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Abstract: - This work develops a categorical pipeline that connects the algebraic semantics of fuzzy logic with
the ordered K-theory of AF C*-algebras (Approximately Finite-Dimensional C*-algebras). Starting from the
classical equivalence between MV-algebras (Many-Valued algebras, i.e., algebras of Lukasiewicz logic) and
unital £-groups (lattice-ordered abelian groups with a strong unit) established by Mundici, we show how these
ordered structures naturally embed into dimension groups (ordered abelian groups with interpolation and
unperforation), the ordered Ko invariants (Grothendieck ordered K-theory group of projections) that classify AF

algebras. By composing the functors Z, F, and K %, we construct a functorial correspondence:

MV - u'G - DimGrp — AF

that assigns to each MV-algebra a unique AF C*-algebra whose ordered Kj,-group recovers its underlying
fuzzy-logical structure. This provides an operator-algebraic semantics for many-valued reasoning, where MV-
operations correspond to projection structure and truncated addition in the associated AF-algebra. As an
illustrative example, we compute explicitly the AF algebra associated with the three-valued Lukasiewicz
algebra L3 and show that it corresponds to the matrix algebra M, (C). The developed framework clarifies the
conceptual and categorical role of ordered K-theory in fuzzy logic and suggests new connections between
many-valued reasoning, dimension groups, and the structure theory of C *-algebras.
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1 Introduction

1.1 Why C*-algebra is the best match from the
main 4 categories in K-theory?

Also, this correspondence rests on the classical
foundations [[1], [2], [3], [4], [5], [6], [8], [9]].

The link of K-Theory to Fuzzy-logic is not that new

Fuzzy logic algebraic structures (MV-algebras, see [7]-this paper generalizes fuzzy sets using

residuated lattices) — ordered abelian groups. The lattices (L), which is mathematically closer to

central algebraic formalism in K-theory for fuzzy
logic is the MV-algebra, i.e. Lukasiewicz logic.
Mundici’s theorem establishes a categorical
equivalence between MV-algebras and unital £-
groups (lattice-ordered abelian groups with a strong
unit). This correspondence already lifts fuzzy truth
values from the interval [0, 1] into the world of
ordered abelian groups, the natural domain where
the functorial invariant K, (the Grothendieck
ordered K-theory group of projections) lives.
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algebraic structures and might serve as a bridge
toward K-theoretic formalism.

1.2 AF C(*-algebras < dimension groups
(ordered Kj).

AF (Approximately Finite-Dimensional) C*-
algebras possess K, groups (Grothendieck ordered
K-theory groups) that are scaled, ordered abelian
groups — the so-called dimension groups. Elliott’s
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classification theorem states that for AF algebras,
the ordered group (Ky(4), Ko(A)1, [14])is a
complete invariant. Consequently, the algebraic
invariants of AF C*-algebras coincide precisely with
the ordered groups arising naturally from MV-
algebras via Mundici’s equivalence. This establishes
a direct conceptual and categorical bridge between
fuzzy logic and operator K-theory.

2 Problem Formulation

The central objective of this work is to construct a
functorial and mathematically rigorous pipeline that
translates fuzzy logical structures—expressed as

MYV -algebras (Many-Valued algebras) — into
operator-algebraic structures governed by ordered
K-theory and AF C*-algebras (Approximately
Finite-Dimensional C*-algebras). Formally, given
an MV-algebra M, we seek to identify an AF algebra
A(M) such that:

P1. Logical structure preservation.

The algebraic operations of M (MV-sum and
negation) correspond functorially to ordered-group
operations inside the associated dimension group
(ordered abelian group with interpolation).

P2. Categorical compatibility.

The construction must respect morphisms: every
MV-homomorphism ¢@: M — N must induce a
unital -hnomomorphism A(@): A(M) - A(N).
Thus, the resulting assignment must be a functor:

A: MV — AF.
P3. Ordered K, reconstruction.

The AF algebra A(M) must recover the ordered-
group structure that encodes the semantics of M:

(Ko(4(D), Ko(AM)) ™, [1]) = (GM, G, py)

where (GM, uM) = E(M) is the unital £-group
associated to M via Mundici’s equivalence.

