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Abstract: In three-dimensional potential theory, classical analytic methods result in force fields exhibiting 
discontinuities, particularly at the boundary regions of volumes and surfaces occupied by charges and currents. 
Utilizing a specific topological structure introduced by E. Zeeman [1], I aim to augment the conventional methods 
of standard analysis, which are typically limited to differential and integral approaches. A specific bitopological 
structure in Euclidean space—namely the Zeeman topology Zpl with respect to the family of all piecewise linear 
arcs—is employed. The constructive proof of the non-regularity of this topology, along with the auto-
homeomorphism group representing its invariance, provides the foundation for the physical applications presented 
here. We consider test particles on the boundary of a specific region occupied by charged particles. I propose an 
invariant solution that prioritizes force interactions restricted to straight lines over traditional coordinate invariance. 
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1 Introduction 
The foundational mathematical and geometric structure 
in this paper is based on a topological treatment by E. 
Zeeman [1]  in 4D Minkowski space. 
E. Zeeman pointed out that the topological structure is 
incredibly rich and may lead to many generalizations. 
We consider auto-transformations of R³ having invariant 
sub structures that are discontinuous in standard analysis. 
In this paper we try to find physical applications in 
Euclidean space R³. 
We are using the topology Zpl = Z(R³, Σpl) that is 
strictly finer than the Euclidean topology R³, defined by 
the family of sub spaces Σpl, consisting of piecewise 
straight lines (having finitely many corners). 
We also remember the theorem of E.Noether: 
„Physical actions are local and are invariant with respect 
to the Pointcaregroup“. The inverse of this theorem 
seems to be more interesting. We will start with the auto-
homeomorphism group H(Zpl) and look for possible 
physical applications in R³. 
In the theory of potentials and fields there are many well 
developed theorems using standard mathematical 
analysis.[4]. 
  There are also many known problems concerning the 
compatibility of differently charged regions and analytic 
solutions in occupied and non occupied regions. [4] 
Morey-Nirenberg]. We try to provide an alternative 
method to treat the problems in analysis. 

 

 
The use of Zeno-sequences has to be explained to 
explore physical properties. 
 
We will explain the difference between our "Zpl-
method" and the standard analytic method using a 
simple example: 
The field of a homogeneous charged disc in R³.  [4, 
pp.81-83]. 

2 The Standard Method (Martensen) 
The classical theory of current and charge 

distributions dates back to the end of 19th century 
[Poincaré, Lyapunov] and has been explored using 
analytical and differential geometric methods. 
Martensen [4] worked out many problems in an 
excellent book, especially using integration and 
differential geometry. 

The fundamental real valued function is 1/d(P1,P2), 
where d is the metric distance function and P1,P2 are 
two points in Euclidean space R³. It was introduced to 
derive the potential and  the force between two charged 
particles. Extending this function into charged regions 
there arise singularities which were mostly excluded by 
small balls. 

An instructing example is the potential and the force 
field induced by a homogenous charged disc in R³. 
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Martensen computes an overall existing continuous 
potential with these formulas: 

 

 
 

 
 

 
 

 
 
 
Note: On the border of the disc the gradient is singular. 

 
We observe that the usual assumption of charged 

elements of volumes leads to this discontinuity in the 
gradient field of force on a testing charge. 

A mathematical tool modeling the physical 
connections may be useful for computer analyses. It can 
be explained on the simple example above. 

3 The Zpl-Method 
The overall potential, which is affected by different 

charge and current distributions is accompanied by 
discontinuities in analytical methods using  potential 
functions. We consider the local structure of these 
discontinuities to potentially enable to describe the force 
fields in a more realistic way. The discontinuity of the 
gradient shown above will be avoided by using our Zpl-
method. 

We consider a convex Euclidean open set U of 
Euclidean space R³. We reduce this set U to a Zpl-closed 
subset A which is dense in the Euclidean closure of A. 
To get the set A we use an explicit construction used in 
topology by Popvassilev [2] proving the non regularity 
of Zpl. Therefore we remove on every line γ that crosses 
U, all points leaving back at most two points on γ inside 
of U. It can be proved that A is dense generated on this 
way. 

To clarify our method, we must distinguish the purely 
mathematical procedure, including technical proof 
details, from the physical aspect we intend to introduce. 
The complete mathematical proof has already been 
established by Popvasilev in [2] using mathematical 
induction. This formal aspect is now to be supplemented 
by the following physical considerations. If we consider 
the subspace A of R3 as a space where charges are fixed, 
it becomes evident through the construction that these 
charges maintain a finite distance along straight-line 
connections. The lines themselves lie within the 
Euclidean space R3. Examining the Coulomb force 
relation between two charges, one observes that the 
distance is measured along the straight line connecting 
them. The significance of straight lines is to be 
particularly emphasized in this context. Furthermore, it 
can be easily shown that the Zeeman topology Zpl, 
generated by piecewise linear arcs, coincides with the 
topology Zl generated by the family of all straight lines. 
For the remainder of this work, we shall exclusively use 
the notation Zpl to refer to this topology. 

