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Abstract: In three-dimensional potential theory, classical analytic methods result in force fields exhibiting
discontinuities, particularly at the boundary regions of volumes and surfaces occupied by charges and currents.
Utilizing a specific topological structure introduced by E. Zeeman [1], I aim to augment the conventional methods
of standard analysis, which are typically limited to differential and integral approaches. A specific bitopological
structure in Euclidean space—namely the Zeeman topology Zpl with respect to the family of all piecewise linear
arcs—is employed. The constructive proof of the non-regularity of this topology, along with the auto-
homeomorphism group representing its invariance, provides the foundation for the physical applications presented
here. We consider test particles on the boundary of a specific region occupied by charged particles. I propose an
invariant solution that prioritizes force interactions restricted to straight lines over traditional coordinate invariance.
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1 Introduction

The foundational mathematical and geometric structure
in this paper is based on a topological treatment by E.
Zeeman [1] in 4D Minkowski space.

E. Zeeman pointed out that the topological structure is
incredibly rich and may lead to many generalizations.
We consider auto-transformations of R* having invariant

sub structures that are discontinuous in standard analysis.

In this paper we try to find physical applications in
Euclidean space R®.

We are using the topology Zpl = Z(R3, Xpl) that is
strictly finer than the Euclidean topology R?, defined by
the family of sub spaces Zpl, consisting of piecewise
straight lines (having finitely many corners).

We also remember the theorem of E.Noether:

,»Physical actions are local and are invariant with respect
to the Pointcaregroup”. The inverse of this theorem
seems to be more interesting. We will start with the auto-
homeomorphism group H(Zpl) and look for possible
physical applications in R>.

In the theory of potentials and fields there are many well
developed theorems using standard mathematical
analysis.[4].

There are also many known problems concerning the
compatibility of differently charged regions and analytic
solutions in occupied and non occupied regions. [4]
Morey-Nirenberg]. We try to provide an alternative
method to treat the problems in analysis.
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The use of Zeno-sequences has to be explained to
explore physical properties.

We will explain the difference between our "Zpl-
method" and the standard analytic method using a
simple example:

The field of a homogeneous charged disc in R [4,
pp-81-83].
2 The Standard Method (Martensen)

The classical theory of current and charge

distributions dates back to the end of 19th century
[Poincar¢, Lyapunov] and has been explored using
analytical and differential geometric methods.
Martensen [4] worked out many problems in an
excellent book, especially using integration and
differential geometry.

The fundamental real valued function is 1/d(P1,P2),
where d is the metric distance function and P1,P2 are
two points in Euclidean space R*. It was introduced to
derive the potential and the force between two charged
particles. Extending this function into charged regions
there arise singularities which were mostly excluded by
small balls.

An instructing example is the potential and the force
field induced by a homogenous charged disc in RS
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Martensen computes an overall existing continuous
potential with these formulas:
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Fig. 27

Zur Berechnung des Poten-
tials im Jonern einer Kreis-
scheibe

Fig. 28

Zur Berechnung des Potentials auf
dem Rande einer Kreisscheibe

Note: On the border of the disc the gradient is singular.
We observe that the usual assumption of charged

elements of volumes leads to this discontinuity in the
gradient field of force on a testing charge.
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A mathematical tool modeling the physical
connections may be useful for computer analyses. It can
be explained on the simple example above.

3 The Zpl-Method

The overall potential, which is affected by different
charge and current distributions is accompanied by
discontinuities in analytical methods using potential
functions. We consider the local structure of these
discontinuities to potentially enable to describe the force
fields in a more realistic way. The discontinuity of the
gradient shown above will be avoided by using our Zpl-
method.

We consider a convex Euclidean open set U of
Euclidean space R*. We reduce this set U to a Zpl-closed
subset A which is dense in the Euclidean closure of A.
To get the set A we use an explicit construction used in
topology by Popvassilev [2] proving the non regularity
of Zpl. Therefore we remove on every line y that crosses
U, all points leaving back at most two points on y inside
of U. It can be proved that A is dense generated on this
way.

To clarify our method, we must distinguish the purely
mathematical procedure, including technical proof
details, from the physical aspect we intend to introduce.
The complete mathematical proof has already been
established by Popvasilev in [2] using mathematical
induction. This formal aspect is now to be supplemented
by the following physical considerations. If we consider
the subspace A of R? as a space where charges are fixed,
it becomes evident through the construction that these
charges maintain a finite distance along straight-line
connections. The lines themselves lie within the
Euclidean space R®. Examining the Coulomb force
relation between two charges, one observes that the
distance is measured along the straight line connecting
them. The significance of straight lines is to be
particularly emphasized in this context. Furthermore, it
can be easily shown that the Zeeman topology Zpl,
generated by piecewise linear arcs, coincides with the
topology ZI1 generated by the family of all straight lines.
For the remainder of this work, we shall exclusively use
the notation Zpl to refer to this topology.