P4. Computability (finite case).
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For finite or finitely presented MV-algebras, the
construction must produce explicit, finite-
dimensional matrix realisations (e.g. Mk(C) or small
inductive limits), suitable for use in computer-
scientific applications and numerical
experimentation.

These requirements lead directly to the categorical
pipeline

MVSF S AF,

whose construction and properties form the core of
the present work.

3 Background

This section provides the mathematical background
required for the conceptual bridge developed later:
from MV-algebras (the algebraic semantics of
Lukasiewicz fuzzy logic) to ordered abelian groups,
and further to AF C*-algebras via their ordered K|,
invariants. We review the four pillars underlying
this correspondence: MV-algebras, unital £-groups
and the Mundici equivalence, AF algebras, and
ordered K-theory.

3.1 MV-Algebras

MV -algebras were introduced by Chang see also
[CDMO00, Mun86].) as an algebraic semantics for
infinite-valued Lukasiewicz logic. An MV-algebra
(Many-Valued algebra) is a structure

(Mr@;* ;0)
satisfying the following axioms:
1. (M, ,0) is a commutative monoid;

2. the unary operation * (the Lukasiewicz negation)
satisfies:

(x)*=x, x@H0" =0";

3. the Lukasiewicz law

XD y)YBy=Q0"® x)D x

holds for all x,y € M.

Volume 11, 2026



Liviu Vladutu

The canonical example is the real unit interval [0, 1]
with operations:

x@y=min(l,x+y), x*=1—x

MV-algebras capture the semantics of fuzzy truth
values and allow algebraic treatment of connectives
such as conjunction, disjunction,

and negation. Crucially, they admit a faithful
representation in terms of lattice-ordered Abelian
groups, enabling the use of ordered algebra and K-
theory.

3.2 £-Groups and the Mundici Equivalence

A lattice-ordered abelian group ({-group) is an
Abelian group G equipped with a lattice order G*
such that translation preserves the order.
A unital ¢-group Unital £-groups [Goo86] ... is a
pair (G, u) where u € G* is a strong order unit,
meaning that for every g € G
there exists n € N such that:

—hu<g<nu

Mundici’s celebrated equivalence establishes a
categorical duality:

MV — algebras = unital £ — groups
The functor

rGu)={geG:0<g <u}
equipped with operations:
x@®y=min(u,x+y), x"=u-—x

turns each unital £-group into an MV -algebra.
Conversely, every MV-algebra M can be uniquely
(up to isomorphism) represented as the unit interval
of a unital £-group.

Thus, every fuzzy algebraic structure arising from
Lukasiewicz logic has a canonical ordered-group
representation, which interfaces naturally with
operator algebras and ordered K-theory.

3.3 AF Algebras

An AF (C*-algebra (Approximately Finite-
Dimensional) is a separable C*-algebra obtained as
an inductive limit of finite-dimensional C*-algebras:

lim kn
A= —An ), Ay =7 My, (C)
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AF algebras form a tractable yet structurally rich
class of C* —algebras. One of the central results of
the classification theory of C* —algebras is:

Elliott’s Theorem (AF case).
classification [Ell76])

Two AF algebras A and B are * - isomorphic if and
only if their ordered scaled K, groups:

(Elliott’s

(Ko (4), K (A7, [14]) and
(Ko(B), Ko(B)*, [15])

are order-unit isomorphic.

Thus, AF algebras correspond precisely to
dimension groups, i.e. ordered abelian groups
satisfying:

* unperforation,

» the Riesz interpolation property,

» existence of a distinguished order unit.

As explained later, the dimension groups that arise
from MV-algebras via Mundici’s equivalence fit
naturally into this framework.

3.4 Ordered KO-Theory and the Functor K,

For a unital Cx-algebra A, the group KO(A) (the
Grothendieck  ordered K-theory group of
projections) is defined using Murray—von Neumann
equivalence classes of projections in matrix algebras
over A:

Ko(4) = ([p] — [4]: p, q projections in My, (4))
(see [Bla98, RLLOO0] for detailed treatments).

The positive cone:
Ko(A)* = {[p]: p a projection}

gives Ky(A) the structure of an ordered Abelian
group. Identity class,

[14] € Ko(DF
is a distinguished order unit.

