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Functional curves of high quality — innovation in geometric modeling
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Abstract: Curves and surfaces that form the geometry of technical products often directly determine the functional
characteristics of the designed products. It is logical to call such curves and surfaces functional. Often, the aesthetics
of a product is one of the important consumer properties of the product. Therefore, aesthetic curves can also be
classified as functional.

The optimal curve is not always defined by an analytical curve, such as the profile of a tooth (involute of a circle),
the trajectory of a load transportation as a line of the fastest descent (brachistochrone), or the profile of a dome
(catenary). Free-form curves in the form of spline curves are more commonly used.

Methods for constructing functional curves must satisfy the following requirements:

- [sogeometric construction of a curve on the initial polyline with fixed end and intermediate parameters.

- Construction of a fair curve.

- Low value of potential energy of the curve.

Regardless of the specific product, functional curves must be fair. Functional curves must meet the following
fairness criteria:

- High order of smoothness (not lower than the 4th order).

- Minimum number of curve vertices (or minimum number of curvature extremes).

- Low value of curvature variation and rate of curvature change.

- Low value of potential energy of the curve.

Spline curves that meet these criteria are called F-curves or curves of class F.

The authors have developed the FairCurveModeler software and methodological complex (SMC) for modeling
F-curves. Based on the functionality of the FairCurveModeler SMC, universal and specialized applications for CAD
systems (KOMPAS 3D, nanoCAD / ZWCAD / AutoCAD), mathematical systems (MathCAD / Mathematica /
Wolfram Cloud), an Excel application, and a Web application have been developed.

The FairCurveModeler SMC has been adapted and implemented into the C3D geometric core as the C3D
FairCurveModeler section.

The philosophy of the FairCurveModeler SMC is based on the theory of calculating parameters of the Soviet
school of applied geometry. The initial data for constructing or editing curves are presented in the form of geometric
determinants (GD).

The following innovations have been implemented based on the parametric approach:

- A new paradigm for constructing spline curves based on the theory of parameter calculus has been proposed.
A spline basis is formed as a sequence of S-parametric conical curves of double contact, with 4 common parameters
of adjacent conical curves. Then, on the spline basis, points of a virtual curve are generated in the lenses of
contacting conical curves. It is shown that the generated points belong to the curve of class CS5.

- The method for isogeometric approximation of a virtual curve by means of a rational cubic Bezier spline curve
has been developed.

- The method for isogeometric approximation of a virtual curve by means of a B-spline curve has been developed.

The FairCurveModeler SMC is characterized by the following system properties:

1) The methods for constructing F-curves ensure isogeometricity (shape preserving) of the constructing curves
on the original polylines. The shape of the modeled curve is similar to the shape of the original polyline.

ISSN: 2367-895X 300 Volume 10, 2025



International Journal of Mathematical and Computational Methods
Valerian Muftejev, Fairuza Ziganshina, Vadim Gumerov http://www.iaras.org/iaras/journals/ijmcm

The designer is provided with a wide range of tools:

- Base polyline. The spline curve passes through the vertices of the base polyline. In the general case, the spline
nodes do not coincide with the vertices of the polyline.

- A set of tangent lines (in particular, in the form of a tangent polyline). The curve passes tangent to the lines
(tangent to the links of the tangent polyline).

- Hermite GD. The base polyline is equipped with tangent vectors and curvature vectors at its vertices.

- GB-polygons of Bezier spline curves.

- S-polygons of B-spline curves.

2) The methods provide flexibility in construction and editing. This is the ability to locally control the shape of
a global spline with fixed parameters at intermediate points of the polyline.

3) The unique feature of the methods is the ability to geometrically accurately model circles and, in general,
conical curves.

4) The methods are invariant with respect to affine transformations.

The article substantiates the importance of the property of minimizing the potential energy of curves in F-curves.
The works of Mehlum and Livien are analyzed in detail. An experiment with a physical spline is conducted. The
advantages of the methods for constructing F-curves in FairCurveModeler over spline curves of class A and over a
physical spline and its approximation methods are proven.

Innovative methods for constructing surfaces are proposed: a frame-kinematic method for constructing a spline
surface, a method for constructing a topologically complex surface.

Keywords: — isogeometric approximation, fair curves, spline curves, FairCurveModeler, F-curves, B-spline
surface, complex surfaces.
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_ 2. Requirements for the quality of
1. Introduction functional curves

Curved lines and surfaces that form the geometry of In applied geometry, a distinction is made between

technical products often directly determine the  fyimess and smoothness. Smoothness is the order of
functional characteristics of the designed products. It is differentiability of a spline curve. A smooth curve is a

logical to call such curves and surfaces functional. curve of the first order of smoothness. Fairness includes
Examples of functional curves and surfaces: many criteria, including the order of smoothness.
- External contours of ships, cars, airplanes. Increased requirements are imposed on the
- Profiles of cams in cam mechanisms. smoothness parameters of functional curves, which are
- Working surfaces of tillage machines and units. universal and do not depend on the specifics of the
- Profiles and surfaces of airplane and UAV wings,  designed objects. The following is a list of these
propellers, turbines, and compressor blades. requirements with explanations.

- Centerlines of road routes.

Often, the aesthetic properties of curves and surfaces
determine the consumer properties of products (for Smoothness is a characteristic of a function or
example, the aesthetics of body surfaces in the  geometric figure (curve, surface, etc.) that indicates
automotive industry, the aesthetics of architectural ~ whether the function is differentiable over its entire

1. High, at least 4th order of smoothness

forms, and forms of industrial design products).  domain of definition or allows us to reduce the points of
Therefore, aesthetic curves can be considered as  the figure to a neighborhood described by differentiable
functional curves. functions.

Among the types of functional curves, one can
distinguish a subclass of engineering analytical curves,
which provide some design characteristic of an object
optimally. Such curves include, for example, the - clothoid splines are used for modeling of road
involute of a circle used to construct the profile of the  routes, and smoothness is provided at least of the 2nd
teeth of a gear wheel, [1], the inverted catenary line of  order;
the profile of the dome of the cathedral in London, [2],
[3], as well as the brachistochrone - the curve of the
steepest descent for transporting objects, [4].

In the general case, functional curves are described
by spline curves of free form.

In different designs, splines with different orders of
smoothness are used. For example,

- to profile a high-speed camshaft cam, smoothness
of at least the third order is required, so profile design
begins with the construction of a smooth graphic of the
derivative part, [5]. This approach eliminates “jerks” [6].

- when modeling spatial curves, the curve should
have 3rd order smoothness to ensure continuity of the
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torsion function, and 4th order smoothness to ensure
smoothness of the torsion;

2. No or minimum number of curvature extrema

The smoothness of the curve also depends on the
shape of the graph of curvature variation along the line
of motion.

Since the oscillation of the curvature function
according to the basic equation of dynamics, [7], [8] will
cause a pulsation of centrifugal forces acting on the
material point, the section of the line of motion should
have a minimum number of curvature extrema or curve
vertices.

The presence of unnecessary extremes of curvature,
for example, in the shape of technical products and
design objects, can cause the following negative
phenomena:

- Unwarranted runout of the cam mechanism tappet,
the consequence of which is premature wear of the
mechanism.

- Soil sticking on the plow section with a
concentration of curvature near the soil trajectory, which
leads to an increase in plow resistance and,
consequently, to an increase in the energy intensity of
the plowing process.

- When the extreme values of the curvature profile
are excessive, excessive pulsation of the flowing
medium occurs, which leads to the appearance of
resistance and can cause flow breakdown.

- The need for unnecessary braking and acceleration,
which increases the energy costs of moving along the
vehicle track.

- The effect of curved mirrors at curved body
surfaces, [9].

3. Small values of curvature variation and its rate of
change

In some application domains, the requirement to
minimize the curvature variation is introduced, and
hence the curvature concentration must be constrained
to a maximum value.

