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Abstract:  Curves and surfaces that form the geometry of technical products often directly determine the functional 
characteristics of the designed products. It is logical to call such curves and surfaces functional. Often, the aesthetics 
of a product is one of the important consumer properties of the product. Therefore, aesthetic curves can also be 
classified as functional. 

The optimal curve is not always defined by an analytical curve, such as the profile of a tooth (involute of a circle), 
the trajectory of a load transportation as a line of the fastest descent (brachistochrone), or the profile of a dome 
(catenary). Free-form curves in the form of spline curves are more commonly used. 

Methods for constructing functional curves must satisfy the following requirements: 
- Isogeometric construction of a curve on the initial polyline with fixed end and intermediate parameters. 
- Construction of a fair curve. 
- Low value of potential energy of the curve. 
Regardless of the specific product, functional curves must be fair. Functional curves must meet the following 

fairness criteria: 
- High order of smoothness (not lower than the 4th order). 
- Minimum number of curve vertices (or minimum number of curvature extremes). 
- Low value of curvature variation and rate of curvature change. 
- Low value of potential energy of the curve. 
Spline curves that meet these criteria are called F-curves or curves of class F. 
The authors have developed the FairCurveModeler software and methodological complex (SMC) for modeling 

F-curves. Based on the functionality of the FairCurveModeler SMC, universal and specialized applications for CAD 
systems (KOMPAS 3D, nanoCAD / ZWCAD / AutoCAD), mathematical systems (MathCAD / Mathematica / 
Wolfram Cloud), an Excel application, and a Web application have been developed. 

The FairCurveModeler SMC has been adapted and implemented into the C3D geometric core as the C3D 
FairCurveModeler section. 

The philosophy of the FairCurveModeler SMC is based on the theory of calculating parameters of the Soviet 
school of applied geometry. The initial data for constructing or editing curves are presented in the form of geometric 
determinants (GD). 

The following innovations have been implemented based on the parametric approach: 
- A new paradigm for constructing spline curves based on the theory of parameter calculus has been proposed. 

A spline basis is formed as a sequence of 5-parametric conical curves of double contact, with 4 common parameters 
of adjacent conical curves. Then, on the spline basis, points of a virtual curve are generated in the lenses of 
contacting conical curves. It is shown that the generated points belong to the curve of class C5. 

- The method for isogeometric approximation of a virtual curve by means of a rational cubic Bezier spline curve 
has been developed. 

- The method for isogeometric approximation of a virtual curve by means of a B-spline curve has been developed. 
The FairCurveModeler SMC is characterized by the following system properties: 
1) The methods for constructing F-curves ensure isogeometricity (shape preserving) of the constructing curves 

on the original polylines. The shape of the modeled curve is similar to the shape of the original polyline. 
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The designer is provided with a wide range of tools: 
- Base polyline. The spline curve passes through the vertices of the base polyline. In the general case, the spline 

nodes do not coincide with the vertices of the polyline. 
- A set of tangent lines (in particular, in the form of a tangent polyline). The curve passes tangent to the lines 

(tangent to the links of the tangent polyline). 
- Hermite GD. The base polyline is equipped with tangent vectors and curvature vectors at its vertices. 
- GB-polygons of Bezier spline curves. 
- S-polygons of B-spline curves. 
2) The methods provide flexibility in construction and editing. This is the ability to locally control the shape of 

a global spline with fixed parameters at intermediate points of the polyline. 
3) The unique feature of the methods is the ability to geometrically accurately model circles and, in general, 

conical curves. 
4) The methods are invariant with respect to affine transformations. 
The article substantiates the importance of the property of minimizing the potential energy of curves in F-curves. 

The works of Mehlum and Livien are analyzed in detail. An experiment with a physical spline is conducted. The 
advantages of the methods for constructing F-curves in FairCurveModeler over spline curves of class A and over a 
physical spline and its approximation methods are proven.  

Innovative methods for constructing surfaces are proposed: a frame-kinematic method for constructing a spline 
surface, a method for constructing a topologically complex surface. 

Keywords: — isogeometric approximation, fair curves, spline curves, FairCurveModeler, F-curves, B-spline 
surface, complex surfaces. 
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1. Introduction  

Curved lines and surfaces that form the geometry of 
technical products often directly determine the 
functional characteristics of the designed products. It is 
logical to call such curves and surfaces functional. 

Examples of functional curves and surfaces: 
- External contours of ships, cars, airplanes. 
- Profiles of cams in cam mechanisms. 
- Working surfaces of tillage machines and units. 
- Profiles and surfaces of airplane and UAV wings, 

propellers, turbines, and compressor blades. 
- Centerlines of road routes. 
Often, the aesthetic properties of curves and surfaces 

determine the consumer properties of products (for 
example, the aesthetics of body surfaces in the 
automotive industry, the aesthetics of architectural 
forms, and forms of industrial design products). 
Therefore, aesthetic curves can be considered as 
functional curves. 

Among the types of functional curves, one can 
distinguish a subclass of engineering analytical curves, 
which provide some design characteristic of an object 
optimally. Such curves include, for example, the 
involute of a circle used to construct the profile of the 
teeth of a gear wheel, [1], the inverted catenary line of 
the profile of the dome of the cathedral in London, [2], 
[3], as well as the brachistochrone - the curve of the 
steepest descent for transporting objects, [4]. 

 In the general case, functional curves are described 
by spline curves of free form. 

2. Requirements for the quality of 

functional curves 

In applied geometry, a distinction is made between 
fairness and smoothness. Smoothness is the order of 
differentiability of a spline curve. A smooth curve is a 
curve of the first order of smoothness. Fairness includes 
many criteria, including the order of smoothness.  

Increased requirements are imposed on the 
smoothness parameters of functional curves, which are 
universal and do not depend on the specifics of the 
designed objects. The following is a list of these 
requirements with explanations. 

1. High, at least 4th order of smoothness 
Smoothness is a characteristic of a function or 

geometric figure (curve, surface, etc.) that indicates 
whether the function is differentiable over its entire 
domain of definition or allows us to reduce the points of 
the figure to a neighborhood described by differentiable 
functions. 

In different designs, splines with different orders of 
smoothness are used. For example, 

- clothoid splines are used for modeling of road 
routes, and smoothness is provided at least of the 2nd 
order; 

- to profile a high-speed camshaft cam, smoothness 
of at least the third order is required, so profile design 
begins with the construction of a smooth graphic of the 
derivative part, [5]. This approach eliminates “jerks” [6]. 

- when modeling spatial curves, the curve should 
have 3rd order smoothness to ensure continuity of the 
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torsion function, and 4th order smoothness to ensure 
smoothness of the torsion; 

2. No or minimum number of curvature extrema 
The smoothness of the curve also depends on the 

shape of the graph of curvature variation along the line 
of motion. 

Since the oscillation of the curvature function 
according to the basic equation of dynamics, [7], [8] will 
cause a pulsation of centrifugal forces acting on the 
material point, the section of the line of motion should 
have a minimum number of curvature extrema or curve 
vertices. 

The presence of unnecessary extremes of curvature, 
for example, in the shape of technical products and 
design objects, can cause the following negative 
phenomena: 

 - Unwarranted runout of the cam mechanism tappet, 
the consequence of which is premature wear of the 
mechanism. 

 - Soil sticking on the plow section with a 
concentration of curvature near the soil trajectory, which 
leads to an increase in plow resistance and, 
consequently, to an increase in the energy intensity of 
the plowing process. 

- When the extreme values of the curvature profile 
are excessive, excessive pulsation of the flowing 
medium occurs, which leads to the appearance of 
resistance and can cause flow breakdown. 

 - The need for unnecessary braking and acceleration, 
which increases the energy costs of moving along the 
vehicle track. 

- The effect of curved mirrors at curved body 
surfaces, [9]. 

3. Small values of curvature variation and its rate of 
change 

In some application domains, the requirement to 
minimize the curvature variation is introduced, and 
hence the curvature concentration must be constrained 
to a maximum value. 

For example, such a constraint on the minimum value 
of the radius of curvature (maximum curvature) is 
naturally introduced in road design: the minimum radius 
of a curve is limited by the calculation of the allowable 
vehicle speed, [10]. 