For AF algebras, Ko(4A)* is a dimension group,
and Elliott’s classification gives the
correspondence”

A o (Ky(A), Ko(A),", [1aD).

Because dimension groups coincide with unital
L-groups (every dimension group is an {-group with
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interpolation), and MV-algebras correspond to
unital €-groups via Mundici’s functor I', we obtain
the categorical chain:

r-1 =
MV-algebras — unital |-groups —dimension

K—l
groups — AF C*-algebras

This chain provides the theoretical foundation for
interpreting fuzzy logical structures via ordered K-
theory and AF algebras.

3.5 Further Properties of MV-Algebras

Beyond their basic algebraic presentation, MV-
algebras possess several structural features that are
essential for their interaction with ordered groups
and operator algebras. Each MV-algebra M carries a
natural partial order defined by

x<yiff x*Py=1

With this order, M becomes a distributive lattice
where:

xN\y =(x* @ y)", xVy =x P (x*"Ny).

Moreover, every MV-algebra is a subdirect
product of MV-chains. Finite MV-chains
correspond exactly to the algebras:

by = (0,—
=0,

.1}

with truncated addition. This decomposition
property often allows reducing structural questions
to the totally ordered case. MV-homomorphisms
preserve @,*, and 0, and therefore preserve the
induced lattice order.

The category of MV-algebras is complete and
cocomplete, which is useful for constructing adjoint
functors and categorical equivalences such as the
one due to Mundici.

3.6 Additional Structure of ¢-Groups and the
Mundici Equivalence

Unital ¢-groups (G, u) form a rich category whose
morphisms are positive unital group
homomorphisms. The presence of a strong order
unit allows one to define the unit interval
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[0,ul ={g€G:0<g <u}

which always forms an MV-algebra under the
operations inherited from G.
Mundici’s equivalence is realized by two functors:

(G:u) i [O,U], E (GMIuM)

where Gy, is the universal {-group generated by M
subject to the MV-identities. The unit uy
corresponds to the top element 1 € M.

A remarkable feature of this equivalence is that
many MV-algebraic constructions (quotients,
products, limits) translate cleanly into analogous
constructions in the category of unital £-groups. In
particular, simple MV-algebras correspond to
simple unital {-groups, and finitely generated MV-
algebras correspond to finitely generated dimension
groups.

This structural compatibility is what enables the
bridge to ordered K,-groups of AF algebras.

3.7 Structural and Categorical Aspects of AF
Algebras

From a categorical viewpoint, AF algebras form a
coreflective subcategory of all C*-algebras.
Background on C*-algebras may be found in
[Mur90, KR97]. Every AF algebra may be
described by a Bratteli diagram, an infinite directed
graph encoding the finite-dimensional building
blocks and the connecting maps of an inductive
system.
A Bratteli diagram determines, and is determined
by, a scaled ordered dimension group
(Ko (A),Ky(A),", [14])- Thus, both the algebra A
and its K-theory can be read off directly from the
diagram.
This combinatorial nature is one of the reasons AF
algebras provide such a natural landing place for
logical and algebraic invariants coming from MV-
algebras.
Many classical C* structures arise as AF algebras:

* finite-dimensional algebras,

» UHF algebras (Uniformly Hyperfinite

algebras),

» certain crossed products and inductive limits
associated with Cantor minimal systems.
The tractability of AF algebras, coupled with their
complete classification by ordered K0, makes them
ideal for providing a C*-algebraic semantics of MV-
algebras and their associated fuzzy logical theories.
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3.8 Ordered
Properties of KO

K-Theory and Categorical

Ordered  K-theory enriches the usual
Grothendieck group K, with a positive cone and a
distinguished order unit. In the AF case, this
additional structure is not an optional refinement but
an essential feature: the ordered scaled group
completely determines the algebra.

Morphisms of ordered groups induced by *-
homomorphisms preserve the positive cones and the
order units, so the functor

Ky: AF — DimGrp

is fully faithful. In fact, Elliott’s theorem states that
K, is an equivalence of categories between AF
algebras and dimension groups.