For example, such a constraint on the minimum value
of the radius of curvature (maximum curvature) is
naturally introduced in road design: the minimum radius
of a curve is limited by the calculation of the allowable
vehicle speed, [10].

An important parameter of curve quality is the rate of
curvature change. When designing a road alignment, this
parameter governs the rate of increase of centrifugal
force acting on the vehicle on curves and is easily
controlled through the use of clothoid segments with a
linear change in curvature function, [10], [11].

Note that these requirements are contradictory. When
the variation (the difference between the maximum and
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minimum curvature value) decreases, the rate of
curvature change may increase, and vice versa.

4. Low value of the potential energy curve

The smoothness of a curve is considered to be
directly related to its potential energy.

The necessity of choosing a functional curve with a
minimum value of potential energy is explained by the
assumption that when an object with a functional surface
moves at high speed, the surrounding environment
behaves like an elastic body. Obviously, less work is
expended on the deformation of such an elastic medium
along the flow lines with lower potential energy.

When a material point moves along a concave
curvilinear trajectory, taking friction into account, the
work expended on movement decreases with a decrease
in the potential energy of the trajectory itself, [12].

5. Aesthetics of the curve

The authors of this study hold the view that the
priority is the evaluation according to the criteria of
fairness. Expert evaluation from the standpoint of the
laws of technical aesthetics (conciseness, integrity,
expressiveness, proportional consistency, compositional
balance, structural organization, imagery, rationality,
dynamism, scale, plasticity, harmony) is valid only after
the evaluation for fairness.

6. Accurate modeling of roundness

In [13], several types of splines for aesthetic design
are compared: minimum potential energy curve MEC,
clothoidal, circular, polynomial degree 3, and log
aesthetic curves. The prize is the honor of the best spline
for design. The contest begins with the ability to
accurately model a circle.

The author's next conclusion is absolutely correct: a
spline constructed on points of a circle must exactly
coincide with the circle. For some technical objects, this
requirement is essential. For example, a smooth road
route must have curves with a section coinciding with
the arc of a circle. In tracing methods, such sections are
modeled by composite curves - clotoid - circle - clotoid.

Another example is the profile of a flat cam of an
internal combustion engine camshaft. The profile should
have two sections of exact arcs of circles connected by
smooth transition curves.

2.1 FairCurveModeler

Functional curves whose parameters meet the above
requirements are called class F curves or F-curves, [14].

It is important to note here that it is these strict
requirements for smoothness parameters that distinguish
curves of this class from class A curves. The latter are
the shape-forming curves of class A surfaces - high-
quality surfaces of external body surfaces according to
the criteria of aesthetics. A “good” curve for these
surfaces will have a curvature graph with a small number
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of areas of monotonic curvature change, [15]. This
requirement can be compared to the requirement to
minimize the number of curvature extrema in functional
curves.

Thus, class A curves are curves for surface shaping
in industrial design, while functional curves are
engineering curves. High-quality curves are also
commonly referred to as faired curves (faired curves,
fairing curves). Here, it is important not to confuse the
latter with smooth curves, which are low-quality curves
of first-order smoothness, [16].

However, even if a CAD system supports the
modeling of class A curves and surfaces, it does not
provide a proper quality of functional curves according
to fairness criteria.

As a result of our research in the field of geometric
modeling, class F methods (F-methods) were developed
for modeling class F curves.

Based on the F class methods, the FairCurveModeler
software and methodology complex (SMC), [14],
FairCurveModeler has by now been implemented in the
form of two complexes:

- Software and methodological complex (SMC)
FairCurveModeler, [ 14]. The SMC FairCurveModeler is
implemented in the C++ language. The functionality is
available through the COM component
FairCurveModeler.exe. COM-component
FairCurveModeler.exe is included in universal and
specialized applications and can be considered as a
geometric core of FairCurveModeler.exe for
applications. Universal and specialized applications can
be ordered and downloaded on the developer's website
http:/Spliner.ru.

- C3D FairCurveModeler is a section of C3D
geometric core. It is an adaptation of the SMC
FairCurveModeler according to C3D software
standards. The functionality is available to developers
through the C3D ToolKit, [19 C3D ToolKit].

Only the  FairCurveModeler.exe
invocation interface is developed for
applications. All applications access the
component of FairCurveModeler.exe.

divided

command
release
COM

Applications are into universal and

specialized ones.

Universal applications implement the functionality
of the FairCurveModeler.exe geometrical kernel.

Specialized applications are developed on the basis
of  FairCurveModeler.exe  geometrical  kernel
functionality to solve specific design tasks.

The following universal applications have been
developed [14]:

- Cloud WEB-release WebFairCurveModeler based
on COM-component.
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- FairCurveModeler application based on a COM
component on CAD-system platforms (KOMPAS 3D,
nanoCAD, ZWCAD, AutoCAD),

- FairCurveModeler application based on a COM
component on the Excel platform.

- FairCurveModeler applications in the computer
math systems MathCAD, Mathematica, WolframCloud.

Specialized applications are developed on CAD-
system platforms, nanoCAD / ZWCAD / AutoCAD,
based on FairCurveModeler.exe core functionality +
options for modeling specific objects. These include:

- Applied CAD Plow.

- An application for modeling aerofoils based on
Abbott's improved method.

- Application for road tracing.

- Application for profiling cam profiles.

- Application for profiling of steam turbine blades.

Further, the paper describes innovative solutions
used in the development of SMC, reveals, and
substantiates significant advantages over existing
methods of geometric modeling in CAD.

3. Innovative solutions in the
development of F-methods

Let's consider the innovative characteristics of F-
methods.

A set of geometrically oriented methods forms the
basis of the FairCurveModeler software package. This
article presents the methodological justification of
FairCurveModeler's methods in the field of engineering
geometry.

The use of computer systems has radically expanded
the scope of engineering geometry. We can speak of the
emergence of computer-aided engineering geometry.
Computer-aided engineering geometry draws on such
areas of engineering as descriptive geometry and
engineering graphics, computational geometry, and
computer graphics. The development of the theory and
methods of computer-aided engineering geometry has
resulted in the development of geometric modeling
subsystems for CAD systems and their geometric
kernels.

A geometrically oriented approach to the
algorithmization of solutions to geometric modeling
problems, in contrast to the algebraic approach, is the
main one in the methods of computer engineering
geometry.

With the algebraic approach, any problem is reduced
to some standard algebraic systems, which are solved
using the methods of computational mathematics.

The geometrically oriented approach utilizes a
geometric interpretation of formulas and equations, and
formulates the problem in terms of geometric objects
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and their geometric relationships. A solution to the
problem may also be found using geometric algorithms.

A classic example of such a successful geometrically
oriented approach to problem formulation and solution
was demonstrated by Bezier and Casteljau [17], [18].

The geometric interpretation of the coefficients in the
formula of the Russian mathematician Bernstein
allowed them to create a new paradigm for curve
modeling. Bernstein's parametric equations [19
Bernstein 1], [20 Bernstein 2] are now called Bézier
curves. Calculating points on a Bézier curve using the
Casteljau algorithm also has a geometrically clear
interpretation [17], [18].

The generalization of the Bezier method to B-spline
curves is also an example of a geometrically oriented
approach, [21]. Carl de Boer [22] and, independently of
him, Cox [23] established a connection between the
geometric form of representation of spline coefficients
and the form of the parametric Schoenberg spline, [24].

The theoretical basis of engineering geometry is the
theory of parametrization or the theory of parameter
calculus.

The theory of parametric calculus, developed by the
scientific school of Academician N.F. Chetverukhin and
Professor II. Kotov, [25], [26], [27], [28], is an
outstanding scientific and practical result of the
development of engineering geometry in the USSR. The
theory of parametric calculus was used by Professor
Samuel Geisberg of Leningrad University to create the
successful Pro/ENGINEER CAD system [29].
Parametric modeling is currently the basis of any CAD
system.