An important parameter of curve quality is the rate of 
curvature change. When designing a road alignment, this 
parameter governs the rate of increase of centrifugal 
force acting on the vehicle on curves and is easily 
controlled through the use of clothoid segments with a 
linear change in curvature function, [10], [11]. 

Note that these requirements are contradictory. When 
the variation (the difference between the maximum and 

minimum curvature value) decreases, the rate of 
curvature change may increase, and vice versa. 

4. Low value of the potential energy curve 
The smoothness of a curve is considered to be 

directly related to its potential energy.  
The necessity of choosing a functional curve with a 

minimum value of potential energy is explained by the 
assumption that when an object with a functional surface 
moves at high speed, the surrounding environment 
behaves like an elastic body. Obviously, less work is 
expended on the deformation of such an elastic medium 
along the flow lines with lower potential energy. 

When a material point moves along a concave 
curvilinear trajectory, taking friction into account, the 
work expended on movement decreases with a decrease 
in the potential energy of the trajectory itself, [12]. 

5. Aesthetics of the curve 
The authors of this study hold the view that the 

priority is the evaluation according to the criteria of 
fairness. Expert evaluation from the standpoint of the 
laws of technical aesthetics (conciseness, integrity, 
expressiveness, proportional consistency, compositional 
balance, structural organization, imagery, rationality, 
dynamism, scale, plasticity, harmony) is valid only after 
the evaluation for fairness. 

6. Accurate modeling of roundness 
In [13], several types of splines for aesthetic design 

are compared: minimum potential energy curve MEC, 
clothoidal, circular, polynomial degree 3, and log 
aesthetic curves.  The prize is the honor of the best spline 
for design. The contest begins with the ability to 
accurately model a circle. 

The author's next conclusion is absolutely correct: a 
spline constructed on points of a circle must exactly 
coincide with the circle. For some technical objects, this 
requirement is essential. For example, a smooth road 
route must have curves with a section coinciding with 
the arc of a circle. In tracing methods, such sections are 
modeled by composite curves - clotoid - circle - clotoid.  

Another example is the profile of a flat cam of an 
internal combustion engine camshaft. The profile should 
have two sections of exact arcs of circles connected by 
smooth transition curves. 

2.1 FairCurveModeler 

Functional curves whose parameters meet the above 
requirements are called class F curves or F-curves, [14]. 

It is important to note here that it is these strict 
requirements for smoothness parameters that distinguish 
curves of this class from class A curves. The latter are 
the shape-forming curves of class A surfaces - high-
quality surfaces of external body surfaces according to 
the criteria of aesthetics. A “good” curve for these 
surfaces will have a curvature graph with a small number 
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of areas of monotonic curvature change, [15]. This 
requirement can be compared to the requirement to 
minimize the number of curvature extrema in functional 
curves. 

Thus, class A curves are curves for surface shaping 
in industrial design, while functional curves are 
engineering curves. High-quality curves are also 
commonly referred to as faired curves (faired curves, 
fairing curves). Here, it is important not to confuse the 
latter with smooth curves, which are low-quality curves 
of first-order smoothness, [16]. 

However, even if a CAD system supports the 
modeling of class A curves and surfaces, it does not 
provide a proper quality of functional curves according 
to fairness criteria. 

As a result of our research in the field of geometric 
modeling, class F methods (F-methods) were developed 
for modeling class F curves.  

Based on the F class methods, the FairCurveModeler 
software and methodology complex (SMC), [14], 
FairCurveModeler has by now been implemented in the 
form of two complexes: 

- Software and methodological complex (SMC) 
FairCurveModeler, [14]. The SMC FairCurveModeler is 
implemented in the C++ language. The functionality is 
available through the COM component 
FairCurveModeler.exe. COM-component 
FairCurveModeler.exe is included in universal and 
specialized applications and can be considered as a 
geometric core of FairCurveModeler.exe for 
applications. Universal and specialized applications can 
be ordered and downloaded on the developer's website 
http:/Spliner.ru. 

- C3D FairCurveModeler is a section of C3D 
geometric core. It is an adaptation of the SMC 
FairCurveModeler according to C3D software 
standards. The functionality is available to developers 
through the C3D ToolKit, [19 C3D ToolKit]. 

Only the FairCurveModeler.exe command 
invocation interface is developed for release 
applications. All applications access the COM 
component of FairCurveModeler.exe. 

Applications are divided into universal and 
specialized ones. 

Universal applications implement the functionality 
of the FairCurveModeler.exe geometrical kernel.  

Specialized applications are developed on the basis 
of FairCurveModeler.exe geometrical kernel 
functionality to solve specific design tasks. 

The following universal applications have been 
developed [14]: 

- Cloud WEB-release WebFairCurveModeler based 
on COM-component. 

- FairCurveModeler application based on a COM 
component on CAD-system platforms (KOMPAS 3D, 
nanoCAD, ZWCAD, AutoCAD),  

- FairCurveModeler application based on a COM 
component on the Excel platform. 

- FairCurveModeler applications in the computer 
math systems MathCAD, Mathematica, WolframCloud. 

Specialized applications are developed on CAD-
system platforms, nanoCAD / ZWCAD / AutoCAD, 
based on FairCurveModeler.exe core functionality + 
options for modeling specific objects. These include: 

- Applied CAD Plow. 
- An application for modeling aerofoils based on 

Abbott's improved method. 
- Application for road tracing. 
- Application for profiling cam profiles. 
- Application for profiling of steam turbine blades. 
Further, the paper describes innovative solutions 

used in the development of SMC, reveals, and 
substantiates significant advantages over existing 
methods of geometric modeling in CAD. 

3. Innovative solutions in the 

development of F-methods  

Let's consider the innovative characteristics of F-
methods. 

A set of geometrically oriented methods forms the 
basis of the FairCurveModeler software package. This 
article presents the methodological justification of 
FairCurveModeler's methods in the field of engineering 
geometry. 

The use of computer systems has radically expanded 
the scope of engineering geometry. We can speak of the 
emergence of computer-aided engineering geometry. 
Computer-aided engineering geometry draws on such 
areas of engineering as descriptive geometry and 
engineering graphics, computational geometry, and 
computer graphics. The development of the theory and 
methods of computer-aided engineering geometry has 
resulted in the development of geometric modeling 
subsystems for CAD systems and their geometric 
kernels. 

A geometrically oriented approach to the 
algorithmization of solutions to geometric modeling 
problems, in contrast to the algebraic approach, is the 
main one in the methods of computer engineering 
geometry. 

With the algebraic approach, any problem is reduced 
to some standard algebraic systems, which are solved 
using the methods of computational mathematics. 

The geometrically oriented approach utilizes a 
geometric interpretation of formulas and equations, and 
formulates the problem in terms of geometric objects 
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and their geometric relationships. A solution to the 
problem may also be found using geometric algorithms. 

A classic example of such a successful geometrically 
oriented approach to problem formulation and solution 
was demonstrated by Bezier and Casteljau [17], [18]. 

The geometric interpretation of the coefficients in the 
formula of the Russian mathematician Bernstein 
allowed them to create a new paradigm for curve 
modeling. Bernstein's parametric equations [19 
Bernstein 1], [20 Bernstein 2] are now called Bézier 
curves. Calculating points on a Bézier curve using the 
Casteljau algorithm also has a geometrically clear 
interpretation [17], [18]. 

The generalization of the Bezier method to B-spline 
curves is also an example of a geometrically oriented 
approach, [21]. Carl de Boer [22] and, independently of 
him, Cox [23] established a connection between the 
geometric form of representation of spline coefficients 
and the form of the parametric Schoenberg spline, [24]. 

The theoretical basis of engineering geometry is the 
theory of parametrization or the theory of parameter 
calculus. 

The theory of parametric calculus, developed by the 
scientific school of Academician N.F. Chetverukhin and 
Professor I.I. Kotov, [25], [26], [27], [28], is an 
outstanding scientific and practical result of the 
development of engineering geometry in the USSR. The 
theory of parametric calculus was used by Professor 
Samuel Geisberg of Leningrad University to create the 
successful Pro/ENGINEER CAD system [29]. 
Parametric modeling is currently the basis of any CAD 
system. 

