can be read off directly from the 
diagram.   
This combinatorial nature is one of the reasons AF 
algebras provide such a natural landing place for 
logical and algebraic invariants coming from MV-
algebras. 
Many classical C∗ structures arise as AF algebras: 

• finite-dimensional algebras, 
• UHF algebras (Uniformly Hyperfinite 

algebras), 
• certain crossed products and inductive limits 

associated with Cantor minimal systems. 
The tractability of AF algebras, coupled with their 
complete classification by ordered K0, makes them 
ideal for providing a 𝐶∗-algebraic semantics of MV-
algebras and their associated fuzzy logical theories. 
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3.8 Ordered K-Theory and Categorical 

Properties of K0 

 

 Ordered K-theory enriches the usual 
Grothendieck group 𝐾0 with a positive cone and a 
distinguished order unit. In the AF case, this 
additional structure is not an optional refinement but 
an essential feature: the ordered scaled group 
completely determines the algebra. 
Morphisms of ordered groups induced by *-
homomorphisms preserve the positive cones and the 
order units, so the functor 
 

𝐾0: 𝐴𝐹 ⟶  𝐷𝑖𝑚𝐺𝑟𝑝 
 
is fully faithful. In fact, Elliott’s theorem states that 
𝐾0 is an equivalence of categories between AF 
algebras and dimension groups. 
Important consequences include:  

• every dimension group arises as the K0 of 
an AF algebra; 

• limits and colimits in the AF category 
correspond to the respective limits and 
colimits of dimension groups; 

• interpolation and unperforation in the 
ordered group correspond to deep structural 
features of projections and inductive limits 
inside the algebra. 

Because MV-algebras correspond to unital ℓ-
groups, and unital ℓ-groups coincide with dimension 
groups with a distinguished order unit, the functorial 
passage: 
 

𝑀𝑉 − 𝑎𝑙𝑔𝑒𝑏𝑟𝑎𝑠 ⟶  𝑢𝑛𝑖𝑡𝑎𝑙 ℓ − 𝑔𝑟𝑜𝑢𝑝𝑠 
⟶  𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛 𝑔𝑟𝑜𝑜𝑢𝑝𝑠 
⟶  𝐴𝐹 𝐶∗ − 𝑎𝑙𝑔𝑒𝑏𝑟𝑎𝑠 

  
places fuzzy logic naturally within the landscape of 
ordered K-theory. 
 
4 Problem Solution 

 
Our solution is based on the introduction of a new 
Pipeline: 
 

𝑀𝑉⟶ ℓ − 𝐺𝑟𝑜𝑢𝑝 ⟶ 𝐾0 ⟶ 𝐴𝐹 
 
 
In this section we develop the functorial bridge that 
connects MV-algebras, unital ℓ-groups, dimension 
groups, and AF 𝐶∗-algebras. This establishes a 
canonical pipeline  
 

𝑀𝑉⟶
𝛯
𝑢ℓ𝐺 ⟶

𝐹
𝐷𝑖𝑚𝐺𝑟𝑝 ⟶

𝐾0
−1

𝐴𝐹 
 
which takes a fuzzy logical structure and assigns to 
it an approximately finite-dimensional operator 
algebra. Each step of the pipeline 
is functorial, ensuring compatibility between 
homomorphisms, logical connectives, order 
structure, and operator-algebraic data. 
 

4.1 Overview of the Functorial Bridge 

 
 The starting point is an MV-algebra M, 
representing the algebraic semantics of Łukasiewicz 
fuzzy logic. 
 Mundici’s equivalence associates to M a unique 
(up to isomorphism) unital ℓ-group (G, u) whose 
unit interval [0, u] is naturally isomorphic to M.  
The ordered group (G, u) is then recognized as a 
dimension group, i.e. an unperforated ordered 
Abelian group with the Riesz interpolation property 
and a distinguished order unit. 
Dimension groups are precisely the ordered 𝐾0-
groups of AF 𝐶∗-algebras. Elliott’s classification 
theorem for AF algebras establishes a categorical 
equivalence between AF algebras and dimension 
groups, thereby completing the pipeline. 
 