The theory of parametric calculus underlies the
scientific school of Professor V.A. Osipov. The methods
of two and three relations [30], [31], created for flexible
editing of curves, are essentially geometrically oriented
interpretations of rational quadratic curves with
controlled weights.

The scientific school of Academician V.S. Polozov
and Professor S.I. Rotkov raised the theory of parametric
calculus to the highest level as a mathematical apparatus
for analyzing the parametric relationships of two-
dimensional and three-dimensional objects, [32]. Based
on this apparatus, heuristic algorithms (artificial
intelligence  algorithms)  were  developed for
synthesizing a three-dimensional object from flat
projections and constructing an optimized drawing
based on a three-dimensional model of the object.

Of extreme importance for practical design is A.E.
Klevensky's [33] idea of deferred calculation of a
geometric object's parameters until sufficient parametric
relationships between geometric objects have been
established. At the Graphics Department of the Ufa
Aviation Institute, a team of developers led by Associate
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Professor V.I. Makutov successfully implemented this
idea in the "Alpha" program. The program was used at a
number of leading machine-building enterprises in the
USSR.

Let us consider the modeling of spline curves in light
of parametrization theory.

In parametrization theory, a spline curve model is
called a determinant (D). A determinant consists of a set
of geometric parameters, called a geometric determinant
(GD), and a procedure for constructing a spline curve
using the GD or a procedure for generating curve points.
The number of GD parameters that uniquely define a

curve is called the parametric number of the
determinant.

Geometric determinants in the FairCurveModeler
system:

- Base polyline. The curve passes through the
vertices of the polyline.

- Tangent lines/tangent polyline. The curve passes
tangent to the lines or links of the polyline.

- Hermite determinant. The support polyline is
provided with tangent vectors [and curvature vectors] at
the vertices of the polyline. Accordingly, it is considered
a first- [and second-] order determinant.

In addition to the GD, certain requirements for the
shape and quality of the curve can be added:
isogeometricity of the shape of the polyline and the
modeled curve, the order of smoothness of the modeled
curve, etc.

How do we apply parameterization theory to model
spline curves?

In the theory of spline curves, by the method of
construction, curves are divided into local and global.
Let us explain the terms local and global splines by the
example of cubic splines.

A segment of a cubic parametric polynomial
(Ferguson curve, cubic Bezier curve) is defined by 4
geometric parameters of the form of 2 points and 2
tangents or 4 vertices of a B-polygon, [9].

A local geometric cubic spline is constructed on a
polyline by specifying the direction of the tangents at
each point of the polyline. Changing an individual
segment of the spline does not affect the shape of other
segments. It is a curve of the 1st order of smoothness.

To construct a cubic spline with continuity of
curvature at the junction points of analytic curves, a
system of equations is solved. As a result, we obtain a
global spline of the 2nd order of smoothness. Globality
means that changing the coordinates of one point causes
a change in the entire spline curve.

In traditional spline theory, it is considered that the
analog of the energy functional is minimized when
constructing a spline, [34], [35], [36], [37], [38], [39],
[40].
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3.1 Spline Basis

The innovation in our scheme of spline construction:
any configuration of connections of geometrical
parameters (not only at the ends of segments) between
adjacent segments can be used. We have developed an
innovative method of construction on the polyline {Pi},
the set of segments {R;} of double osculated conic curves

(Fig. 1).

Fig. 1. Configuration of adjacent segments of the conic
curves.

The adjacent 5-parametric conic curves R;, Ri+1 have
4 common parameters. Further increase of the number is
possible only at full coincidence. This is a global spline.

3.2 Virtual curve

And so, we have constructed a spline as a set of
double-osculating conic curves. This is a semi-finished
product that we call the spline basis. The algorithm for
constructing the spline basis is described in [41].

Next, on the spline basis, we construct a virtual
curve. New points of the virtual curve are generated in
the centers of “lenses” formed by adjacent conic curves

(Fig. 2).

Fig.2. Generation of a point in a “lens” formed by
adjacent curves.

The lens (see Fig. 1) formed by adjacent analytic
curves can be viewed as the magnitude of the
deviation/difference of adjacent analytic segments.

In algorithms, the difference of engineering
discriminants is used as the deviation value. In the
Soviet school of applied geometry, the engineering
discriminant d is the ratio of the length of the segment
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from the curve to the base of a contiguous triangle along
the median to the length of the median, 0 <d < 1, [42].

The second innovation: generation of new curve
points in the middle of lenses formed by adjacent
double-contact conic curves (see Fig. 1).

Recursive generation of curve points in applied
geometry is not a new idea. For example, Chaikin's idea
of fast point generation, [43]. Also, the idea of
estimating the deviations of two adjacent segments by
the lens is not new, [44].

An innovative method for generating a point in the
middle of a lens combines these two approaches.

The generated points in the limit form a virtual curve
(V-curve) of class C°, [41].

Let us note some important properties of the spline
basis and virtual curve.

The method of construction of the spline basis is
invariant with respect to projective transformations.

The method of constructing a virtual curve is
invariant with respect to affine transformations.

These properties are necessary for adequate
estimation of the shape of a spatial curve from images
and the possibility of adequate editing of the shape on
projections of the curve and its GD.

An important property of this global spline is that if
the original polyline belongs to a conic curve, the spline
degenerates into a particular conic curve.

This means that conic curves can be modeled
geometrically accurately using this method.

This is a big plus for the method. Moreover,
connoisseurs, [13], believe that for CAD spline
modeling methods, it is a necessary property.

It can be assumed that the construction of this global
spline also minimizes some energy functional.

Another important property is the possibility of
constructing a basis on tangent lines. This property
follows from the duality property of the definition of 5-
parameter conic curves. A conic curve can be defined by
5 points or 5 tangents, [45].

3.3 A geometrically oriented approach to solving
ill-posed problems

The method for constructing a spline on set of
double-osculating conic curves implements a
geometrically oriented solution to the ill-posed problem
of constructing a nonlinear spline.

A robust algorithm for determining the set of double-
osculating conic curves on a convex base polyline based
on a priori information about the desired solution [41]
can be interpreted as a regularizing algorithm based on
Tikhonov's scheme [46].
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The formal formulation of the problem of
constructing a set of double-osculating conical curves
leads to a system of nonlinear equations.

In the author's approach [41], the problem is
formulated in terms of parametric theory as follows.

The desired geometric parameters are the sets of
tangents at the base points. The initial set of tangents is
determined in the feasible solution space. In particular,
the directions of the tangents must correspond to the
shape of the polyline. In the algorithms, the direction of
the chord is used when specifying the initial tangent at
the current point.

The result of constructing conical curves of double
osculating can be considered a set of tangents {T;} at
base points {Pi} such that the conical curves constructed
from local geometric determinants Gi = {Pi1, Ti.1, Pj,
Pi+1, Ti+1} are conical curves of double-osculating. An
iterative procedure for fitting the directions of tangents
at points of the base polyline is proposed. In the current
iteration m, to reduce the residual of tangents at points
{Pi}, the conical {R;} and tangents {T;} are redefined on
local geometric determinants Gi = {Pi.1, Ti1, Pi, Pis1,
Ti+1}. The procedure can be written like this

{Ti}m = a{Ri} = af{Pi,Ti.}m1 = y{Ti} m1,, where

o — operation of determining tangents on conical
curves {Ri}m-1 at points {Pi}m-1;

B - is the operation of determining conical curves
{Ri} at points {Pi} on local GDs Gi = {Pi.1, Ti1, Pi, Pi+1,
Ti+1}.

Y - is a superposition of operations a, f3.

This approach allows you to replace complex
schemes for solving a system of nonlinear equations
with a compact formula for recurrent calculations

{Titm+r = p{Ti}m.