The theory of parametric calculus underlies the 
scientific school of Professor V.A. Osipov. The methods 
of two and three relations [30], [31], created for flexible 
editing of curves, are essentially geometrically oriented 
interpretations of rational quadratic curves with 
controlled weights. 

The scientific school of Academician V.S. Polozov 
and Professor S.I. Rotkov raised the theory of parametric 
calculus to the highest level as a mathematical apparatus 
for analyzing the parametric relationships of two-
dimensional and three-dimensional objects, [32]. Based 
on this apparatus, heuristic algorithms (artificial 
intelligence algorithms) were developed for 
synthesizing a three-dimensional object from flat 
projections and constructing an optimized drawing 
based on a three-dimensional model of the object. 

 
Of extreme importance for practical design is A.E. 

Klevensky's [33] idea of deferred calculation of a 
geometric object's parameters until sufficient parametric 
relationships between geometric objects have been 
established. At the Graphics Department of the Ufa 
Aviation Institute, a team of developers led by Associate 

Professor V.I. Makutov successfully implemented this 
idea in the "Alpha" program. The program was used at a 
number of leading machine-building enterprises in the 
USSR. 

Let us consider the modeling of spline curves in light 
of parametrization theory. 

In parametrization theory, a spline curve model is 
called a determinant (D). A determinant consists of a set 
of geometric parameters, called a geometric determinant 
(GD), and a procedure for constructing a spline curve 
using the GD or a procedure for generating curve points. 
The number of GD parameters that uniquely define a 
curve is called the parametric number of the 
determinant. 

Geometric determinants in the FairCurveModeler 
system: 

- Base polyline. The curve passes through the 
vertices of the polyline. 

- Tangent lines/tangent polyline. The curve passes 
tangent to the lines or links of the polyline. 

- Hermite determinant. The support polyline is 
provided with tangent vectors [and curvature vectors] at 
the vertices of the polyline. Accordingly, it is considered 
a first- [and second-] order determinant. 

In addition to the GD, certain requirements for the 
shape and quality of the curve can be added: 
isogeometricity of the shape of the polyline and the 
modeled curve, the order of smoothness of the modeled 
curve, etc. 

How do we apply parameterization theory to model 
spline curves? 

In the theory of spline curves, by the method of 
construction, curves are divided into local and global. 
Let us explain the terms local and global splines by the 
example of cubic splines.  

A segment of a cubic parametric polynomial 
(Ferguson curve, cubic Bezier curve) is defined by 4 
geometric parameters of the form of 2 points and 2 
tangents or 4 vertices of a B-polygon, [9]. 

A local geometric cubic spline is constructed on a 
polyline by specifying the direction of the tangents at 
each point of the polyline. Changing an individual 
segment of the spline does not affect the shape of other 
segments. It is a curve of the 1st order of smoothness. 

To construct a cubic spline with continuity of 
curvature at the junction points of analytic curves, a 
system of equations is solved. As a result, we obtain a 
global spline of the 2nd order of smoothness. Globality 
means that changing the coordinates of one point causes 
a change in the entire spline curve. 

In traditional spline theory, it is considered that the 
analog of the energy functional is minimized when 
constructing a spline, [34], [35], [36], [37], [38], [39], 
[40]. 
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3.1 Spline Basis  

The innovation in our scheme of spline construction: 
any configuration of connections of geometrical 
parameters (not only at the ends of segments) between 
adjacent segments can be used. We have developed an 
innovative method of construction on the polyline {Pi}, 
the set of segments {Ri} of double osculated conic curves 
(Fig. 1). 

 
Fig. 1. Configuration of adjacent segments of the conic 

curves. 

The adjacent 5-parametric conic curves Ri, Ri+1 have 
4 common parameters. Further increase of the number is 
possible only at full coincidence. This is a global spline. 

3.2 Virtual curve 

And so, we have constructed a spline as a set of 
double-osculating conic curves. This is a semi-finished 
product that we call the spline basis. The algorithm for 
constructing the spline basis is described in [41]. 

Next, on the spline basis, we construct a virtual 
curve. New points of the virtual curve are generated in 
the centers of “lenses” formed by adjacent conic curves 
(Fig. 2). 

 
Fig. 2. Generation of a point in a “lens” formed by 

adjacent curves. 

The lens (see Fig. 1) formed by adjacent analytic 
curves can be viewed as the magnitude of the 
deviation/difference of adjacent analytic segments.  

In algorithms, the difference of engineering 
discriminants is used as the deviation value. In the 
Soviet school of applied geometry, the engineering 
discriminant d is the ratio of the length of the segment 

from the curve to the base of a contiguous triangle along 
the median to the length of the median, 0 < d < 1, [42].  

The second innovation: generation of new curve 
points in the middle of lenses formed by adjacent 
double-contact conic curves (see Fig. 1). 

Recursive generation of curve points in applied 
geometry is not a new idea. For example, Chaikin's idea 
of fast point generation, [43]. Also, the idea of 
estimating the deviations of two adjacent segments by 
the lens is not new, [44]. 

An innovative method for generating a point in the 
middle of a lens combines these two approaches.  

The generated points in the limit form a virtual curve 
(V-curve) of class C5, [41]. 

Let us note some important properties of the spline 
basis and virtual curve. 

The method of construction of the spline basis is 
invariant with respect to projective transformations.  

The method of constructing a virtual curve is 
invariant with respect to affine transformations.  

These properties are necessary for adequate 
estimation of the shape of a spatial curve from images 
and the possibility of adequate editing of the shape on 
projections of the curve and its GD. 

An important property of this global spline is that if 
the original polyline belongs to a conic curve, the spline 
degenerates into a particular conic curve. 

This means that conic curves can be modeled 
geometrically accurately using this method. 

This is a big plus for the method. Moreover, 
connoisseurs, [13], believe that for CAD spline 
modeling methods, it is a necessary property. 

It can be assumed that the construction of this global 
spline also minimizes some energy functional.  

Another important property is the possibility of 
constructing a basis on tangent lines. This property 
follows from the duality property of the definition of 5-
parameter conic curves. A conic curve can be defined by 
5 points or 5 tangents, [45]. 

3.3 A geometrically oriented approach to solving 
ill-posed problems 

The method for constructing a spline on set of 
double-osculating conic curves implements a 
geometrically oriented solution to the ill-posed problem 
of constructing a nonlinear spline. 

A robust algorithm for determining the set of  double-
osculating conic curves on a convex base polyline based 
on a priori information about the desired solution [41] 
can be interpreted as a regularizing algorithm based on 
Tikhonov's scheme [46].  
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The formal formulation of the problem of 
constructing a set of double-osculating conical curves 
leads to a system of nonlinear equations. 

In the author's approach [41], the problem is 
formulated in terms of parametric theory as follows. 

The desired geometric parameters are the sets of 
tangents at the base points. The initial set of tangents is 
determined in the feasible solution space. In particular, 
the directions of the tangents must correspond to the 
shape of the polyline. In the algorithms, the direction of 
the chord is used when specifying the initial tangent at 
the current point. 

The result of constructing conical curves of double 
osculating can be considered a set of tangents {Ti}  at 
base points {Pi} such that the conical curves constructed 
from local geometric determinants Gi = {Pi-1, Ti-1, Pi, 
Pi+1, Ti+1} are conical curves of double-osculating. An 
iterative procedure for fitting the directions of tangents 
at points of the base polyline is proposed. In the current 
iteration m, to reduce the residual of tangents at points 
{Pi}, the conical {Ri} and tangents {Ti} are redefined on 
local geometric determinants Gi = {Pi-1, Ti-1, Pi, Pi+1, 
Ti+1}. The procedure can be written like this 

{Ti}m = α{Ri} = αβ{Pi,Ti,}m-1 = γ{Ti} m-1,, where 
α – operation of determining tangents on conical 

curves {Ri}m-1 at points {Pi}m-1; 
β - is the operation of determining conical curves 

{Ri} at points {Pi} on local GDs Gi = {Pi-1, Ti-1, Pi, Pi+1, 
Ti+1}. 

γ - is a superposition of operations α, β. 
This approach allows you to replace complex 

schemes for solving a system of nonlinear equations 
with a compact formula for recurrent calculations 

{Ti}т+1 = γ{Ti}m. 