4.2 Stage 1: The Mundici Functor  𝛯:𝑀𝑉⟶
𝑢ℓ𝐺 

 
Given an MV-algebra (𝑀,⊕,∗ ,0), Mundici 
constructs a unital ℓ-group  𝛯(𝑀) = (𝐺𝑀, 𝑢𝑀) 
satisfying: 
 

𝑀 ≃Γ(𝐺𝑀 , 𝑢𝑀) = {𝑔 ∈ 𝐺𝑀: 0 ≤ 𝑔 ≤ 𝑢𝑀} 
with MV-operations given by: 
 

𝑥 ⊕ 𝑦 = min(𝑢𝑀  , 𝑥 + 𝑦) , 𝑥
∗ = 𝑢𝑀 − 𝑥

  
 
Every MV-homomorphism  𝜑:𝑀 ⟶ 𝑁   lifts 
uniquely to a positive unital ℓ-group homomorphism 
 

Ξ(φ): (𝐺𝑀 , 𝑢𝑀) ⟶ (𝐺𝑁 , 𝑢𝑁) 
 

Mundici’s dual functor 
𝛤: 𝑢 ℓ𝐺 →  𝑀𝑉 

 
satisfies 

𝛤 ∘ 𝛯 ≅ 𝐼𝑑𝑀𝑉,  Ξ ∘  𝛤≅𝐼𝑑𝑢 ℓ𝐺 
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so Ξ and Γ form an equivalence of categories. Thus, 
the category of MV-algebras is faithfully 
represented inside the category of unital ℓ-groups. 
 
4.3 Stage 2: From Unital ℓ-Groups to Dimension 

Groups 

 
Unital ℓ-groups automatically enjoy two key 
properties: 

• unperforation: if 𝑛𝑔 ≥ 0 for some 𝑛 ∈ ℕ, 
then 𝑔 ≥ 0; 

• interpolation (Riesz decomposition): 
whenever 𝑎1, 𝑎2  ≤ 𝑏1, 𝑏2, there exists c 

with 𝑎𝑖 ≤ 𝑐 ≤ 𝑏𝑗. 
 
These are precisely the axioms of a dimension 
group. 
Hence the forgetful functor: 
 

F: uℓG⟶𝐷𝑖𝑚𝐺𝑟𝑝 

 

is fully faithful and essentially surjective: every 
unital ℓ-group is canonically a dimension group, and 
conversely every dimension group carries a unique 
ℓ-group structure compatible with its positive cone. 
This step of the pipeline is therefore not merely an 
embedding but an identification of categories: 
 

uℓG≃ 𝐷𝑖𝑚𝐺𝑟𝑝. 
 

 

4.4 Stage 3: Dimension Groups as 

Ordered 𝑲𝟎-Groups 
 
Ordered abelian groups arising as K0-groups of AF 
algebras are exactly the dimension groups. For an 
AF algebra A, the ordered group 
 

(𝐾0(𝐴),𝐾0(𝐴)
+, [1𝐴]) 

 
encodes all of the projection structure of A. 
Conversely, every dimension group (G, G+, u) 
arises as the ordered K0-group of a unique (up to *-
isomorphism) AF algebra A with [1𝐴] = 𝑢. 
 
This correspondence is typically realized via Bratteli 
diagrams: to a dimension group one associates a 
Bratteli diagram who’s inductive limit is the desired 
AF algebra. Positive group homomorphisms 
preserving order units correspond exactly to unital 
*-homomorphisms between the associated AF 
algebras. 
 

4.5 Stage 4: Recovering AF Algebras via 𝑲𝟎
−𝟏 

 
Elliott’s classification theorem yields an 
equivalence of categories 
 
𝐾0: 𝐴𝐹 ⟶ 𝐷𝑖𝑚𝐺𝑟𝑝,   𝐾0−1: 𝐷𝑖𝑚𝐺𝑟𝑝 ⟶ 𝐴𝐹 

 
The inverse functor 𝐾0−1 assigns to a dimension 
group its unique AF algebra. Given a morphism of 
dimension groups 

𝜃: (𝐺, 𝐺+, 𝑢) → (𝐻, 𝐻+, 𝑣), 
 

 
the functor 𝐾0−1 produces a unital *-homomorphism 
between the corresponding AF algebras.  
Thus, the reconstruction is entirely functorial. 
 