It should be noted that the article [41] was
republished in the US. Later, 15 years later, a US Army
military mathematician attempted to replicate the
algorithm for constructing this nonlinear spline [47].

Mufteev's envelope method and R.W. Soanes's
method are extremely similar. R.W. Soanes's method
also uses a scheme for constructing two families of
mutually osculating conical curves. The operations for
generating additional points in the curve point
generation scheme are identical. However, Soanes uses
computational mathematics algorithms to solve the
problem. A disadvantage of Soanes's method is the need
for extensive compaction of the V-curve to obtain an
acceptable quality spline curve in the form of conical
curve segments.

Credit must be given to the military mathematician's
mathematical intuition. In his reasoning, he suggests that
the resulting curve has a higher order of smoothness than
that stated in the title of the article, "Thrice
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Differentiable Affine Conic Spline Interpolation.”
Indeed, as the author demonstrated in [41], the envelope
curve belongs to class C° curves.

4. Isogeometric approximation of
virtual curve by means of NURBS
curves

In the Soviet school of applied geometry, when
constructing a curve on a polyline, the term
isogeometricity means the similarity of the shape of the
modeled curve to the shape of the original polyline,
[48],[49].

In foreign literature, the term "Isogeometric" is used
to denote the method of "Isogeometric Analysis" [50].
This method is a development of finite element analysis
in hydrodynamic problems. In the calculation equations
describing the physical process, the NURBS surface
model is used directly, without switching to a simplified
triangulation model of the surface as in traditional finite
element analysis. That is, the term "Isogeometric
Analysis" means that in the CAE system, the same
geometric model that was modeled in the CAD system
is used in the calculations of the physical process. We
also note the property of the NURBS surface to preserve
the exact model during adaptive local compaction of the
NURBS surface to improve the accuracy of physical
calculations. = The problem of isogeometric
approximation of a function by splines was formulated
by Grebennikov A.IL. [48]. Introduced by Grebennikov
AL the concepts and definitions of isogeometric
approximation of functions allow us to formalize the
definition of stable shaping and abandon such fuzzy
concepts as “shape preserving approximation.”

In the works of the authors [51] terms are introduced
for the analysis of the isogeometric shaping of spline
curves

A regular curve C* admits a parametrization of the
form r(t) at any point of the curve with continuous
derivatives r'(t), r’(t), ...r(t) . For r'(t) not equal to 0,
[52], [53] these are ordinary points of a regular curve;
otherwise, we are dealing with singular points of a
regular curve.

Sometimes a regular curve is defined as a C* curve
for r'(t) not equal to 0, [53]. A parametrization of the
form r'(t) with continuous derivatives r'(t), ri(t), ...r*(t)
(r'(t) not equal to 0) defines a curve of smoothness class
C*[53].

In applied geometry, a designer models a regular
curve using a geometric determinant. The curve's
determinant can be treated as a control polyline. A
control polyline can take the form of a base polyline, a
tangent polyline, or an S-polygon of a NURBS curve.

Let us introduce definitions characterizing the
configuration of the control polyline and definitions
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relating the configuration of the control polyline to the
geometric structure of a regular curve.

A polyline {Pi}, i = 0,...,k is properly inscribed in
the curve r(t) [51] if the sequence of preimages of the
vertices on the curve follows the same order as on the
polyline.

We say that the control polygonal line correctly
(regularly) structures the regular curve r(t) if the
sequence of points of the curve r(ti), i = 0,...,k, closest
to the vertices of the polyline follows the same order as
the vertices of the polyline {Pi}, i = 0,...,k, and the
distance from the point r(ti) to the corresponding vertex
Pi is less than to two adjacent vertices Pi1, Pir1 of the
polyline, and the angles between adjacent segments of
the polyline are obtuse. Such a polygonal line associated
with a regular curve is called a polygonal line of regular
form.

To analyze the shape of a polyline, it is more
convenient to use central differences due to the
symmetry of the definition of central differences relative
to the current vertex of the polyline. Using first- and
second-order central divided differences, discrete
approximations of tangent vectors and curvature vectors
at points of the polyline are determined. To control the
shape of a polyline on a projection, we introduce the
following definitions characterizing the shape of a
planar polyline.

The shape or orientation of a polyline is defined as
the law of sign change of the discrete approximation of
curvature.

A polyline is locally convex if the signs of the
discrete approximation of curvature are the same at all
points.

A strictly convex polyline is a polyline whose closure
defines a convex polygon.

A polyline with two locally convex sections of
different orientations is called an S-shaped polyline.

A strictly S-shaped polyline is an S-shaped polyline
consisting of two strictly convex segments of different
shapes.

A regular polyline of order m is a polyline of
arbitrary shape with the following constraint: any local
part of m segments must be strictly convex or strictly S-
shaped.

A characteristic polyline is a regular polyline
associated with a curve whose shape is similar to the
curve's shape. The number of locally convex sites of the
polyline coincides with the number of locally convex
sites of the curve.

NURBS curves are the standard for representing
curves in CAD systems. The authors propose two
geometrically oriented methods: 1) approximation
using a cubic rational Bézier spline curve, 2)
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approximation using a B-spline curve of high even
degree m (m =4, 6, 8, 10).

4.1 Isogeometric approximation by means of
NURBZzS curve

The construction of the spline basis is completed by
constructing conical curves of double osculating. It is
absolutely obvious that the approximating curve must
pass through the "lens" region (see Fig. 1, 2). Here the
developers face a trap. The first thing that comes to mind
is to introduce a local coordinate system [44]. Imagine
the first of the form fi(X), the second of the form fa(X),
0<x<1. Then the resulting curve F(X) = (1. — X)*fi(x) +
x* fo(x). Elegant, but incorrect. With sharp changes in
curvature, the resulting curve will have an oscillating
shape.

Both curves are convex, therefore the solution must
also be sought in the form of a convex curve. We
proposed such a method in [54]. The approximation
scheme is realized as follows:

- Segments of conic curves are transformed into
quadratic Bézier curves.

- The degrees of the Bézier curves are raised to the
3rd degree.

- B-polygons are averaged while maintaining the
convex shape.

- A rational cubic Bézier curve is formed on the
averaged B-polygon with curvature at the start point
from the first curve and with curvature at the end point
from the second curve.

When the curvature is zero or very small at the
endpoints of the segments, the shape of the B-polygon is
formed specially, [54].

F-curves constructed on the V-curve and
approximated by means of NURBZzS curves, we will call
F-NURBzS curves.

MeTton nzneanbHO MOAXOAUT A ANNMPOKCHMALMHA
AHAJIMTHYECKUX KPUBBIX. Ha aHanmnTHUeCKNX KpUBBIX
noxarorasiuBaroTcss 'O Opmurta BTOpOro mopsaka
¢ukcannu. CxemMa MOCTPOCHUS ANNPOKCHMHUPYIOLIEH
KpUBOW HCIONB3yeT Ty ke cxemy (cMm. Puc. 3), HO
abcTparmpoBaHa  OT  OMNpeJleNieHHss  V-KpUBOH.
Hcxongnple KOHMYECKHE KpPUBBIE IPEABAPUTENHHO
CTPOSITCSL B CONPHUKACAIONIEMCSI TPEYTOJbHUKE 10
3HAYEHUs KPUBH3HBI B HAYAIBHOW TOUYKE JJII NEPBOU
KPUBOW M M0 KPHUBHU3HE BO BTOPOM TOYKE JJII BTOPOU
KpuBoil. Ha puc. 3 mokaszaH mpumep anmpoKCHMAaIiH
KJIOTOU/IBI Ha HAPOYUTO PEIKUX TOUKAX.