It should be noted that the article [41] was 
republished in the US. Later, 15 years later, a US Army 
military mathematician attempted to replicate the 
algorithm for constructing this nonlinear spline [47]. 

Mufteev's envelope method and R.W. Soanes's 
method are extremely similar. R.W. Soanes's method 
also uses a scheme for constructing two families of 
mutually osculating conical curves. The operations for 
generating additional points in the curve point 
generation scheme are identical. However, Soanes uses 
computational mathematics algorithms to solve the 
problem. A disadvantage of Soanes's method is the need 
for extensive compaction of the V-curve to obtain an 
acceptable quality spline curve in the form of conical 
curve segments. 

Credit must be given to the military mathematician's 
mathematical intuition. In his reasoning, he suggests that 
the resulting curve has a higher order of smoothness than 
that stated in the title of the article, "Thrice 

Differentiable Affine Conic Spline Interpolation." 
Indeed, as the author demonstrated in [41], the envelope 
curve belongs to class C5 curves. 

4. Isogeometric approximation of 

virtual curve by means of NURBS 

curves 

In the Soviet school of applied geometry, when 
constructing a curve on a polyline, the term 
isogeometricity means the similarity of the shape of the 
modeled curve to the shape of the original polyline, 
[48],[49].  

In foreign literature, the term "Isogeometric" is used 
to denote the method of "Isogeometric Analysis" [50]. 
This method is a development of finite element analysis 
in hydrodynamic problems. In the calculation equations 
describing the physical process, the NURBS surface 
model is used directly, without switching to a simplified 
triangulation model of the surface as in traditional finite 
element analysis. That is, the term "Isogeometric 
Analysis" means that in the CAE system, the same 
geometric model that was modeled in the CAD system 
is used in the calculations of the physical process. We 
also note the property of the NURBS surface to preserve 
the exact model during adaptive local compaction of the 
NURBS surface to improve the accuracy of physical 
calculations. The problem of isogeometric 
approximation of a function by splines was formulated 
by Grebennikov A.I. [48]. Introduced by Grebennikov 
A.I. the concepts and definitions of isogeometric 
approximation of functions allow us to formalize the 
definition of stable shaping and abandon such fuzzy 
concepts as “shape preserving approximation.” 

In the works of the authors [51] terms are introduced 
for the analysis of the isogeometric shaping of spline 
curves 

A regular curve Ck admits a parametrization of the 
form r(t) at any point of the curve with continuous 
derivatives r'(t), r2(t), …rk(t)  . For r'(t) not equal to 0, 
[52], [53] these are ordinary points of a regular curve; 
otherwise, we are dealing with singular points of a 
regular curve. 

Sometimes a regular curve is defined as a С1 curve 
for r'(t)  not equal to 0, [53]. A parametrization of the 
form r'(t) with continuous derivatives r'(t), r2(t), …rk(t)  
(r'(t) not equal to 0) defines a curve of smoothness class 
Ck [53]. 

In applied geometry, a designer models a regular 
curve using a geometric determinant. The curve's 
determinant can be treated as a control polyline. A 
control polyline can take the form of a base polyline, a 
tangent polyline, or an S-polygon of a NURBS curve. 

Let us introduce definitions characterizing the 
configuration of the control polyline and definitions 
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relating the configuration of the control polyline to the 
geometric structure of a regular curve. 

A polyline {Pi}, i = 0,…,k  is properly inscribed in 
the curve r(t) [51] if the sequence of preimages of the 
vertices on the curve follows the same order as on the 
polyline. 

We say that the control polygonal line correctly 
(regularly) structures the regular curve r(t) if the 
sequence of points of the curve r(ti), i = 0,…,k, closest 
to the vertices of the polyline follows the same order as 
the vertices of the polyline {Pi}, i = 0,…,k, and the 
distance from the point r(ti)  to the corresponding vertex 
Pi is less than to two adjacent vertices Pi-1, Pi+1  of the 
polyline, and the angles between adjacent segments of 
the polyline are obtuse. Such a polygonal line associated 
with a regular curve is called a polygonal line of regular 
form. 

To analyze the shape of a polyline, it is more 
convenient to use central differences due to the 
symmetry of the definition of central differences relative 
to the current vertex of the polyline. Using first- and 
second-order central divided differences, discrete 
approximations of tangent vectors and curvature vectors 
at points of the polyline are determined. To control the 
shape of a polyline on a projection, we introduce the 
following definitions characterizing the shape of a 
planar polyline. 

The shape or orientation of a polyline is defined as 
the law of sign change of the discrete approximation of 
curvature. 

A polyline is locally convex if the signs of the 
discrete approximation of curvature are the same at all 
points. 

A strictly convex polyline is a polyline whose closure 
defines a convex polygon. 

A polyline with two locally convex sections of 
different orientations is called an S-shaped polyline.  

A strictly S-shaped polyline is an S-shaped polyline 
consisting of two strictly convex segments of different 
shapes. 

A regular polyline of order m is a polyline of 
arbitrary shape with the following constraint: any local 
part of m segments must be strictly convex or strictly S-
shaped. 

A characteristic polyline is a regular polyline 
associated with a curve whose shape is similar to the 
curve's shape. The number of locally convex sites of the 
polyline coincides with the number of locally convex 
sites of the curve. 

NURBS curves are the standard for representing 
curves in CAD systems. The authors propose two 
geometrically oriented methods: 1) approximation 
using a cubic rational Bézier spline curve, 2) 

approximation using a B-spline curve of high even 
degree m (m = 4, 6, 8, 10). 

 

4.1 Isogeometric approximation by means of 

NURBzS curve 

 
The construction of the spline basis is completed by 

constructing conical curves of double osculating. It is 
absolutely obvious that the approximating curve must 
pass through the "lens" region (see Fig. 1, 2). Here the 
developers face a trap. The first thing that comes to mind 
is to introduce a local coordinate system [44]. Imagine 
the first of the form f1(x), the second of the form f2(x), 
0<x<1. Then the resulting curve F(x) = (1. – x)*f1(x) + 
x* f2(x). Elegant, but incorrect. With sharp changes in 
curvature, the resulting curve will have an oscillating 
shape. 

Both curves are convex, therefore the solution must 
also be sought in the form of a convex curve. We 
proposed such a method in [54]. The approximation 
scheme is realized as follows: 

- Segments of conic curves are transformed into 
quadratic Bézier curves. 

- The degrees of the Bézier curves are raised to the 
3rd degree. 

- B-polygons are averaged while maintaining the 
convex shape. 

- A rational cubic Bézier curve is formed on the 
averaged B-polygon with curvature at the start point 
from the first curve and with  curvature at the end point 
from the second curve. 

When the curvature is zero or very small at the 
endpoints of the segments, the shape of the B-polygon is 
formed specially, [54].  

F-curves constructed on the V-curve and 
approximated by means of NURBzS curves, we will call 
F-NURBzS curves.  

Метод идеально подходит для аппроксимации 
аналитических кривых. На аналитических кривых 
подготавливаются ГО Эрмита второго порядка 
фиксации. Схема построения аппроксимирующей 
кривой использует ту же схему (см. Рис. 3), но 
абстрагирована от определения V-кривой.  
Исходные конические кривые предварительно 
строятся в соприкасающемся треугольнике по 
значения кривизны в начальной точке для первой 
кривой и по кривизне во второй точке для второй 
кривой. На рис.  3 показан пример аппроксимации 
клотоиды на нарочито редких точках.  

The method is ideal for approximating analytical 
curves. Second-order Hermite GD are prepared on the 
analytical curves. The scheme for constructing the 
approximating curve uses the same approach (see Fig. 
3), but abstracts from the definition of a V-curve. The 
initial conical curves are first constructed in the 
osculating triangle based on the curvature at the start 
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point for the first curve and on the curvature at the 
second point for the second curve. Figure 3 shows an 
example of approximating a clothoid using deliberately 
sparse points. 

 
 

Fig. 3.  Clothoid approximation using second-order 
Hermite GD. Example prepared in Web 
FairCurveModeler.  

Note how the quality of the original curve is 
preserved in the form of a linear curvature graph in red. 