4.6 The Composed Functor and Its 

Interpretation 

 
The entire pipeline is summarized by the composite 
functor 
 

𝓐 = 𝐾0
−1 ∘ 𝐹 ∘  Ξ:MV ⟶ 𝐴𝐹 

 

To each MV-algebra M, the functor 𝓐 assigns a 
unique AF algebra A(M). To each MV-
homomorphism φ:M →N, the functor assigns a 
unital *-homomorphism 𝓐(φ):𝓐(M) →  𝓐(N). 
 This construction provides an operator-algebraic 
semantics for fuzzy logic: logical operations in M 
correspond to positive group operations in Ξ(M) 
and, ultimately, to projection and inductive limit 
structures within the AF algebra 𝓐(M). 
 
4.7 Examples 

 

4.7.1 Finite MV-Chains. 

 
Let Łn be the finite MV-chain with n truth values. 
(Here Łn denotes the Łukasiewicz n-valued MV-
chain.) Then: 
 

 Ξ(Łn) = (ℤ, 𝐧 − 𝟏) 
 
and the corresponding dimension group is 
(ℤ,ℤ≥𝟎, 𝐧 − 𝟏).  Under 𝐾0−1  this yields the finite-
dimensional 𝐶∗-algebra 𝐶𝑛. 
 
4.7.2 The Standard MV-Algebra [0, 1]. 

 
The MV-algebra [0, 1] corresponds to the unital ℓ-
group (ℝ, 𝟏). The dimension group (ℝ,ℝ≥0, 1) is 
realized as the ordered 𝐾0-group of an AF algebra 
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associated with a suitable UHF algebra (Uniformly 
Hyperfinite algebra), for example the 
2∞ UHF algebra. 
These examples illustrate how MV-structures 
translate into concrete operator-algebraic objects 
through the functorial pipeline.  
 

5 Practical translation layer: from 

fuzzy rules to ordered 𝑲𝟎 
 
 The preceding development exhibits a clean 
categorical pipeline: 
 

𝑀𝑉⟶ 𝐮ℓ ⟶ 𝐷𝑖𝑚𝐺𝑟𝑝 ⟶ 𝐴𝐹 
 
 To make this pathway actionable for computer 
scientists (CS) working with fuzzy logic (FL) we 
now describe a practical translation layer. The focus 
here is on finite or finitely presented MV-algebras 
(including finite MV- chains and quantized truth 
systems) because these are the objects that most 
directly appear in CS applications (rule bases, 
quantized controllers, and discrete fuzzy classifiers). 
 

5.1 Intuition for CS readers 

 
 Translate the operator-theoretic language to CS-
friendly metaphors:  

• Truth values (MV-elements) correspond to 
resource units or ranks in an algebraic 
model. In AF algebras these become 
projection ranks — concrete integers that 
count finite-dimensional subspaces. 

• MV-addition with truncation models 
clipped accumulation (e.g. saturating 
confidence). In the ordered group this is 
addition truncated at an order unit (a 
capacity). In the AF algebra it is rank 
addition clipped by the full projection (the 
unit). 

• Negation is a complement relative to the 
order unit (useful for thresholding and” 
what remains” after allocation). 

 
5.2 A simple algorithmic pipeline (finite MV-

chains) 

 
 For many CS tasks one works with quantized 
truth values Łn = {0, 1

n−1
, … ,1}. The following steps 

convert such an MV-chain into a small AF algebra 
and explicit projections. 
 

Input: finite MV-chain Łn (or a small finite MV-
algebra M). 
 
Output: a finite-dimensional AF algebra (matrix 
algebra), its projection representatives, and the 𝐾0 
classes. 
 

1. Mundici step. For Łn take Ξ(Ł𝑛) =
(ℤ, n − 1).  Interpret each MV-value 
𝑘
(𝑛 − 1)⁄  as integer rank k. 

2. Dimension group. Positive cone is ℤ≥𝟎  
with unit 𝑛 − 1 
 

3. AF reconstruction. The ordered 𝐾0-triple 
(ℤ,ℤ≥𝟎, 𝑛 − 1) is realised by the matrix 
algebra 𝑀𝑛−1(ℂ).  
 
Choose projection representatives of ranks 
0, 1, …𝑛 − 1. 

4. Interpretation. MV-operations map to 
addition/complement of ranks. 
 

5.3 Pseudocode (constructive toy 

implementation) 

 

The following pseudocode produces a concrete 
matrix model for a finite MV-chain. 
 