The method is ideal for approximating analytical
curves. Second-order Hermite GD are prepared on the
analytical curves. The scheme for constructing the
approximating curve uses the same approach (see Fig.
3), but abstracts from the definition of a V-curve. The
initial conical curves are first constructed in the
osculating triangle based on the curvature at the start
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point for the first curve and on the curvature at the
second point for the second curve. Figure 3 shows an
example of approximating a clothoid using deliberately
sparse points.

600000800

second-order
in Web

Fig.3. Clothoid approximation using
Hermite GD. Example prepared
FairCurveModeler.

Note how the quality of the original curve is
preserved in the form of a linear curvature graph in red.

4.2 1sogeometric approximation by means of a
B-spline curve

Let us consider the construction of a B-spline curve
of degree m. Let the number of links of the support
polygon be n. Then the number of vertices of the S-
polygon is equal to k = n + m [37]. The method uses an
even degree m. Additional vertices m/2 before the first
support point P1 and additional vertices m/2 after the end
point Py are calculated using the boundary conditions.

For example, let us assume a first-order Hermite GD
with 3 support polygon segments (Fig. 4). Then, for n =
3 and degree m = 6, the number of vertices of the S-
polygon is k = 9, and the number of additional vertices
is 3+ 3.

Fig. 4. Scheme of isogeometric construction of B-spline
curve. The initial tangents define the directions of
the links of the S-polygon.

Basic Algorithm

Just like the method for determining a nonlinear
spline on double-osculating conical curves, the method
uses Tikhonov's scheme [46] with parametric approach
to solving an ill-posed problem.
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The initial geometric determinant is defined by a
first-order Hermite geometric determinant—a set of
base points {Pi} and a set of tangent lines {T;} at the base
points. The fixed tangents can be obtained 1) on the
spline basis of the V-curve, 2) as tangents to a fixed
analytic curve, or 3) arbitrarily specified. The directions
of the tangents at the vertices of the polyline must not
contradict the shape of the polyline.

The solution is sought in the form of an S-polygon,
isogeometric to the original base polyline with fixed
tangents and defining a spline of a given degree passing
through the vertices of the base polyline. The spline's
nodal points are not required to coincide with the base
points.

Isogeometricity is ensured by the fact that the links
of the S-polygon are parallel to the original tangents.

The initial S-polygon is defined as the polyline of the
intersection points of the tangents. When defining a
spatial polyline, the S-polygon is defined as the polyline
of the "quasi-intersection" points of the intersecting
tangent lines (the quasi-intersection point lies at the
same distance from the tangent lines).

In the iterative approximation scheme, at the current
approximation step m, a new S-polygon {Vilm is
determined by the residual reduction operation as
follows. A spline of a given degree is calculated on the
S-polygon and the distances {§;} from the spline to the
support points {P;} are determined. The closest spline
point to a support point does not coincide with a nodal
point of the spline! New links of the S-polygon {Vi}m are
determined as follows. The tangent lines containing the
links of the current S-polygon {Vi}m1 by parallel
displacement by values {—§;} define a new set of
tangent lines {Ti}m. The S-polygon {Vi}m is defined as a
new polygonal line of the intersection points of the
displaced tangent lines {Ti}m.

Boundary Conditions

Additional points of the S-polygon are determined by
boundary conditions.

Geometrically clear universal symmetry conditions
and geometric procedures invariant with respect to the
degree of the spline curve are used as boundary
conditions:

1) Condition of closeness of the spatial curve.

2) Condition of spatial symmetry of additional
vertices with respect to the plane passing through the
starting (ending) point of the curve perpendicular to the
first (last) tangent of the curve.

3) Condition of spatial central symmetry of
additional vertices with respect to the first (last) point of
the curve.

4) Fixed curvature values at the endpoints of the
curve.

5) Condition of smooth monotonic continuation of
the curvature at the endsites.
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Let's take a closer look at the types of boundary
conditions and the procedures for determining additional
vertices:

1) Condition of spatial curve closure

The additional vertices of the initial section of the S-
polygon coincide with the end vertices of the main
section of the S-polygon.

The additional vertices of the end section of the S-
polygon coincide with the initial vertices of the main
section of the S-polygon.

2) Condition of spatial symmetry

The additional points are mirror images of the points
with respect to the plane passing through the endpoint
normal to the tangent vector.

3) Condition of spatial central symmetry

The additional points are centrally symmetric to the
points of the main section with respect to the endpoint.

4) Fixed curvature value at the end points of the curve

The method ensures a fixed curvature at the endpoint
with a harmonic spline shape at the end section.

The method utilizes the following key property of the
open S-polygon of a B-spline curve. The key to high
curve quality (including at the boundary sections) is the
harmonious shape of the open S-polygon.

To ensure the harmonious shape of the S-polygon,
the following procedure for determining boundary
conditions is used.

Two limiting configurations of the open S-polygon
are defined: a symmetrical configuration and a centrally
symmetrical configuration.

The intermediate configuration is defined as a linear
combination of the angle between the links of the
limiting configurations.

An intermediate configuration with an exact fixed
curvature value is found using the bisection method.

All configurations (limit and intermediate) have the
same lengths of the corresponding links.

This method allows one to obtain an arbitrary
curvature value (from zero for the centrally symmetrical
configuration to the curvature value of the symmetrical
configuration) with good end sections of the B-spline
curve. A limitation of the method is that it is impossible
to specify a fixed curvature value greater than the
curvature value for the symmetrical configuration.

5) Condition for Smooth Continuation of an S-
Polygon

In [55] [56], [57], a method for forming a B-polygon
to ensure a monotonic change in the curvature of a
Bézier curve is proposed. The essence of the method lies
in constructing a Bézier curve polygon with a monotonic
change in the length of links with a fixed elongation
coefficient.

Naturally, the Meunier-Farin configuration is more
correctly applied to an S-polygon in an float format for
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modeling a B-spline curve with a monotonic change in
curvature [56].

This approach is the key to constructing the end
section of an S-polygon while maintaining monotonic
change in curvature. Additional end sites of S-polygons
are defined as Meunier-Farin configurations.

Correction of tangents at endpoints and inflection
points

In the main algorithm, the first approximation is
based on the parallelism of the S-polygon links to the
tangent vectors of the Hermite GD.

After defining the S-polygon and calculating the B-
spline curve, the tangent vectors at the endpoints and
inflection points of the B-spline curve will differ from
the fixed tangents at the endpoints and inflection points
of the Hermite GD.

To maintain fixed values of the tangents at the end
points and at the inflection points of the Hermite GO in
the values of the tangent vectors at the end points and at
the inflection points of the B-spline curve, at each
iteration step, the tangent lines for determining the
directions of the links of the S-polygon, in addition to
moving, are also rotated by a correcting angle -9, where
0 is the angle of misalignment of the tangent vectors of
the B-spline curve with the fixed tangents of the Hermite
GD.

After defining a B-spline curve with a given
accuracy, the transition from an open (float) S-polygon
to a closed (clamped) S-polygon is performed using
well-known algorithms [59], [60].

This method radically changes the approach to
constructing global polynomial splines. An infinite
number of global polynomial splines can be constructed
on a given base polyline. Spline optimization can be
directed toward harmonizing the  S-polygon
configuration defined by the initial tangent polyline.

The method is invariant with respect to spline degree.
Boundary parameters are also defined geometrically and
implemented in geometrically oriented algorithms.

The algorithm can be easily modified to construct
splines of odd degree [61].

4.3 Isogeometric modeling of NURBS by S-
polygon

The first study of the form of a cubic parametric
polynomial given by points and vectors of first
derivatives was carried out by Forrest F.R.

In [9], the results of Forrest's analysis are considered
using a more convenient for analysis equivalent
representation of a cubic Bezier curve by a B-polygon.
The first link of the B-polygon coincides with the vector
of the first derivative at the initial point of the segment,
and the third link coincides with the vector of the first
derivative at the end point of the segment.
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To prevent the curve from becoming looped form,
Forrest recommends limiting the vector lengths and the
chord length.