4.2 Isogeometric approximation by means of a 

B-spline curve  

Let us consider the construction of a B-spline curve 
of degree m. Let the number of links of the support 
polygon be n. Then the number of vertices of the S-
polygon is equal to k = n + m [37]. The method uses an 
even degree m. Additional vertices m/2 before the first 
support point P1 and additional vertices m/2 after the end 
point Pn are calculated using the boundary conditions. 

For example, let us assume a first-order Hermite GD 
with 3 support polygon segments (Fig. 4). Then, for n = 
3 and degree m = 6, the number of vertices of the S-
polygon is k = 9, and the number of additional vertices 
is 3 + 3. 

 
Fig. 4.  Scheme of isogeometric construction of B-spline 

curve. The initial tangents define the directions of 
the links of the S-polygon. 

Basic Algorithm 

Just like the method for determining a nonlinear 
spline on double-osculating conical curves, the method 
uses Tikhonov's scheme [46] with parametric approach 
to solving an ill-posed problem. 

The initial geometric determinant is defined by a 
first-order Hermite geometric determinant—a set of 
base points {Pi} and a set of tangent lines {Ti} at the base 
points. The fixed tangents can be obtained 1) on the 
spline basis of the V-curve, 2) as tangents to a fixed 
analytic curve, or 3) arbitrarily specified. The directions 
of the tangents at the vertices of the polyline must not 
contradict the shape of the polyline. 

The solution is sought in the form of an S-polygon, 
isogeometric to the original base polyline with fixed 
tangents and defining a spline of a given degree passing 
through the vertices of the base polyline. The spline's 
nodal points are not required to coincide with the base 
points. 

Isogeometricity is ensured by the fact that the links 
of the S-polygon are parallel to the original tangents. 

The initial S-polygon is defined as the polyline of the 
intersection points of the tangents. When defining a 
spatial polyline, the S-polygon is defined as the polyline 
of the "quasi-intersection" points of the intersecting 
tangent lines (the quasi-intersection point lies at the 
same distance from the tangent lines). 

In the iterative approximation scheme, at the current 
approximation step m, a new S-polygon {Vi}m is 
determined by the residual reduction operation as 
follows. A spline of a given degree is calculated on the 
S-polygon and the distances  {𝛿𝑖}  from the spline to the 
support points {Pi} are determined. The closest spline 
point to a support point does not coincide with a nodal 
point of the spline! New links of the S-polygon {Vi}m are 
determined as follows. The tangent lines containing the 
links of the current S-polygon {Vi}m-1 by parallel 
displacement by values {−𝛿𝑖}  define a new set of 
tangent lines {Ti}m. The S-polygon {Vi}m is defined as a 
new polygonal line of the intersection points of the 
displaced tangent lines {Ti}m. 

Boundary Conditions 

Additional points of the S-polygon are determined by 
boundary conditions. 

Geometrically clear universal symmetry conditions 
and geometric procedures invariant with respect to the 
degree of the spline curve are used as boundary 
conditions: 

1) Condition of closeness of the spatial curve. 
2) Condition of spatial symmetry of additional 

vertices with respect to the plane passing through the 
starting (ending) point of the curve perpendicular to the 
first (last) tangent of the curve. 

3) Condition of spatial central symmetry of 
additional vertices with respect to the first (last) point of 
the curve. 

4) Fixed curvature values at the endpoints of the 
curve. 

5) Condition of smooth monotonic continuation of 
the curvature at the endsites. 
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Let's take a closer look at the types of boundary 
conditions and the procedures for determining additional 
vertices: 

1) Condition of spatial curve closure 
The additional vertices of the initial section of the S-

polygon coincide with the end vertices of the main 
section of the S-polygon. 

The additional vertices of the end section of the S-
polygon coincide with the initial vertices of the main 
section of the S-polygon. 

2) Condition of spatial symmetry 
The additional points are mirror images of the points 

with respect to the plane passing through the endpoint 
normal to the tangent vector. 

3) Condition of spatial central symmetry 
The additional points are centrally symmetric to the 

points of the main section with respect to the endpoint. 
4) Fixed curvature value at the end points of the curve 
The method ensures a fixed curvature at the endpoint 

with a harmonic spline shape at the end section. 
The method utilizes the following key property of the 

open S-polygon of a B-spline curve. The key to high 
curve quality (including at the boundary sections) is the 
harmonious shape of the open S-polygon. 

To ensure the harmonious shape of the S-polygon, 
the following procedure for determining boundary 
conditions is used. 

Two limiting configurations of the open S-polygon 
are defined: a symmetrical configuration and a centrally 
symmetrical configuration. 

The intermediate configuration is defined as a linear 
combination of the angle between the links of the 
limiting configurations. 

An intermediate configuration with an exact fixed 
curvature value is found using the bisection method. 

All configurations (limit and intermediate) have the 
same lengths of the corresponding links. 

This method allows one to obtain an arbitrary 
curvature value (from zero for the centrally symmetrical 
configuration to the curvature value of the symmetrical 
configuration) with good end sections of the B-spline 
curve. A limitation of the method is that it is impossible 
to specify a fixed curvature value greater than the 
curvature value for the symmetrical configuration. 

5) Condition for Smooth Continuation of an S-
Polygon 

In [55] [56], [57], a method for forming a B-polygon 
to ensure a monotonic change in the curvature of a 
Bézier curve is proposed. The essence of the method lies 
in constructing a Bézier curve polygon with a monotonic 
change in the length of links with a fixed elongation 
coefficient. 

Naturally, the Meunier-Farin configuration is more 
correctly applied to an S-polygon in an float format for 

modeling a B-spline curve with a monotonic change in 
curvature [56]. 

This approach is the key to constructing the end 
section of an S-polygon while maintaining monotonic 
change in curvature. Additional end sites of S-polygons 
are defined as Meunier-Farin configurations. 

Correction of tangents at endpoints and inflection 
points 

In the main algorithm, the first approximation is 
based on the parallelism of the S-polygon links to the 
tangent vectors of the Hermite GD. 

After defining the S-polygon and calculating the B-
spline curve, the tangent vectors at the endpoints and 
inflection points of the B-spline curve will differ from 
the fixed tangents at the endpoints and inflection points 
of the Hermite GD. 

To maintain fixed values of the tangents at the end 
points and at the inflection points of the Hermite GO in 
the values of the tangent vectors at the end points and at 
the inflection points of the B-spline curve, at each 
iteration step, the tangent lines for determining the 
directions of the links of the S-polygon, in addition to 
moving, are also rotated by a correcting angle -δ, where 
δ is the angle of misalignment of the tangent vectors of 
the B-spline curve with the fixed tangents of the Hermite 
GD. 

After defining a B-spline curve with a given 
accuracy, the transition from an open (float) S-polygon 
to a closed (clamped) S-polygon is performed using 
well-known algorithms [59], [60]. 

This method radically changes the approach to 
constructing global polynomial splines. An infinite 
number of global polynomial splines can be constructed 
on a given base polyline. Spline optimization can be 
directed toward harmonizing the S-polygon 
configuration defined by the initial tangent polyline. 

The method is invariant with respect to spline degree. 
Boundary parameters are also defined geometrically and 
implemented in geometrically oriented algorithms. 

The algorithm can be easily modified to construct 
splines of odd degree [61]. 

4.3 Isogeometric modeling of NURBS by S-

polygon 

The first study of the form of a cubic parametric 
polynomial given by points and vectors of first 
derivatives was carried out by Forrest F.R. 

In [9], the results of Forrest's analysis are considered 
using a more convenient for analysis equivalent 
representation of a cubic Bezier curve by a B-polygon. 
The first link of the B-polygon coincides with the vector 
of the first derivative at the initial point of the segment, 
and the third link coincides with the vector of the first 
derivative at the end point of the segment. 
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To prevent the curve from becoming looped form, 
Forrest recommends limiting the vector lengths and the 
chord length. 

Note that these constraints result in two mandatory 
inflection points on the looped configuration of the 
control polyline. 

In our opinion, a looped B-polygon should define a 
looped curve, if we follow the logic of the isogeometric 
shape of the B-polygon and the curve. Conversely, a 
designer won't be thrilled if, instead of the expected 
looped curve on a looped B-polygon, they get a curve 
with two unexpected inflection points. 