Important consequences include:

* every dimension group arises as the KO of
an AF algebra;

* limits and colimits in the AF category
correspond to the respective limits and
colimits of dimension groups;

* interpolation and unperforation in the
ordered group correspond to deep structural
features of projections and inductive limits
inside the algebra.

Because MV-algebras correspond to unital £-
groups, and unital £-groups coincide with dimension
groups with a distinguished order unit, the functorial
passage:

MV — algebras — unital £ — groups
— dimension grooups

— AF C* — algebras

places fuzzy logic naturally within the landscape of
ordered K-theory.

4 Problem Solution

Our solution is based on the introduction of a new
Pipeline:

MV — ¢ — Group — K, — AF
In this section we develop the functorial bridge that
connects MV-algebras, unital £-groups, dimension

groups, and AF C(*-algebras. This establishes a
canonical pipeline
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g F Kot
MV — ufG — DimGrp — AF

which takes a fuzzy logical structure and assigns to
it an approximately finite-dimensional operator
algebra. Each step of the pipeline

is functorial, ensuring compatibility between
homomorphisms, logical connectives, order
structure, and operator-algebraic data.

4.1 Overview of the Functorial Bridge

The starting point is an MV-algebra M,
representing the algebraic semantics of Lukasiewicz
fuzzy logic.

Mundici’s equivalence associates to M a unique
(up to isomorphism) unital £-group (G, u) whose
unit interval [0, u] is naturally isomorphic to M.

The ordered group (G, u) is then recognized as a
dimension group, i.e. an unperforated ordered
Abelian group with the Riesz interpolation property
and a distinguished order unit.

Dimension groups are precisely the ordered K-
groups of AF C*-algebras. Elliott’s classification
theorem for AF algebras establishes a categorical
equivalence between AF algebras and dimension
groups, thereby completing the pipeline.

4.2 Stage 1: The Mundici Functor Z:MV —
utG

Given an MV-algebra (M,®,*,0), Mundici
constructs a unital f-group E(M) = (Gp, Upy)
satisfying:

with MV-operations given by:

x@y=min(uy,x+y),x" =uy —x

Every MV-homomorphism ¢@:M — N lifts
uniquely to a positive unital £-group homomorphism

E(@): (Gy,uy) — (Gy,uy)

Mundici’s dual functor
rufG - Mv

satisfies
FOEEIde, Eo FEIdu{JG
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so E and I' form an equivalence of categories. Thus,
the category of MV-algebras 1is faithfully
represented inside the category of unital £-groups.

4.3 Stage 2: From Unital ¢-Groups to Dimension
Groups

Unital ¢-groups automatically enjoy two key

properties:
« unperforation: if ng > 0 for some n € N,
then g > 0;

* interpolation  (Riesz  decomposition):
whenever a;,a, < by, b,, there exists C
with a; <c< b]

These are precisely the axioms of a dimension

group.
Hence the forgetful functor:

F: u(G— DimGrp

is fully faithful and essentially surjective: every
unital £-group is canonically a dimension group, and
conversely every dimension group carries a unique
£-group structure compatible with its positive cone.
This step of the pipeline is therefore not merely an
embedding but an identification of categories:

ulG= DimGrp.

4.4 Stage 3: Dimension Groups as
Ordered Ky-Groups

Ordered abelian groups arising as KO-groups of AF
algebras are exactly the dimension groups. For an
AF algebra A, the ordered group

(Ko(A), Ko (A7, [14D

encodes all of the projection structure of A.
Conversely, every dimension group (G, G+, u)
arises as the ordered K0-group of a unique (up to *-
isomorphism) AF algebra A with [1,] = u.

This correspondence is typically realized via Bratteli
diagrams: to a dimension group one associates a
Bratteli diagram who’s inductive limit is the desired
AF algebra. Positive group homomorphisms
preserving order units correspond exactly to unital
*-homomorphisms between the associated AF
algebras.
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4.5 Stage 4: Recovering AF Algebras via Ky

Elliott’s  classification  theorem

equivalence of categories

yields an

Ky: AF — DimGrp, Kg':DimGrp — AF

The inverse functor K; ! assigns to a dimension
group its unique AF algebra. Given a morphism of
dimension groups

0:(G,G*,u) - (H,H*,v),

the functor K ! produces a unital *-homomorphism
between the corresponding AF algebras.
Thus, the reconstruction is entirely functorial.