Note that these constraints result in two mandatory
inflection points on the looped configuration of the
control polyline.

In our opinion, a looped B-polygon should define a
looped curve, if we follow the logic of the isogeometric
shape of the B-polygon and the curve. Conversely, a
designer won't be thrilled if, instead of the expected
looped curve on a looped B-polygon, they get a curve
with two unexpected inflection points.

In any case, the B-polygon Bézier curve shape
analysis function should recognize such situations.

The exact equation relating the B-polygon
configuration of a plane cubic Bézier curve to its
inflection points is defined in our work, [60]. Analysis
of this equation allows us to determine visually
controllable ~ zones of admissible B-polygon
configurations. Solving the equation provides an exact
answer about the curve shape, and for an S-shaped
configuration, the exact coordinates of the inflection
point. Admissible configuration zones are: S-shaped B-
polygon, strictly convex B-polygon.

Note that a similar result was obtained for the S-
polygon of a cubic B-spline curve [61].

In our work [64] the properties of the algorithm for
calculating and subdividing the specification of a
rational Bézier-Bernstein curve are used to analyze the
stability of constructing a Bézier curve of arbitrary
degree. It is proved that a B-polygon of regular shape of
order m is a characteristic polygon.

The proof is based on the fact that the algorithm
reduces to a sequence of operations: "taking a point"
strictly on the segment and "cutting off the vertex" of the
control polyline. These operations do not change the
shape of the original regular polyline.

This approach is used by the authors to analyze the
stability of the formation of a B-spline curve of arbitrary
degree. The theorem is proved:

- An S-polygon of a regular shape of order m is a
characteristic polygon (isogeometrically, up to the sign
of curvature, it determines the shape) of a B-spline curve
of degree m. Moreover, the number of sign changes in
the orientations of the S-polygon links exactly coincides
with the number of sign changes in the curvature of the
B-spline curve.
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5. Advantages of FairCurveModeler
5.1 Edvantages
F-curves vs A-curves

Class F curves (Fig. 5) Isogeometrically and exactly
approximated the conics on polylines.

// N
I/ ? —
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T RN
1w *
' |
§+

Fig. 5. Class F curves (FairCurveModeler).

Class A curves (Fig.6) do not provide a desired
performance.

Fig.6. Class A curves (NX).

In the given pictures, a generated B-spline curve
from the given set of points on a circle by using Siemens
NX software (Fig. 6) and C3D FairCurveModeler (Fig.
5) illustrates the difference between class A and class F
curves.

As can be seen from this example, class A curves do
not provide a desired performance.

Fixing tangents at base points when constructing
a global spline

How does it work?

It is implemented as follows: we enter auxiliary
"non-native" points on the polyline, and fix the required
directions in the native points.

The algorithm changes the position of the "non-
native" points to ensure the required direction of the
tangents and builds a high-quality global spline that
passes exactly through the "native" points with fixation
of the tangents (Fig.7).
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Fig. 7. Fixing tangents on a global spline

Geometric exactly modeling of conical curves

The F-curve models geometrically exactly any conic
curve (Fig. 8).

Fig. 8. F-curve in NURBzS curve format on ellipse
points. Geometrically accurate ellipse. Executed in
C3D FairCurveModeler.

Modeling fair spatial curves

KnowHow, [65], is the construction of an F-curve in
NURBZzS curve format on a spatial polyline (Fig. 9).

—o—o—0-0_g

Fig.9. F-curve in NURBzS curve format on the spatial
polyline taken from the Helix primitive. Executed
in the FairCurveModeler app,
nanoCAD/ZWCAD/AutoCAD.

Note the perfect shape of the evoluta graph (except
for the end sections) (see Fig. 3, evoluta in blue color).

Analytical curves with monotonic curvature

Commands for creating analytic curves with
monotone curvature.

Two remarkable analytical curves are introduced
directly as construction commands into the
FairCurveModeler system:
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- Clothoid. A curve with monotone linear curvature
(Fig. 10).

- Maclaurin sectrix. A curve with monotone
curvature defined in an osculating triangle (Fig. 11)

el

e i

v

Fig. 10. Clothoid.

Fig. 11. Maclaurin sectrix.

5.2 F-curves vs physical spline

Elastic bars (physical splines) were used to model
transverse spars, buttresses, and horizontals in the
design and construction of marine vessels, and later in
the manufacture of automobiles and airplanes. Many
experts believe that physical splines are optimal for
modeling functional curves.

Mehlum on the quality of the physical spline

The KURGLA curve modeling program for the
AUTOKON shipbuilding system uses mathematically
accurate modeling of a physical spline line, [66], [67].

In one of the KURGLA algorithms, the virtual
physical spline is represented by segments of the
clothoid.

According to, [66], [67], the curvature between fixed
points of the physical spline varies linearly, as in the
case of a clothoid.

Since Mehlum believes that the physical spline is
accurately modeled by clothoid segments with a linear
change in curvature, it turns out that the curvature graph
of the physical spline is not fair, but piecewise linear.
This is not an F-class curve.

Let us turn to Levien's work, [13], where he
compares the ability of splines to model “roundness”.
The work compares different types of splines.

In particular, one of the participants in the spline
competition is Minimum-Energy Curves (MEC). In the
work, the MEC is defined as a mathematical
idealization of an elastic bar. The MEC in this work is
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defined as the curve that minimizes the energy
functional of bending. Moreover, Levien clearly states
the disadvantage of MEC. It is obvious that a circle is
the fairest possible curve on three points, but the MEC
spline deviates rather significantly from a circle (Fig.
12).

Fig. 12. Roundness failure of the minimum energy curve
(MEC), [14]

It is also obvious that the circle has less potential
energy than any other curve passing through three
points. That is, MEC has a greater value of potential
energy! Paradox!

Perhaps the following statement is true here: among
curves of the same order of smoothness, the fairer curve
passing through the same points has less potential
energy.

It remains to admit that this conclusion is correct not
only when analyzing roundness, but in general when
analyzing the smoothness of the curve shape. That is,
the fairer the curve, the smaller its potential energy.

Experiment F-curve vs. physical spline

Moreover, we will show that FairCurveModeler
methods construct curves with lower potential energy
than the method using a physical spline.

Let's compare FairCurveModeler methods and the
"physical spline" method on the "Hamburg score". We
will use FairCurveModeler methods implemented in the
FairCurveModeler app ZWCAD / BricsCAD /
AutoCAD, [14].

We will demonstrate this using three examples with
different numbers of points.

Example 1. Four base points

A physical spline in the form of an elastic metal ruler
is placed on an edge and deformed. The shape is fixed
with weights in the form of cubes so that the ruler
precisely contacts the cubes at points {(0,0), (100,130),
(300,170), (390,0)} (Fig. 13).
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Fig. 13. Flexible ruler deformed by cube-shaped weights.

At the endpoints, the ruler is clamped vertically by
the flat faces of two cubes. In order for the ruler to have
a minimum length in the section between the clamping
points, clamping is performed last after the ruler's shape
has been established. During the process of establishing
the shape, the ruler at the end points must pass freely
between the weights.

The potential energy of the physical spline line is
calculated indirectly by constructing a curve on the
points taken from the physical spline line.

The line of the deformed ruler is outlined with a thin
line. The points of contact with the cubes are marked on
the image of the line. The coordinates of the points of
contact of the ruler with the cubes are taken. Additional
points on the physical spline are added to the original
points of contact with the cubes. These points are taken
approximately at the midpoints of the segments of the
physical spline between the original points of the base
polyline. The additional and original points are
combined into one extended polyline with the
coordinates presented in Table 1.

TABLE L. COORDINATES X,Y AND TANGENTS DX, DY
X y dx |dy
0 0 0 1
27 67.5
100 | 130
210 | 181.5
300 | 170
367 | 101
390 | 0 0 -1

On the extended array of points (Table 1), a curve is
determined using the FairCurveModeler program.