In any case, the B-polygon Bézier curve shape 
analysis function should recognize such situations. 

The exact equation relating the B-polygon 
configuration of a plane cubic Bézier curve to its 
inflection points is defined in our work, [60]. Analysis 
of this equation allows us to determine visually 
controllable zones of admissible B-polygon 
configurations. Solving the equation provides an exact 
answer about the curve shape, and for an S-shaped 
configuration, the exact coordinates of the inflection 
point. Admissible configuration zones are: S-shaped B-
polygon, strictly convex B-polygon. 

Note that a similar result was obtained for the S-
polygon of a cubic B-spline curve [61]. 

In our work [64] the properties of the algorithm for 
calculating and subdividing the specification of a 
rational Bézier-Bernstein curve are used to analyze the 
stability of constructing a Bézier curve of arbitrary 
degree. It is proved that a B-polygon of regular shape of 
order m is a characteristic polygon. 

The proof is based on the fact that the algorithm 
reduces to a sequence of operations: "taking a point" 
strictly on the segment and "cutting off the vertex" of the 
control polyline. These operations do not change the 
shape of the original regular polyline. 

.  
This approach is used by the authors to analyze the 

stability of the formation of a B-spline curve of arbitrary 
degree. The theorem is proved: 

- An S-polygon of a regular shape of order m is a 
characteristic polygon (isogeometrically, up to the sign 
of curvature, it determines the shape) of a B-spline curve 
of degree m. Moreover, the number of sign changes in 
the orientations of the S-polygon links exactly coincides 
with the number of sign changes in the curvature of the 
B-spline curve. 

 
 
 
 

5. Advantages of FairCurveModeler 

5.1 Edvantages   

F-curves vs A-curves 

Class F curves (Fig. 5) Isogeometrically and exactly 
approximated the conics on polylines. 

 
Fig. 5. Class F curves (FairCurveModeler).  

Class A curves (Fig.6) do not provide a desired 
performance. 

 

 
Fig. 6. Class A curves (NX).  

In the given pictures, a generated B-spline curve 
from the given set of points on a circle by using Siemens 
NX software (Fig. 6) and C3D FairCurveModeler (Fig. 
5) illustrates the difference between class A and class F 
curves. 

As can be seen from this example, class A curves do 
not provide a desired performance. 

Fixing tangents at base points when constructing 
a global spline 

How does it work?  
It is implemented as follows: we enter auxiliary 

"non-native" points on the polyline, and fix the required 
directions in the native points. 

The algorithm changes the position of the "non-
native" points to ensure the required direction of the 
tangents and builds a high-quality global spline that 
passes exactly through the "native" points with fixation 
of the tangents (Fig.7). 
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Fig. 7. Fixing tangents on a global spline 

Geometric exactly modeling of conical curves 

The F-curve models geometrically exactly any conic 
curve (Fig. 8). 

 
Fig. 8. F-curve in NURBzS curve format on ellipse 

points. Geometrically accurate ellipse. Executed in 
C3D FairCurveModeler. 

Modeling fair spatial curves 

KnowHow, [65], is the construction of an F-curve in 
NURBzS curve format on a spatial polyline (Fig. 9).  

  
Fig. 9. F-curve in NURBzS curve format on the spatial 

polyline taken from the _Helix primitive. Executed 
in the FairCurveModeler app, 
nanoCAD/ZWCAD/AutoCAD. 

Note the perfect shape of the evoluta graph (except 
for the end sections) (see Fig. 3, evoluta in blue color). 

Analytical curves with monotonic curvature 

Commands for creating analytic curves with 
monotone curvature. 

Two remarkable analytical curves are introduced 
directly as construction commands into the 
FairCurveModeler system: 

 - Clothoid. A curve with monotone linear curvature 
(Fig. 10).  

- Maclaurin sectrix. A curve with monotone 
curvature defined in an osculating triangle (Fig. 11) 

 
Fig. 10. Clothoid. 

 
Fig. 11. Maclaurin sectrix. 

5.2 F-curves vs physical spline  

Elastic bars (physical splines) were used to model 
transverse spars, buttresses, and horizontals in the 
design and construction of marine vessels, and later in 
the manufacture of automobiles and airplanes. Many 
experts believe that physical splines are optimal for 
modeling functional curves.  

Mehlum on the quality of the physical spline 

The KURGLA curve modeling program for the 
AUTOKON shipbuilding system uses mathematically 
accurate modeling of a physical spline line, [66], [67]. 

In one of the  KURGLA algorithms, the virtual 
physical spline is represented by segments of the 
clothoid.  

According to, [66], [67], the curvature between fixed 
points of the physical spline varies linearly, as in the 
case of a clothoid.  

Since Mehlum believes that the physical spline is 
accurately modeled by clothoid segments with a linear 
change in curvature, it turns out that the curvature graph 
of the physical spline is not fair, but piecewise linear. 
This is not an F-class curve. 

Let us turn to Levien's work, [13], where he 
compares the ability of splines to model “roundness”. 
The work compares different types of splines. 

In particular, one of the participants in the spline 
competition is Minimum-Energy Curves (MEC). In the 
work, the MEC is defined as a mathematical 
idealization of an elastic bar. The MEC in this work is 
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defined as the curve that minimizes the energy 
functional of bending. Moreover, Levien clearly states 
the disadvantage of MEC. It is obvious that a circle is 
the fairest possible curve on three points, but the MEC 
spline deviates rather significantly from a circle (Fig. 
12). 

 

 
Fig. 12. Roundness failure of the minimum energy curve 

(MEC), [14] 

It is also obvious that the circle has less potential 
energy than any other curve passing through three 
points. That is, MEC has a greater value of potential 
energy! Paradox!  

Perhaps the following statement is true here: among 
curves of the same order of smoothness, the fairer curve 
passing through the same points has less potential 
energy. 

It remains to admit that this conclusion is correct not 
only when analyzing roundness, but in general when 
analyzing the smoothness of the curve shape. That is, 
the fairer the curve, the smaller its potential energy. 

Experiment F-curve vs. physical spline 

Moreover, we will show that FairCurveModeler 
methods construct curves with lower potential energy 
than the method using a physical spline. 

Let's compare FairCurveModeler methods and the 
"physical spline" method on the "Hamburg score". We 
will use FairCurveModeler methods implemented in the 
FairCurveModeler app ZWCAD / BricsCAD / 
AutoCAD, [14]. 

We will demonstrate this using three examples with 
different numbers of points. 

Example 1. Four base points  

A physical spline in the form of an elastic metal ruler 
is placed on an edge and deformed. The shape is fixed 
with weights in the form of cubes so that the ruler 
precisely contacts the cubes at points {(0,0), (100,130), 
(300,170), (390,0)} (Fig. 13). 

 
Fig. 13. Flexible ruler deformed by cube-shaped weights. 

At the endpoints, the ruler is clamped vertically by 
the flat faces of two cubes. In order for the ruler to have 
a minimum length in the section between the clamping 
points, clamping is performed last after the ruler's shape 
has been established. During the process of establishing 
the shape, the ruler at the end points must pass freely 
between the weights. 

The potential energy of the physical spline line is 
calculated indirectly by constructing a curve on the 
points taken from the physical spline line. 

The line of the deformed ruler is outlined with a thin 
line. The points of contact with the cubes are marked on 
the image of the line. The coordinates of the points of 
contact of the ruler with the cubes are taken. Additional 
points on the physical spline are added to the original 
points of contact with the cubes. These points are taken 
approximately at the midpoints of the segments of the 
physical spline between the original points of the base 
polyline. The additional and original points are 
combined into one extended polyline with the 
coordinates presented in Table 1. 

TABLE I.  COORDINATES X,Y AND TANGENTS DX,DY 

x y dx dy 

0 0 0 1 

27 67.5   
100 130   
210 181.5   
300 170   
367 101   
390 0 0 -1 

On the extended array of points (Table 1), a curve is 
determined using the FairCurveModeler program. 

We will determine the parameters of the physical 
spline on the approximating curve: curvature and 
evoluta graphs (Fig. 14) 
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Fig. 14. Approximation of a physical spline. The graphs 
of curvature, evoluta, and the graph of the curvature 
function as a function F(x) are displayed.  