The invariance of this construct is characterized by 
the auto-homeomorphism group H(Zpl). This group can 
be represented by the set of auto-bijections Bij(Σpl) that 
leave the family of piecewise linear sets Σpl invariant. It 
should be noted that the group of auto-bijections which 
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leave the family of all straight lines invariant consists of 
linear and continuous transformations. However, 
regarding the physical significance of the auto-
homeomorphism group, the preservation of the non-
regularity of Zpl remains fundamental. This implies that 
a ray passing through a Euclidean boundary point of the 
charged set A must maintain an arbitrarily small distance 
to A. Furthermore, the inherent problems of coordinate 
representations become apparent when considering this 
group of auto-bijections, as it preserves the construction 
while neglecting specific coordinate systems. The 
existence of this invariance group demonstrates that 
coordinate transformations are not necessary for the Zpl 
method, particularly as discontinuous transformations 
may exist. Crucially, however, the physical content 
remains invariant. 

We remark that every point R in the closure of A is the 
accumulation point of a Zeno-sequence consisting of 
members in A. A Zeno-Sequence is defined by a 
convergent sequence with respect to the Euclidean 
topology which is not convergent with respect to Zpl 
topology. 

For further applications, the study of different Zeno-
sequences may be useful- especially the fact that a Zeno-
sequence converging to a point R needs infinitely many 
lines through R to cover all members of the sequence. 

Take a compact sphere S² around R and study the 
accumulation points of the intersection with S². 

4 Solution 
We propose the following algorithm to avoid 
singularities as a physical application of this pure 
topological and geometrical construction in R³ using the 
example above: 
The potential of a Zpl-homogenous charged disc has to 
be constructed by the following algorithm: 
    A. Remove all points from the disc leaving back the 
Zpl-closed subset A which is dense in the Euclidean 
closure of A. 
    B. Put charges homogeneously in all points of A 
    C. Take a test charged point R of R³ and draw all 
straight lines γ through R. The position of R can be 
inside or outside of the disc[Fig 1 and Fig 2]. 
    D. Lines γ meeting the disc will be connected with 
charges in at most two points along a section between 
the crossing points with the border of the disk. The 
border points will be called B(γ). 

    E. Take the midpoints  of these points in their 
segments [Fig 1and 2] and integrate 1/d(R,M(γ)) for all 
γ to get the Zpl-potential Zpl-U(R) in R. 
 
 

Fig 1: Test charge far outside the disc 
 
 
 

 
Fig 2: Test charge closer to the disc 
 
 

 
 
Fig 3: Test charge on the disc outline 
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Fig 4: Test charge inside the disc 
 
Remarks: 
Ad A.: The “geometric” straight line between two 
charges gets an important “physical” notion on this way. 
Ad B.: Generalizations have to be worked out. The 
charged set A consists of all Zeno-sequences without 
their Euclidean accumulation points. These fill out the 
rest of points(geometrically) in the disc. 
Ad C.: From an arbitrary Zeno-sequence in A the 
accumulation point can be separated by a Zpl-
neighborhood. This means that on every line through 
this point we can find a finite interval not meeting the 
Zeno-sequence. But the whole dense set A cannot be 
separated by Zpl-open sets from this point. Therefore 
exists a new physical connection between the test charge 
in R and the Zpl-charged set A. 
Ad D.: Taking the medium-points on the segment 
between the boundary-points B(γ) seems to be justified 
by the density-property of A in the disc. The exact 
position of the charged particle of A on γ can not be 
determined. 
Ad E.: The Zpl-potential can be constructed due to real 
physical situation going through the border of the disc. 
The gradient representing the force has to be finite. To 
avoid the singularity of the differentiable force field at 
the boundary of the disc, one should consider that along 
each ray through R, the finite force interaction can be 
calculated by (1/d2(R, M(γ)) using the Coulomb formula. 
The selection of midpoints on the segments is 
statistically justifiable, bypassing a further discussion of 
the uncertainty of their precise location within those 
segments. 
Ad Fig. 1-4: Charges C and R are assumed to be positive. 
 

 5 Conclusion 
Finally we remark that the invariance group H(Zpl) of 

auto-homeomorphisms that can be represented by the 
set of auto- bijections Bij(Σpl) leaving the family of 
piecewise linear arcs Σpl invariant, contains non-
continuous transformations. The representation in 
coordinate-systems does not seem to be important. 

From a physical perspective, the Zpl-closed set A is 
characterized by the requirement that all charged points 
are separated by finite distances. 

OPEN PROBLEMS 
A. Treatment of static Vector Potentials and magnetic 

fields 
B. Computer Simulation of different sources 
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