46 The Composed
Interpretation

Functor and Its

The entire pipeline is summarized by the composite
functor

A=Ky'oFo E:MV — AF

To each MV-algebra M, the functor A assigns a
unique AF algebra A(M). To each MV-
homomorphism ¢:M —N, the functor assigns a
unital *-homomorphism A(¢): A(M) = A(N).

This construction provides an operator-algebraic
semantics for fuzzy logic: logical operations in M
correspond to positive group operations in E(M)
and, ultimately, to projection and inductive limit
structures within the AF algebra A (M).

4.7 Examples
4.7.1 Finite MV-Chains.
Let L.n be the finite MV-chain with n truth values.
(Here Ln denotes the Lukasiewicz n-valued MV-
chain.) Then:

EdEn) =(I,n—-1)
and the corresponding dimension group is
(1, 0sg,m—1). Under K5! this yields the finite-
dimensional C*-algebra C™.
4.7.2 The Standard MV-Algebra [0, 1].
The MV-algebra [0, 1] corresponds to the unital £-

group (R,1). The dimension group (R,R.q, 1) is
realized as the ordered Ky-group of an AF algebra
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associated with a suitable UHF algebra (Uniformly
Hyperfinite algebra), for example the

2% UHF algebra.

These examples illustrate how MV-structures
translate into concrete operator-algebraic objects
through the functorial pipeline.

5 Practical translation layer: from
fuzzy rules to ordered K,

The preceding development exhibits a clean
categorical pipeline:

MV — uwf — DimGrp — AF

To make this pathway actionable for computer
scientists (CS) working with fuzzy logic (FL) we
now describe a practical translation layer. The focus
here is on finite or finitely presented MV-algebras
(including finite MV- chains and quantized truth
systems) because these are the objects that most
directly appear in CS applications (rule Dbases,
quantized controllers, and discrete fuzzy classifiers).

5.1 Intuition for CS readers

Translate the operator-theoretic language to CS-

friendly metaphors:

e Truth values (MV-elements) correspond to
resource units or ranks in an algebraic
model. In AF algebras these become
projection ranks — concrete integers that
count finite-dimensional subspaces.

* MV-addition with truncation models
clipped accumulation (e.g. saturating
confidence). In the ordered group this is
addition truncated at an order unit (a
capacity). In the AF algebra it is rank
addition clipped by the full projection (the
unit).

* Negation is a complement relative to the
order unit (useful for thresholding and”
what remains” after allocation).

5.2 A simple algorithmic pipeline (finite MV-
chains)

For many CS tasks one works with quantized
truth values tn = {O, ﬁ, ,1}. The following steps

convert such an MV-chain into a small AF algebra
and explicit projections.
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Input: finite MV-chain £tn (or a small finite MV-
algebra M).

Output: a finite-dimensional AF algebra (matrix
algebra), its projection representatives, and the K
classes.

1. Mundici step. For Ln take E(L,) =
(,n—1). Interpret each MV-value

k/(n —1)8s integer rank K.

2. Dimension group. Positive cone is [Isq
with unitn — 1

3. AF reconstruction. The ordered Kjy-triple
(1), sg,m—1) 1is realised by the matrix
algebra M,,_; (C).

Choose projection representatives of ranks
0,1,..n—1.

4. Interpretation. MV-operations
addition/complement of ranks.

map to

5.3 Pseudocode (constructive toy
implementation)

The following pseudocode produces a concrete
matrix model for a finite MV -chain.

# MATLAB-style pseudocode

function [P-ranks] = mvchain_to_matrices(n)
% n = number of truth values in £n
m=n-1; "% matrix size”
% define rank-k projection as diagonal matrix
% with k ones
P=cell (m+11);
ranks = 0:m;
fork =0:m:
diag vec =[ones(1,k), zeros(1,m-k)J;
P{k+1)} = diag(diag vec),
% k-rank projection in M_m(C)
end
end

This trivial construction already exhibits the
correspondence: the MV-sum a @ b corresponds
to min(m, rank(pa) + rank(pb)).