Physical spline macroparameters: 
"Real Length = " 585.573 
"Approximated Length = " 585.468 
"Potential Energy = " 0.0218344 
"Min Curvature = " 0.00249702 
"Max Curvature = " 0.0245549 

Then, on the original polyline {(0,0), (100,130), 
(300,170), (390,0)}, the vertices of which correspond to 
the contact points of the physical spline with the cubes, 
we construct a V-curve with approximation by means 
of the NURBzS curve. We test the quality of the curve 
(Fig. 15). 

 
Fig. 15. V-curve on the original polyline of a physical 

spline. The curvature graphs, curve evoluta, and the 
curvature function graph as a function of F(x) are 
displayed.  

V-curve macro parameters: 
"Real Length = " 585.818 
"Approximated Length = " 585.393 
"Potential Energy = " 0.0205987 
"Min Curvature = " 0.00282694 
"Max Curvature = " 0.0149465 

Let us construct a V-curve with approximation by 
means of a B-spline curve of the 8th degree (Fig. 16). 

 
Fig. 16. B-spline curve of the 8th degree.  

B-spline curve parameters: 
"Real Length = " 586.083 
"Approximated Length = " 585.976 
"Potential Energy = " 0.0204288 
"Min Curvature = " 0.00283567 
"Max Curvature = " 0.0129598 
Note the high quality of the V-curve approximation 

both by the NURBzS curve and by the 8th degree B-
spline curve. 

Example 2. Three base points 

The shape is fixed with weights at points {(0,0), 
(299,219), (550,0)}.  

At the endpoints, the ruler is clamped vertically.  
The additional and original points are combined into 

one extended polyline with the coordinates presented in 
Table II. 

TABLE II.  COORDINATES X,Y AND TANGENTS DX,DY 
x y dx dy 

0 0 0 1 

80 150   
299 219   
471 150   
550 0 0 -1 

On the extended array of points (Table II), a curve is 
determined using the FairCurveModeler program. 

We will determine the parameters of the physical 
spline on the approximating curve: curvature and 
evoluta graphs (Fig. 17). 

 
Fig. 17. Approximation of a physical spline. The graphs 

of curvature and evoluta are displayed.  
Physical spline macroparameters: 

"Approximated Length = " 773.991 
"Potential Energy = " 0.0136505 
"Min Curvature = " 0.00313575 
"Max Curvature = " 0.00673551 

 

Then, on the original polyline {(0,0), (299,219), 
(550,0), the vertices of which correspond to the contact 
points of the physical spline with the cubes, we 
construct a V-curve with approximation by means of the 
NURBzS curve. We test the quality of the curve (Fig. 
18). 
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Fig. 18. V-curve on the original polyline of a physical 
spline. The curvature graphs and curve evoluta are 
displayed.  

V-curve macroparameters: 
"Approximated Length = " 779.675 
"Potential Energy = " 0.013383 
"Min Curvature = " 0.00290712 
"Max Curvature = " 0.00569015 
 

Example 3. Five base points 

The shape is fixed with weights at points {(0,0), (70, 
240), (330,359), (600 389)}.  

At the endpoints, the ruler is clamped vertically.  

The additional and original points are combined into 
one extended polyline with the coordinates presented in 
Table III. 

TABLE III.  COORDINATES X,Y AND TANGENTS DX,DY 

x y dx dy 

0 0 0 1 

18 130   
70 240   
192 315   
339 359     

473 3   

600 389 1 0 

On the extended array of points (Table II), a curve is 
determined using the FairCurveModeler program. 

We will determine the parameters of the physical 
spline on the approximating curve: curva1ure and 
evoluta graphs (Fig. 19) 

 

 

 
Fig. 19. Approximation of a physical spline. The graphs 

of curvature and evoluta are displayed.  

Physical spline macroparameters: 
"Approximated Length = " 815.686 
"Potential Energy = " 0.0048364 
"Min Curvature = " 0.000540933 

"Max Curvature = " 0.00696452 
 

Then, on the original polyline {(0, 0), (299, 219), 
(550, 0), the vertices of which correspond to the contact 
points of the physical spline with the cubes, we 
construct a V-curve with approximation by means of the 
NURBzS curve. We test the quality of the curve (Fig. 
20). 

 
Fig. 20. V-curve on the original polyline of a physical 

spline. The curvature graphs and curve evoluta are 
displayed.  

V-curve macroparameters: 
"Approximated Length = " 818.168 
"Potential Energy = " 0.00439636 
"Min Curvature = " 0.000801051 
"Max Curvature = " 0.00479479 

The curve constructed on the extended points of the 
physical spline has good qualities. But, as can be seen 
from the macroparameters, the curve constructed by the 
FairCurveModeler methods on the same initial polyline 
as the physical spline has a smaller curvature variation 
and a lower energy value. That is, it undoubtedly has 
better qualities in terms of fairness criteria than the 
curve drawn along the contour of the physical spline. 

This is the hit of the FairCurveModeler system. This 
fact will undoubtedly cause cognitive dissonance in all 
fans of the physical spline. This fact can be explained 
as follows. A flexible bar clamped at both ends really 
takes a shape with minimal potential energy. This is 
elastic with a smooth curvature graph, [66]. But a 
flexible lath, additionally deformed at intermediate 
points, is no longer an elastica. Yes, the segments of a 
physical spline are elastic individually. But the profile 
of a physical spline according to [66], is a curve of not 
very high quality (with a piecewise linear curvature 
graph). And, as the experiment shows, a high-order F-
curve with smooth curvature has less potential energy 
than a physical spline. 

C. V-curve on Elastica 
The development of the global parametrizited (GP) 

spline method can be aimed at using various types of 
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analytical basis curves and/or increasing the parametric 
number of the curve. The GP spline method on a conic 
basis ensures high-quality modeled curves. The method 
ensures geometrically accurate modeling of circles and 
circular arcs if the support points of the polyline allow 
this. 

However, in the case of a base polyline 
configuration with inflection points, the method fixes 
the inflection points and splits the polyline into locally 
convex sites. Although the locally convex sites are V-
curves of class C5, the composite curve at the inflection 
points retains only second-order smoothness.  

The authors suggest that the use of a basic 5-
parameter curve with an inflection point will allow 
modeling V-curves of class C5 on the entire curve with 
inflection points 

Which curve to choose? 

Let's consider the capabilities of a method based on 
Euler elastics. An elastic is a 5-parameter curve defined 
by two points, two tangents, and a segment length. An 
elastic geometrically accurately represents a circle and, 
under certain parameters, reliably defines a convex 
region and a region with a single inflection point [69]. 
The following challenges are facing researchers and 
developers. 

First of all, all the equations of the listed stable 
configurations of the Euler elastica [69] must be 
reduced to working formulas for calculating points and 
derivatives on the interval of definition of the elastica 
between the end points. 

Next, it is necessary to develop lower-level 
algorithms for solving the following geometric 
problems using the Euler elastic model:  

- Calculating the tangent to the elastic model at a 
fixed point.  

- Calculating the point of contact between the elastic 
model and a fixed tangent.  

- Calculating the coordinates of an arbitrary point, 
the tangent vector, and the curvature vector of the 
elastic model based on the value of an internal 
parameter within the elastic segment definition. 

When using a 5-parameter elastic model, an 
algorithm for constructing a basis for 5-parameter 
conical curves and an algorithm for generating V-curve 
points on locally convex polygons can be used.  

Elastic models with cantilevered attachments (with 
non-zero curvature) at the ends must be used as base 
curvature segments. 
 
 

For polylines with inflection points, the algorithms 
need to be refined. It is necessary to:  

- Modify the algorithm for determining the spline basis 
from the set of double-contact elastics with floating 
inflection points. 
- Modify the algorithm for determining the spline basis 
from the set of double-contact elastics with fixed 
inflection points. - For the end section of an unloaded 
spline (or for a segment with an inflection point at the 
segment endpoint), use a convex form of the Euler 
elastic with zero curvature at the endpoint. 