The invariance of this construct is characterized by
the auto-homeomorphism group H(Zpl). This group can
be represented by the set of auto-bijections Bij(Zpl) that
leave the family of piecewise linear sets Zpl invariant. It
should be noted that the group of auto-bijections which
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leave the family of all straight lines invariant consists of
linear and continuous transformations. However,
regarding the physical significance of the auto-
homeomorphism group, the preservation of the non-
regularity of Zpl remains fundamental. This implies that
a ray passing through a Euclidean boundary point of the
charged set A must maintain an arbitrarily small distance
to A. Furthermore, the inherent problems of coordinate
representations become apparent when considering this
group of auto-bijections, as it preserves the construction
while neglecting specific coordinate systems. The
existence of this invariance group demonstrates that
coordinate transformations are not necessary for the Zpl
method, particularly as discontinuous transformations
may exist. Crucially, however, the physical content
remains invariant.

We remark that every point R in the closure of A is the
accumulation point of a Zeno-sequence consisting of
members in A. A Zeno-Sequence is defined by a
convergent sequence with respect to the Euclidean
topology which is not convergent with respect to Zpl
topology.

For further applications, the study of different Zeno-
sequences may be useful- especially the fact that a Zeno-
sequence converging to a point R needs infinitely many
lines through R to cover all members of the sequence.

Take a compact sphere S? around R and study the
accumulation points of the intersection with S

4 Solution

We propose the following algorithm to avoid
singularities as a physical application of this pure
topological and geometrical construction in R? using the
example above:

The potential of a Zpl-homogenous charged disc has to
be constructed by the following algorithm:

A. Remove all points from the disc leaving back the
Zpl-closed subset A which is dense in the Euclidean
closure of A.

B. Put charges homogeneously in all points of A

C. Take a test charged point R of R* and draw all
straight lines y through R. The position of R can be
inside or outside of the disc[Fig 1 and Fig 2].

D. Lines y meeting the disc will be connected with
charges in at most two points along a section between
the crossing points with the border of the disk. The
border points will be called B(y).
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E. Take the midpoints of these points in their
segments [Fig land 2] and integrate 1/d(R,M(y)) for all
vy to get the Zpl-potential Zp/-U(R) in R.

Fig 1: Test charge far outside the disc

Fig 2: Test charge closer to the disc

Fig 3: Test charge on the disc outline

3 Volume 11, 2026



Otto Laback

Fig 4: Test charge inside the disc

Remarks:

Ad A.: The “geometric” straight line between two
charges gets an important “physical” notion on this way.
Ad B.: Generalizations have to be worked out. The
charged set A consists of all Zeno-sequences without
their Euclidean accumulation points. These fill out the
rest of points(geometrically) in the disc.

Ad C.: From an arbitrary Zeno-sequence in A the
accumulation point can be separated by a Zpl-
neighborhood. This means that on every line through
this point we can find a finite interval not meeting the
Zeno-sequence. But the whole dense set A cannot be
separated by Zpl-open sets from this point. Therefore
exists a new physical connection between the test charge
in R and the Zpl-charged set A.

Ad D.: Taking the medium-points on the segment
between the boundary-points B(y) seems to be justified
by the density-property of A in the disc. The exact
position of the charged particle of A on y can not be
determined.

Ad E.: The Zpl-potential can be constructed due to real
physical situation going through the border of the disc.
The gradient representing the force has to be finite. To
avoid the singularity of the differentiable force field at
the boundary of the disc, one should consider that along
each ray through R, the finite force interaction can be

calculated by (1/d*(R, M(y)) using the Coulomb formula.

The selection of midpoints on the segments is
statistically justifiable, bypassing a further discussion of
the uncertainty of their precise location within those
segments.

Ad Fig. 1-4: Charges C and R are assumed to be positive.
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5 Conclusion

Finally we remark that the invariance group H(Zpl) of
auto-homeomorphisms that can be represented by the
set of auto- bijections Bij(Xpl) leaving the family of
piecewise linear arcs Xpl invariant, contains non-
continuous transformations. The representation in
coordinate-systems does not seem to be important.

From a physical perspective, the Zpl-closed set A is
characterized by the requirement that all charged points
are separated by finite distances.

OPEN PROBLEMS

A. Treatment of static Vector Potentials and magnetic
fields
B. Computer Simulation of different sources

References

[1] Zeeman E.C., “The Topology of Minkowski-Space”.
Topology 6(1967) pp.161-170

[2] Popvassilev S.G., Mathematica Panonica 5(1993)
pp-105-110

[3] O.Laback, “On the topogical connection of inertial
systems in space-time manifolds”, International
Journal of Applied Physics, Volume 10, 2025 pp.146-
148

[4] E. Martensen, Potentialtheorie: Leitfaden fiir
angewandte Mathematik. Stuttgart: Teubner, 1968.

Volume 11, 2026