# MATLAB-style pseudocode 

function [P-ranks] = mvchain_to_matrices(n) 
 % n = number of truth values in  Łn 
 m = n - 1; "% matrix size" 
 % define rank-k projection as diagonal matrix 
 % with k ones 
 P = cell (m+1,1); 
 ranks = 0:m; 
 for k = 0:m: 
     diag_vec =[ones(1,k), zeros(1,m-k)]; 
    P{k+1} = diag(diag_vec);  
 % k-rank projection in M_m(C) 
    end 
end 

 
 This trivial construction already exhibits the 
correspondence: the MV-sum  𝑎 ⊕ 𝑏  corresponds 
to min(m, rank(pa) + rank(pb)). 
 
 
5.4 Computational remarks and complexity 

 
• For finite MV-algebras the construction is 

linear-time in the number of atoms (building 
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diagonal/projective representatives is 
trivial). 

• For finitely presented MV-algebras 
(generators + relations) the main cost is 
solving an integer linear system to obtain 
the lattice-ordered group presentation; this 
is polynomial-time using standard integer 
linear algebra and Smith normal form 
(suitable libraries exist). 

• Building Bratteli diagrams for small 
inductive systems is combinatorial and 
feasible for sizes typically used in CS 
prototypes (tens–low hundreds of nodes). 

 
 
6 Applications, Experiments and 

Worked examples for Computer 

Science 
 
 This section proposes simple, reproducible 
experiments and application scenarios that 
demonstrate why translating FL (Fuzzy Logic) into 
ordered K-theory and AF algebras is beneficial for 
CS (Computer Science) research.  
Three short experiments are suggested:  

(1) interpretability via rank semantics,  
(2) robustness to quantization noise, 
(3) compact model representation and 

incremental updates. 
 
6.1 Experiment 1 — Interpretability: projection-

rank semantics 

 

 Goal show that fuzzy truth computations 
(saturation, negation, combination) admit a 
transparent integer/rank interpretation that can aid 
explainability of fuzzy classifiers.  
 
6.2 Protocol  

 

1. Implement a simple fuzzy rule evaluator using a 
finite MV-chain (e.g. Ł5 with 5 truth-values). 
2. Convert the chain to matrix projections using the 
mvchain_to_matrices routine. 
3. For a set of sample inputs, compute fuzzy outputs 
and show the corresponding projection ranks; 
visualize inputs 𝑥 ↦ 𝑟𝑎𝑛𝑘(𝑘). 
 
Expected outcome mapping to ranks gives an 
immediate integer explanation (e.g. “rule fired at 
strength 3 of 4”), making the fuzzy decision 
traceable. 
 

6.3 Experiment 2 — Robustness analysis under 

quantization noise 

 

Goal test whether the rank interpretation yields 
insight into tolerance of fuzzy computations to 
perturbations (noise) in truth-values. 
 

Protocol 

1. Generate synthetic inputs and compute 
fuzzy outputs in a continuous MV model. 

2. Quantize outputs to a chosen Łn and map to 
ranks. 

3. Apply random perturbations to inputs and 
measure how often ranks flip. 

4. Compare rank-flip rates across different n 

(coarser vs finer quantization). 
 

Expected outcome coarse quantization gives stable 
ranks but loses nuance; rank-stability can be used as 
a metric for robustness. 
 
6.4 Experiment 3 — Compact representation and 

incremental updates 

 

Goal show AF / Bratteli style inductive 
representations are natural for incrementally 
growing fuzzy rule-bases (add/remove rules without 
re-training whole model).  
 

Protocol 

 
1. Represent a small rule-base as a direct sum 

of matrix blocks (finite-dimensional pieces). 
2. Simulate adding/removing rules as 

adding/removing summands in the inductive 
system. 

3. Show how K0 (rank distributions) updates 
trivially; measure update cost vs a 
monolithic representation. 

 

6.5 Why CS scientists should care (short list) 

 
• Explainability: ranks provide integer, 

human-interpretable tokens. 
• Model modularity: AF inductive picture is 

naturally modular. 
• Robustness metrics: ordered-group 

distances and rank stability become formal 
measures 

 
• Hardware friendliness: finite-dimensional matrix 
models map easily to quantized/digital hardware. 
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7 Worked Example: The 3-valued 

Łukasiewicz Algebra 
 
In this section we illustrate the pipeline 𝑀𝑉⟶
𝐮ℓ ⟶ 𝐷𝑖𝑚𝐺𝑟𝑝 ⟶ 𝐴𝐹  on the simplest nontrivial 
finite example, the three-valued Łukasiewicz 
algebra Ł3. The computations are explicit and show 
how MV-operations are realized in the ordered 𝐾0-
picture and finally by a concrete finite-dimensional 
𝐶∗-algebra. 
 