6. Innovations of Surface modeling  

6.1 Frame-kinematic scheme  

The frame-kinematic scheme of construction allows 
for reducing the procedure of surface construction to two 
stages, [70]: 

- Construction of the frame of generators of F-
NURBS-curves on a uniform grid. 

- Construction of the frame of guides of F-NURBS-
curves on the frame of control spline S-polygons. 

The advantages of the methods of isogeometric 
construction of F-curves are generalized to the methods 
of surface construction. 

Isogeometrical creation of a B-spline surface on a set 
of polylines is shown, (Fig. 21, and Fig. 22). 

. 

  

 
Fig. 21. S-frame of a B-spline surface. 

The frame-kinematic scheme of construction allows 
for reducing the procedure of surface construction to two 
stages: construction of the frame of forming F-NURBS-
curves on a uniform grid; construction of the frame of 
guiding F-NURBS-curves on the frame of control spline 
S-polygons. 
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Fig. 22. B-spline surface of degrees (8 * 8) models a 
surface with high accuracy. 

S-polygons of guiding F-NURBS-curves are united 
to the S-frame of the B-Spline surface. 

Advantages of methods of isogeometric modeling of 
F-curves are generalized to methods of construction of 
surfaces. 

 

6.2 Isogeometric modeling NURBS surfaces 

There are various ways to evaluate the shape, 
aesthetics, and functional qualities of a surface. These 
include analyzing the shape of the framework of flat 
sections, analyzing maps of constant Gaussian curvature 
values, evaluating the shape and quality using a tinted 
image, studying a full-scale sample, and testing in a 
CAE system. 

However, it is first necessary to ensure that the shape 
of the spline surface's control frame is isogeometric with 
the shape of the surface's isoparametric line family. 
Oscillating shapes of isoparametric lines, especially in 
the direction of fluid flow, are unacceptable for dynamic 
surfaces. 

Due to the affine invariance of the S-frame projection 
of a B-spline surface, it is possible to construct the 
surface and evaluate its shape on flat projections. 

A surface is isogeometrically defined on a projection 
if, based on the configuration of the S-frame projection, 
it is possible to unambiguously judge the shape of the 
isoparametric lines of the surface on the projection. 

Let's assume that the initial geometric determinant of 
the S-frame of a surface is represented on the projection 
as a network of points, and the lines of the network 
represent a framework of convex polylines-rows. 
Clearly, the designer expects to see a family of convex 
isoparametric lines on the surface. The appearance of an 
oscillating isoparametric line is undesirable and 
indicates a flaw in the modeling method. Conversely, if 
the isoparametric lines follow the shape of the rows and 
columns of the isoparametric line, then the isoparametric 
lines are considered to isogeometrically define the 
surface shape. 

In our work [64] we propose rules for constructing 
the S-frame of a B-spline surface that ensure 
isogeometricity. 

A definition of similarity in shape between two 
plane polylines is introduced. It is proved that, given an 
affine projection of a compartment of a B-spline surface 
of degree m onto an arbitrary plane, and the projections 
of the polygonal lines of a local S-polytope are pairwise 
similar regular polygonal lines of order m, then the 
projections of the isolines of the lines will have the same 
shape. 

Let's consider another configuration case: adjacent 
polylines of the GD have different forms on the 
projection. Ideally, the family of isoparametric lines 
should consist of two families of different forms, 
separated by a straight line. In any other case, the 
appearance of S-shaped isoparametric lines is inevitable. 
Therefore, the method should allow control over the 
shape of the intermediate isoparametric line (the 
amplitude and position of the inflection point of the S-
shaped line) up to straightening. In other words, the 
shape of the transitional isoparametric lines should be 
editable using the modeling method. 

A method for editing the S-frame of a B-spline 
surface is proposed to ensure the transition from one 
form of isoparametric lines of a NURBS surface section 
to another form without oscillation of the isoparametric 
lines [64]. 

6.3 Complex Topology Surfaces   

When modeling the integral surface of a product, it 
is proposed to use a “mosaic” composed of sections of 
B-spline surfaces. In this case, adjacent sections have 
common subarrays of S-frames in float format to ensure 
overall smoothness (Fig. 23). 

 
Fig. 23. Scheme of combining open (float) S-frames of B-

spline surfaces. 

When creating a mosaic, irregular areas inevitably 
arise that cannot be covered with a “rectangular patch” 
(Fig. 24). 

 
Fig. 24. Topologically complex areas. 

For constructing such sections, [71], proposed a 
method, the essence of which is that pentagonal and 
triangular "holes" are patched with rectangular "patches" 
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of B-spline surfaces defined by S-frames. In this case, 
the S-frames of the "patches" in the open format have 
common subarrays (see Fig. 23). The procedure for 
constructing a section is a recursive scheme of 
sequential "embedding" of sections of B-spline surfaces 
into a topologically complex section (Fig. 25). 

 
Fig. 25. Recursive scheme for “patching” a topologically 

complex area. 

The “patching” procedure must be performed until 
the “hole” is reduced to a negligible size. 

The following simple example demonstrates the 
possibility of constructing topologically complex 
surfaces composed of B-surface sections in the 
FairCurveModeler system. 

The validity of this approach for B-surfaces is 
demonstrated in the scheme for constructing a one-sided 
Klein bottle surface (Fig. 26). The S-frame is joined to 
itself along the end lines r(u, v0) and r(u, vk) with the 
provision of the 4th order of smoothness. The S-frame 
rotates and glues to itself as a Mobius strip (Fig. 26, and 
Fig. 27). 

 
Fig. 26. S-frame of a one-sided surface. 

 
Fig. 27. Network of isoparametric curves of a one-sided 

surface. 

Surface quality analysis is performed using the 
“Zebra” option (Fig. 28). 

 
Fig. 28. Testing surface quality using the “Zebra” option. 

Smoothness of the 4th order is ensured at any point 
on the surface. Including on the “seam” section (the line 
where the edges of the surface meet). 

7. Plans  

1) Development of a geometrically parameterized 
spline based on basic analytical curves called Elasticas. 
The V-curve is formed based on five-parameter 
analytical curves—an elastica of double tangency. The 
recurrence formula for constructing the V-curve itself 
remains unchanged. It is only necessary to develop a 
library of basic programs:  

- Constructing an elastic in an osculating triangle at a 
given point.  

-Determining a tangent on an elastica in an 
osculating triangle at a given point.  

- Generating a point in a lens of osculating elasticas. 

The authors expect a stunning result. The V-curve on 
elastics will be a class C5 curve with an arbitrary shape 

Valerian Muftejev, Fairuza Ziganshina, Vadim Gumerov
International Journal of Mathematical and Computational Methods 

http://www.iaras.org/iaras/journals/ijmcm

ISSN: 2367-895X 317 Volume 10, 2025



(with inflection points) and will actually possess a 
minimum potential energy value. 

Section "C. V-curve on Elastica" describes in 
sufficient detail a new method that the authors will 
patent in the near future.  

2) Refinement for practical application and 
implementation of the proposed methods for modeling 
topologically complex surfaces in the actual design of 
ship surfaces. 

The complex integral ship surface, comprising a 
complex bulbous form, a cylindrical hull part, and a flat 
bottom, will have a super-smoothness of orders of 
magnitude (7 x 7). CAM system testing will demonstrate 
high seaworthiness, dependent on the smoothness of the 
ship's contours. 

8. Conclusions 

The requirements for the quality of functional curves 
that directly determine the functionality and consumer 
properties of products are formulated and substantiated. 

The article discusses the innovative characteristics of 
the software and methodological complex (SMC) 
FairCurveModeler for modeling high-quality functional 
curves according to fairness criteria. 

The main innovations of the system are described - a 
parametric approach to constructing splines: 
constructing a spline basis as a set of 5-parameter 
conical curves of double contact, constructing a virtual 
curve of class C5 on the spline basis. Isogeometric 
approximation of a virtual curve using NURBS curves. 

The system advantages of FairCurveModeler are 
shown. A unique variety of tools, various aspects of 
flexibility, the possibility of isogeometric approximation 
of analytical curves. The advantage of F-curves over 
class A curves, over a physical spline and over splines 
of their approximation is substantiated. 

Innovative methods of surface construction are 
described: the frame-kinematic method of constructing 
a spline surface, the method of constructing a 
topologically complex surface. 
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