5.4 Computational remarks and complexity

» For finite MV-algebras the construction is
linear-time in the number of atoms (building
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diagonal/projective  representatives  is
trivial).

* For finitely presented MV-algebras

(generators + relations) the main cost is
solving an integer linear system to obtain
the lattice-ordered group presentation; this
is polynomial-time using standard integer
linear algebra and Smith normal form
(suitable libraries exist).

* Building Bratteli diagrams for small
inductive systems is combinatorial and
feasible for sizes typically used in CS
prototypes (tens—low hundreds of nodes).

6 Applications, Experiments and
Worked examples for Computer
Science

This section proposes simple, reproducible
experiments and application scenarios that
demonstrate why translating FL (Fuzzy Logic) into
ordered K-theory and AF algebras is beneficial for
CS (Computer Science) research.

Three short experiments are suggested:
(1) interpretability via rank semantics,
(2) robustness to quantization noise,
(3) compact model  representation
incremental updates.

and

6.1 Experiment 1 — Interpretability: projection-
rank semantics

Goal show that fuzzy truth computations
(saturation, negation, combination) admit a
transparent integer/rank interpretation that can aid
explainability of fuzzy classifiers.

6.2 Protocol

1. Implement a simple fuzzy rule evaluator using a
finite MV-chain (e.g. L5 with 5 truth-values).

2. Convert the chain to matrix projections using the
mvchain_to_matrices routine.

3. For a set of sample inputs, compute fuzzy outputs
and show the corresponding projection ranks;
visualize inputs x = rank(k).

Expected outcome mapping to ranks gives an
immediate integer explanation (e.g. “rule fired at
strength 3 of 4”), making the fuzzy decision
traceable.

ISSN: 2367-895X

International Journal of Mathematical and Computational Methods
http://www.iaras.org/iaras/journals/ijmcm

6.3 Experiment 2 — Robustness analysis under

guantization noise

Goal test whether the rank interpretation yields
insight into tolerance of fuzzy computations to

perturbations (noise) in truth-values.

Protocol

1. Generate synthetic inputs and compute

fuzzy outputs in a continuous MV model.

2. Quantize outputs to a chosen £.n and map to

ranks.

3. Apply random perturbations to inputs and

measure how often ranks flip.

4. Compare rank-flip rates across different n

(coarser vs finer quantization).

Expected outcome coarse quantization gives stable
ranks but loses nuance; rank-stability can be used as

a metric for robustness.

6.4 Experiment 3 — Compact representation and

incremental updates

Goal
representations

show AF /
are

Bratteli
natural

style
for

re-training whole model).

Protocol

1. Represent a small rule-base as a direct sum
of matrix blocks (finite-dimensional pieces).

2. Simulate  adding/removing  rules

adding/removing summands in the inductive

system.

3. Show how KO (rank distributions) updates

trivially; measure update cost

monolithic representation.

VS

6.5 Why CS scientists should care (short list)

» Explainability: ranks provide
human-interpretable tokens.

* Model modularity: AF inductive picture is

naturally modular.
» Robustness metrics:

measurcs

» Hardware friendliness: finite-dimensional matrix

models map easily to quantized/digital hardware.

12 Volume 11, 2026
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7 Worked Example: The 3-valued
Lukasiewicz Algebra

In this section we illustrate the pipeline MV —
uf — DimGrp — AF on the simplest nontrivial
finite example, the three-valued +tukasiewicz
algebra £.3. The computations are explicit and show
how MV-operations are realized in the ordered K-
picture and finally by a concrete finite-dimensional
C*-algebra.

7.1 Definition of L3

The MV-chain L3 consists of three truth-values
L3 = {0,%,1}, with MV-operations defined by

truncated addition and negation:
x@®y=min(1l,x+y),x" =1—x.

1,1 1 1\*
Concretely, > @ - = 1, > P1=1, (5) =,
7.2 Stage 1: £3 » E(L3)

Mundici’s construction identifies £3 with the
unit interval of the unital £-group ([7, 2); that is,

E(L3) =(G,u)=(1,2),and I'([1, 2)={0,1,2} where
we identify the integer k € {0,1,2} with the MV-
element k/2 € {0, 1/2 , 1} .