7.1 Definition of Ł3 
 
The MV-chain Ł3 consists of three truth-values  
Ł3 = {0,

1

2
, 1},  with MV-operations defined by 

truncated addition and negation: 
𝑥 ⊕ 𝑦 = min(1, 𝑥 + 𝑦) , 𝑥∗ = 1 − 𝑥.   

 
Concretely, 1

2
⊕

1

2
= 1,   

1

2
⊕1 = 1, (

1

2
)
∗
=
1

2
 . 

 
7.2 Stage 1: Ł3 ↦  Ξ(Ł3)  
 
 Mundici’s construction identifies Ł3 with the 
unit interval of the unital ℓ-group (ℤ, 2); that is,  

 
Ξ(Ł3) = (G, u) = (ℤ, 2), and Γ(ℤ, 2)={0,1,2} where 
we identify the integer  𝑘 ∈ {0,1,2}  with the MV-
element 𝑘 2⁄ ∈ {0, 1 2⁄ , 1} .  
 The MV-operations correspond to group addition 
truncated at the unit u = 2: 
 

𝑘

2
⊕
𝑙

2
↔ 𝒎𝒊𝒏(𝟐, 𝒌 + 𝒍) 

 

(then reinterpreted as a fraction over 2). 
 
 Thus, the dictionary is: 0 ↔ 0,    

1

2
 ↔ 1, 1 ↔ 2  

(in the ℤ-model). 
 

7.3 Stage 2: (ℤ, 2) as a dimension group 

 
 The ordered group (ℤ,ℤ≥𝟎)  with distinguished 
order unit u = 2 is a dimension group: it is 
unperforated and has the interpolation property 
trivially (being 
totally ordered). Hence we may view  
(ℤ,ℤ≥𝟎, 𝟐)  as an object of DimGrp. 
  
7.4 Stage 3: Realizing the ordered 𝑲𝟎-group 

 

 For a unital finite-dimensional matrix algebra 
𝑀𝑚(ℂ ) we have: 𝐾0(𝑀(ℂ)) ≅

ℤ,   𝐾0(𝑀(ℂ))
+
≅  ℤ≥𝟎, [𝟏𝑴𝒎] = 𝐦 ∈ ℤ  

 

 Comparing with (ℤ,ℤ≥𝟎, 2), we see that the 
unique (up to *-isomorphism) unital C-algebra 
who’s ordered 𝐾0-invariant equals (Z, Z≥0, 2) is 
𝑀2(ℂ ). 
 Therefore, the final stage of the pipeline assigns 
to Ł3 the AF algebra 𝓐(Ł3) ≅ 𝑀2(ℂ ). 
 

7.5 Interpreting MV-operations via projections 

 
 Inside 𝑀2(ℂ ), consider projections of rank 0, 1, 

2. Their 𝐾0-classes are 0,1,2 ∈ ℤ ≅ 𝐾0(𝑀2)0,  

 The MV-sum 1
2
⊕

1

2
= 1 corresponds to the 

relation: [p1] + [p1] = [p2], where 𝑝1 is a rank-1 
projection and 𝑝2 = 1𝑀2 is the rank-2 projection 
(the unit). Truncation at the unit is exactly the 
clipping of sum in the ordered group at the 
distinguished order unit. 

 Hence the MV-logic computations on {0, 1
2
, 1}  

are realized concretely by ranks of projections (and 
their classes in 𝐾0) inside the AF algebra 𝑀2(ℂ ). 
 

7.6 Remarks 

 
• The example is prototypical: for the finite 

MV-chain Łn = {0, 1
n−1

, … ,1} one obtains 
Ξ(Ł𝑛) = (ℤ, 𝐧 − 𝟏), and the associated AF 
algebra produced by 𝐾0−1  is 𝑀𝑛−1(ℂ ). 

• Finite MV-chains therefore correspond to 
finite-dimensional matrix algebras under the 
pipeline; more complicated (infinite) MV-
algebras produce infinite-dimensional AF 
algebras (or more intricate inductive limit 
algebras). 

 
We now illustrate the entire functorial pipeline with 
a compact commutative diagram. 