We will determine the parameters of the physical
spline on the approximating curve: curvature and
evoluta graphs (Fig. 14)
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Fig. 14. Approximation of a physical spline. The graphs
of curvature, evoluta, and the graph of the curvature
function as a function F(x) are displayed.

Physical spline macroparameters:
"Real Length =" 585.573
"Approximated Length =" 585.468
"Potential Energy =" 0.0218344
"Min Curvature =" 0.00249702
"Max Curvature =" 0.0245549

Then, on the original polyline {(0,0), (100,130),
(300,170), (390,0)}, the vertices of which correspond to
the contact points of the physical spline with the cubes,
we construct a V-curve with approximation by means
of the NURBZzS curve. We test the quality of the curve
(Fig. 15).

Fig. 15. V-curve on the original polyline of a physical
spline. The curvature graphs, curve evoluta, and the
curvature function graph as a function of F(x) are
displayed.

V-curve macro parameters:

"Real Length =" 585.818
"Approximated Length =" 585.393
"Potential Energy =" 0.0205987
"Min Curvature =" 0.00282694
"Max Curvature =" 0.0149465

Let us construct a V-curve with approximation by
means of a B-spline curve of the 8th degree (Fig. 16).

16. B-spline curve of the 8th degree.

Fig.

B-spline curve parameters:

"Real Length =" 586.083
"Approximated Length =" 585.976
"Potential Energy =" 0.0204288
"Min Curvature =" 0.00283567

"Max Curvature =" 0.0129598

Note the high quality of the V-curve approximation
both by the NURBzS curve and by the 8th degree B-
spline curve.
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Example 2. Three base points

The shape is fixed with weights at points {(0,0),
(299,219), (550,0)}.

At the endpoints, the ruler is clamped vertically.

The additional and original points are combined into
one extended polyline with the coordinates presented in
Table II.

TABLEIL. ~ COORDINATES X,Y AND TANGENTS DX, DY
X y dx | dy
0 0 0 1
80 | 150
299 | 219
471 | 150
550 | 0 0 -1

On the extended array of points (Table II), a curve is
determined using the FairCurveModeler program.

We will determine the parameters of the physical
spline on the approximating curve: curvature and
evoluta graphs (Fig. 17).

o~
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Fig. 17. Approximation of a physical spline. The graphs
of curvature and evoluta are displayed.
Physical spline macroparameters:
"Approximated Length =" 773.991
"Potential Energy = "* 0.0136505
"Min Curvature =" 0.00313575
"Max Curvature =" 0.00673551

Then, on the original polyline {(0,0), (299,219),
(550,0), the vertices of which correspond to the contact
points of the physical spline with the cubes, we
construct a V-curve with approximation by means of the
NURBZzS curve. We test the quality of the curve (Fig.
18).
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Fig. 18. V-curve on the original polyline of a physical
spline. The curvature graphs and curve evoluta are
displayed.

V-curve macroparameters:
"Approximated Length =" 779.675
"Potential Energy =" 0.013383
"Min Curvature =" 0.00290712
"Max Curvature =" 0.00569015

Example 3. Five base points

The shape is fixed with weights at points {(0,0), (70,
240), (330,359), (600 389)}.

At the endpoints, the ruler is clamped vertically.

The additional and original points are combined into
one extended polyline with the coordinates presented in
Table III.

TABLEIIL.  COORDINATES X,Y AND TANGENTS DX,DY

X y dx | dy
0 0 0 1

18 130
70 | 240
192 | 315
339 | 359
473 |3

600 | 389 |1 0

On the extended array of points (Table II), a curve is
determined using the FairCurveModeler program.

We will determine the parameters of the physical
spline on the approximating curve: curvalure and
evoluta graphs (Fig. 19)

Fig. 19. Approximation of a physical spline. The graphs
of curvature and evoluta are displayed.

Physical spline macroparameters:
"Approximated Length =" 815.686
"Potential Energy =" 0.0048364
"Min Curvature =" 0.000540933
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"Max Curvature =" 0.00696452

Then, on the original polyline {(0, 0), (299, 219),
(550, 0), the vertices of which correspond to the contact
points of the physical spline with the cubes, we
construct a V-curve with approximation by means of the
NURBZzS curve. We test the quality of the curve (Fig.
20).

Fig. 20. V-curve on the original polyline of a physical
spline. The curvature graphs and curve evoluta are
displayed.

V-curve macroparameters:
"Approximated Length =" 818.168
"Potential Energy =" 0.00439636
"Min Curvature =" 0.000801051
"Max Curvature =" 0.00479479

The curve constructed on the extended points of the
physical spline has good qualities. But, as can be seen
from the macroparameters, the curve constructed by the
FairCurveModeler methods on the same initial polyline
as the physical spline has a smaller curvature variation
and a lower energy value. That is, it undoubtedly has
better qualities in terms of fairness criteria than the
curve drawn along the contour of the physical spline.

This is the hit of the FairCurveModeler system. This
fact will undoubtedly cause cognitive dissonance in all
fans of the physical spline. This fact can be explained
as follows. A flexible bar clamped at both ends really
takes a shape with minimal potential energy. This is
elastic with a smooth curvature graph, [66]. But a
flexible lath, additionally deformed at intermediate
points, is no longer an elastica. Yes, the segments of a
physical spline are elastic individually. But the profile
of a physical spline according to [66], is a curve of not
very high quality (with a piecewise linear curvature
graph). And, as the experiment shows, a high-order F-
curve with smooth curvature has less potential energy
than a physical spline.

C. V-curve on Elastica

The development of the global parametrizited (GP)
spline method can be aimed at using various types of
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analytical basis curves and/or increasing the parametric
number of the curve. The GP spline method on a conic
basis ensures high-quality modeled curves. The method
ensures geometrically accurate modeling of circles and
circular arcs if the support points of the polyline allow
this.

However, in the case of a base polyline
configuration with inflection points, the method fixes
the inflection points and splits the polyline into locally
convex sites. Although the locally convex sites are V-
curves of class C5, the composite curve at the inflection
points retains only second-order smoothness.

The authors suggest that the use of a basic 5-
parameter curve with an inflection point will allow
modeling V-curves of class C° on the entire curve with
inflection points

Which curve to choose?

Let's consider the capabilities of a method based on
Euler elastics. An elastic is a S-parameter curve defined
by two points, two tangents, and a segment length. An
elastic geometrically accurately represents a circle and,
under certain parameters, reliably defines a convex
region and a region with a single inflection point [69].
The following challenges are facing researchers and
developers.

First of all, all the equations of the listed stable
configurations of the Euler elastica [69] must be
reduced to working formulas for calculating points and
derivatives on the interval of definition of the elastica
between the end points.

Next, it is necessary to develop lower-level
algorithms for solving the following geometric
problems using the Euler elastic model:

- Calculating the tangent to the elastic model at a
fixed point.

- Calculating the point of contact between the elastic
model and a fixed tangent.

- Calculating the coordinates of an arbitrary point,
the tangent vector, and the curvature vector of the
elastic model based on the value of an internal
parameter within the elastic segment definition.

When using a 5-parameter elastic model, an
algorithm for constructing a basis for S-parameter
conical curves and an algorithm for generating V-curve
points on locally convex polygons can be used.

Elastic models with cantilevered attachments (with
non-zero curvature) at the ends must be used as base
curvature segments.

For polylines with inflection points, the algorithms
need to be refined. It is necessary to:

ISSN: 2367-895X

International Journal of Mathematical and Computational Methods

315

http://www.iaras.org/iaras/journals/ijmcm

- Modify the algorithm for determining the spline basis
from the set of double-contact elastics with floating
inflection points.