The MV-operations correspond to group addition
truncated at the unit u = 2:

k1 .
EEBEHmm(Z,k+l)

(then reinterpreted as a fraction over 2).

Thus, the dictionary is: 0 « 0, % ol 12
(in the [J-model).

7.3 Stage 2: ({1, 2) as a dimension group

The ordered group (], [5o) with distinguished

order unit U = 2 is a dimension group: it is
unperforated and has the interpolation property
trivially (being

totally  ordered). Hence we may view

(1, 159,2) as an object of DIMGrp.

7.4 Stage 3: Realizing the ordered Ky-group
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For a unital finite-dimensional matrix algebra
M,,(C) we have: Ky,(M(C)) =
+
0, Ko(M(©) = s [1y,]=mer

Comparing with ([J,[]5g,2), we see that the
unique (up to *-isomorphism) unital C-algebra
who’s ordered Kj-invariant equals (Z, Z>0, 2) is
M,(C).

Therefore, the final stage of the pipeline assigns
to L3 the AF algebra A(L3) = M,(C).

7.5 Interpreting MV-operations via projections

Inside M, (C ), consider projections of rank 0, 1,
2. Their Ky-classes are 0,1,2 € [ = K,(M,)0,

The MV-sum % @% = 1 corresponds to the
relation: [p1] + [p1] = [p2], where p; is a rank-1
projection and p, = 1y, is the rank-2 projection
(the unit). Truncation at the unit is exactly the
clipping of sum in the ordered group at the
distinguished order unit.

Hence the MV-logic computations on {0,%,1}
are realized concretely by ranks of projections (and
their classes in Kj)) inside the AF algebra M, (C).

7.6 Remarks

* The example is prototypical: for the finite
MV-chain tn = {O,ﬁ, ...,1} one obtains
Z(kn) = ([1,n — 1), and the associated AF
algebra produced by K5t is M,,_;(C).

* Finite MV-chains therefore correspond to
finite-dimensional matrix algebras under the
pipeline; more complicated (infinite) MV-
algebras produce infinite-dimensional AF
algebras (or more intricate inductive limit
algebras).

We now illustrate the entire functorial pipeline with
a compact commutative diagram.

= oo F

by — = 5 (Z,2) — 5 (Z,Z20,2)

My(C) +————TY(Z,2)

8 Conclusion
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The functorial pipeline developed in this work,
-1

z F . Ko
MV — ufG — DimGrp — AF

reveals a deep structural connection between the
algebraic semantics of fuzzy logic and the
classification theory of AF C*-algebras. Rather than
treating MV-algebras as isolated logical structures,
the pipeline situates them within a landscape
governed by ordered groups, interpolation
properties, and K-theoretic invariants. Two
conceptual insights emerge clearly:

1. Logical semantics as ordered geometry.

Mundici’s equivalence shows that an MV-
algebra is already the unit interval of an ordered
abelian group with a strong order unit. The logical
operations @ and #* are therefore shadows of
algebraic and order-theoretic structures on the
ambient group. This allows logical transformations
to be studied via
interpolation, convexity, and homomorphisms of
ordered groups.

2. Fuzzy truth values as projection data.

Dimension groups are precisely the ordered KO-
groups of AF algebras. Since projections in AF
algebras encode finite-rank phenomena, MV-
elements may be interpreted (functorially) as classes
of projections or positive elements inside the
associated AF algebra. Logical combination
becomes rank-sum, truncated by

the order unit, and negation corresponds to taking
complements inside K.

The worked example of the three-valued
Lukasiewicz algebra illustrates this viewpoint
vividly: the truth values {0,1,2} become the
in M,(C), with MV-
addition realized as truncated rank-sum. For more
complicated MV-algebras, the AF algebra A(M)
may be infinite-dimensional, and its Bratteli
diagram provides a geometric visualization of the
logical structure of M.

Finally, because each step of the pipeline is
functorial, the entire construction is stable under
morphisms: MV-homomorphisms become unital *-
homomorphisms, so logical transformations
correspond to operator algebra morphisms. This
offers a new semantics of fuzzy logic inside
operator algebras and suggests the possibility of

projection ranks {0,%,1}
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extending fuzzy reasoning into noncommutative
settings.
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