 
 

8 Conclusion 
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The functorial pipeline developed in this work,  

𝑀𝑉⟶
𝛯
𝑢ℓ𝐺 ⟶

𝐹
𝐷𝑖𝑚𝐺𝑟𝑝 ⟶

𝐾0
−1

𝐴𝐹 
 

reveals a deep structural connection between the 
algebraic semantics of fuzzy logic and the 
classification theory of AF 𝐶∗-algebras. Rather than 
treating MV-algebras as isolated logical structures, 
the pipeline situates them within a landscape 
governed by ordered groups, interpolation 
properties, and K-theoretic invariants. Two 
conceptual insights emerge clearly: 
 
1. Logical semantics as ordered geometry. 

 
Mundici’s equivalence shows that an MV-

algebra is already the unit interval of an ordered 
abelian group with a strong order unit. The logical 
operations ⊕ and ∗ are therefore shadows of 
algebraic and order-theoretic structures on the 
ambient group. This allows logical transformations 
to be studied via 
interpolation, convexity, and homomorphisms of 
ordered groups. 
 
2. Fuzzy truth values as projection data. 

 
Dimension groups are precisely the ordered K0-
groups of AF algebras. Since projections in AF 
algebras encode finite-rank phenomena, MV-
elements may be interpreted (functorially) as classes 
of projections or positive elements inside the 
associated AF algebra. Logical combination 
becomes rank-sum, truncated by 
the order unit, and negation corresponds to taking 
complements inside 𝐾0. 
 
The worked example of the three-valued 
Łukasiewicz algebra illustrates this viewpoint 
vividly: the truth values {0,1,2} become the 
projection ranks {0, 1

2
, 1}   in 𝑀2(ℂ), with MV-

addition realized as truncated rank-sum. For more 
complicated MV-algebras, the AF algebra 𝓐(𝐌) 
may be infinite-dimensional, and its Bratteli 
diagram provides a geometric visualization of the 
logical structure of M. 
Finally, because each step of the pipeline is 
functorial, the entire construction is stable under 
morphisms: MV-homomorphisms become unital *-
homomorphisms, so logical transformations 
correspond to operator algebra morphisms. This 
offers a new semantics of fuzzy logic inside 
operator algebras and suggests the possibility of 

extending fuzzy reasoning into noncommutative 
settings. 
 

References: 

[1] Daniele Mundici, Interpretation of AF C*-
algebras in Łukasiewicz sentential calculus, 
Journal of Functional Analysis, Vol. 65, No.1, 
1986, pp. 15–63. 

[2] Roberto Cignoli and Itala M. L. D'Ottaviano 
and Daniele Mundici, Algebraic Foundations 

of Many-Valued Reasoning, Springer, 2000. 
[3] Kenneth R. Goodearl, Partially Ordered 

Abelian Groups with Interpolation, American 
Mathematical Society, 1986. 

[4] George A. Elliott, On the Classification of 
Inductive Limits of Sequences of Semisimple 
Finite-Dimensional Algebras, Journal of 

Algebra, Vol. 38, No.1, 1976, pp. 29–44. 
[5] Bruce Blackadar, K-Theory for Operator 

Algebras (Mathematical Sciences Research 

Institute Publications, Series Number 5) 2nd 

Edition, Cambridge University Press, 1998. 
[6] Mikael Rørdam, Flemming Larsen, and Niels 

Laustsen, An Introduction to K-Theory for C*-

Algebras 1st Edition, London Mathematical 
Society Student Texts, Series Number 49, 
2000. 

[7] Joseph Goguen, L-Fuzzy Sets, Journal of 

Mathematical Analysis and Applications, 
Vol.18, No.1, 1966, pp. 145-174. 

[8] Gerard Murphy, C*-Algebras and Operator 

Theory, Academic Press Inc., 1990. 
[9] Richard Kadison and John Ringrose, 

Fundamentals of the Theory of Operator 

Algebras, Volume 1, American Mathematical 
Society, 1997. 
 

 
 

Acknowledgement:  

I have to acknowledge some useful discussions I 
had with my ex-colleague, Prof. Gabriel Prajitura 
(NYU), when the idea of this work arose while I 
was working at CS-Department of ”Polytechnical” 
University of Bucharest. 

Liviu Vladutu
International Journal of Mathematical and Computational Methods 

http://www.iaras.org/iaras/journals/ijmcm

ISSN: 2367-895X 14 Volume 11, 2026