- Modify the algorithm for determining the spline basis
from the set of double-contact elastics with fixed
inflection points. - For the end section of an unloaded
spline (or for a segment with an inflection point at the
segment endpoint), use a convex form of the Euler
elastic with zero curvature at the endpoint.

6. Innovations of Surface modeling

6.1 Frame-kinematic scheme

The frame-kinematic scheme of construction allows
for reducing the procedure of surface construction to two
stages, [70]:

- Construction of the frame of generators of F-
NURBS-curves on a uniform grid.

- Construction of the frame of guides of F-NURBS-
curves on the frame of control spline S-polygons.

The advantages of the methods of isogeometric
construction of F-curves are generalized to the methods
of surface construction.

Isogeometrical creation of a B-spline surface on a set
of polylines is shown, (Fig. 21, and Fig. 22).

Fig. 21. S-frame of a B-spline surface.

The frame-kinematic scheme of construction allows
for reducing the procedure of surface construction to two
stages: construction of the frame of forming F-NURBS-
curves on a uniform grid; construction of the frame of
guiding F-NURBS-curves on the frame of control spline
S-polygons.
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Fig. 22. B-spline surface of degrees (8 * 8) models a
surface with high accuracy.

S-polygons of guiding F-NURBS-curves are united
to the S-frame of the B-Spline surface.

Advantages of methods of isogeometric modeling of
F-curves are generalized to methods of construction of
surfaces.

6.2 Isogeometric modeling NURBS surfaces

There are various ways to evaluate the shape,
aesthetics, and functional qualities of a surface. These
include analyzing the shape of the framework of flat
sections, analyzing maps of constant Gaussian curvature
values, evaluating the shape and quality using a tinted
image, studying a full-scale sample, and testing in a
CAE system.

However, it is first necessary to ensure that the shape
of the spline surface's control frame is isogeometric with
the shape of the surface's isoparametric line family.
Oscillating shapes of isoparametric lines, especially in
the direction of fluid flow, are unacceptable for dynamic
surfaces.

Due to the affine invariance of the S-frame projection
of a B-spline surface, it is possible to construct the
surface and evaluate its shape on flat projections.

A surface is isogeometrically defined on a projection
if, based on the configuration of the S-frame projection,
it is possible to unambiguously judge the shape of the
isoparametric lines of the surface on the projection.

Let's assume that the initial geometric determinant of
the S-frame of a surface is represented on the projection
as a network of points, and the lines of the network
represent a framework of convex polylines-rows.
Clearly, the designer expects to see a family of convex
isoparametric lines on the surface. The appearance of an
oscillating isoparametric line is undesirable and
indicates a flaw in the modeling method. Conversely, if
the isoparametric lines follow the shape of the rows and
columns of the isoparametric line, then the isoparametric
lines are considered to isogeometrically define the
surface shape.

In our work [64] we propose rules for constructing
the S-frame of a B-spline surface that ensure
isogeometricity.

A definition of similarity in shape between two
plane polylines is introduced. It is proved that, given an
affine projection of a compartment of a B-spline surface
of degree m onto an arbitrary plane, and the projections
of the polygonal lines of a local S-polytope are pairwise
similar regular polygonal lines of order m, then the
projections of the isolines of the lines will have the same
shape.
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Let's consider another configuration case: adjacent
polylines of the GD have different forms on the
projection. Ideally, the family of isoparametric lines
should consist of two families of different forms,
separated by a straight line. In any other case, the
appearance of S-shaped isoparametric lines is inevitable.
Therefore, the method should allow control over the
shape of the intermediate isoparametric line (the
amplitude and position of the inflection point of the S-
shaped line) up to straightening. In other words, the
shape of the transitional isoparametric lines should be
editable using the modeling method.

A method for editing the S-frame of a B-spline
surface is proposed to ensure the transition from one
form of isoparametric lines of a NURBS surface section
to another form without oscillation of the isoparametric
lines [64].

6.3 Complex Topology Surfaces

When modeling the integral surface of a product, it
is proposed to use a “mosaic” composed of sections of
B-spline surfaces. In this case, adjacent sections have
common subarrays of S-frames in float format to ensure
overall smoothness (Fig. 23).

Fig. 23. Scheme of combining open (float) S-frames of B-
spline surfaces.

When creating a mosaic, irregular areas inevitably
arise that cannot be covered with a “rectangular patch”
(Fig. 24).

g

Fig. 24. Topologically complex areas.
For constructing such sections, [71], proposed a

method, the essence of which is that pentagonal and
triangular "holes" are patched with rectangular "patches"
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of B-spline surfaces defined by S-frames. In this case,
the S-frames of the "patches" in the open format have
common subarrays (see Fig. 23). The procedure for
constructing a section is a recursive scheme of
sequential "embedding" of sections of B-spline surfaces
into a topologically complex section (Fig. 25).

Fig. 25. Recursive scheme for “patching” a topologically
complex area.

The “patching” procedure must be performed until
the “hole” is reduced to a negligible size.

The following simple example demonstrates the
possibility of constructing topologically complex
surfaces composed of B-surface sections in the
FairCurveModeler system.

The wvalidity of this approach for B-surfaces is
demonstrated in the scheme for constructing a one-sided
Klein bottle surface (Fig. 26). The S-frame is joined to
itself along the end lines r(u, v0) and r(u, vk) with the
provision of the 4th order of smoothness. The S-frame
rotates and glues to itself as a Mobius strip (Fig. 26, and
Fig. 27).

7

!

=y

Fig. 26. S-frame of a one-sided surface.
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Fig. 27. Network of isoparametric curves of a one-sided
surface.

Surface quality analysis is performed using the
“Zebra” option (Fig. 28).
IR e =-m-BsE]

Fig. 28. Testing surface quality using the “Zebra” option.

Smoothness of the 4th order is ensured at any point
on the surface. Including on the “seam” section (the line
where the edges of the surface meet).

7. Plans

1) Development of a geometrically parameterized
spline based on basic analytical curves called Elasticas.
The V-curve is formed based on five-parameter
analytical curves—an elastica of double tangency. The
recurrence formula for constructing the V-curve itself
remains unchanged. It is only necessary to develop a
library of basic programs:

- Constructing an elastic in an osculating triangle at a
given point.

-Determining a tangent on an elastica in an
osculating triangle at a given point.

- Generating a point in a lens of osculating elasticas.

The authors expect a stunning result. The V-curve on
elastics will be a class C° curve with an arbitrary shape
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(with inflection points) and will actually possess a
minimum potential energy value.

Section "C. V-curve on Elastica" describes in
sufficient detail a new method that the authors will
patent in the near future.

2) Refinement for practical application and
implementation of the proposed methods for modeling
topologically complex surfaces in the actual design of
ship surfaces.

The complex integral ship surface, comprising a
complex bulbous form, a cylindrical hull part, and a flat
bottom, will have a super-smoothness of orders of
magnitude (7 x 7). CAM system testing will demonstrate
high seaworthiness, dependent on the smoothness of the
ship's contours.

8. Conclusions

The requirements for the quality of functional curves
that directly determine the functionality and consumer
properties of products are formulated and substantiated.

The article discusses the innovative characteristics of
the software and methodological complex (SMC)
FairCurveModeler for modeling high-quality functional
curves according to fairness criteria.

The main innovations of the system are described - a
parametric  approach to  constructing  splines:
constructing a spline basis as a set of 5-parameter
conical curves of double contact, constructing a virtual
curve of class C5 on the spline basis. Isogeometric
approximation of a virtual curve using NURBS curves.

The system advantages of FairCurveModeler are
shown. A unique variety of tools, various aspects of
flexibility, the possibility of isogeometric approximation
of analytical curves. The advantage of F-curves over
class A curves, over a physical spline and over splines
of their approximation is substantiated.

Innovative methods of surface construction are
described: the frame-kinematic method of constructing
a spline surface, the method of constructing a
topologically complex surface.
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