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Abstract: The maximum likelihood method is used to estimate the frequency of the sinusoid when the frequency 
is described as a known stochastic process (for example Ornstein-Uhlenbeck process). We use Malliavin calculus 
and Ito calculus to derive expressions for the estimate of the slowly varying amplitude. The need for these 
estimates occurs in EEG analysis, inverse synthetic aperture radar (ISAR), amplitude modulation-frequency 
modulation (AM-FM) problem etc .... The observations are one sinusoid with slowly varying amplitude. The 
observations are described as a stochastic differential equation (SDE).  

Key words: Ito Calculus, Malliavin calculus, Time-Varying Parameters, Girsanov Theory, Ornstein-Uhlenbeck 
process, AM-FM estimation.

Received: July 11, 2025. Revised: August 16, 2025. Accepted: September 14, 2025. Published: October 22, 2025.

 
 

1. Introduction
In not so few applications one is confronted with the 
observation of a sinusoid that has a stochastic 
frequency that could be bouncing around a fixed 
unknown quantity. This behavior of the frequency 
could be modeled as an Ornstein-Uhlenbeck (OU) 
stochastic process. This situation occurs for example 
when measuring the EEG signal [1], the EKG signal 
[2] where the measured frequency/frequencies are 
changing from period to period or from cycle to 
cycle. The situation is also observed when 
measuring the echo of a moving target as in inverse 
synthetic aperture radar (ISAR) [3] where it is 
noticed that the Doppler shift frequency is a random 
quantity.  

Sometimes the Radar echo is modeled as two closely 
separated targets that continuously appear and 
disappear. This happens when a small target is 
hiding behind a big target and it moves around the 
big target. This causes the echo to have a strong 
frequency component and a small component that is 
bouncing around the big component.  

The literature is also concerned with the estimation 
of the frequency and the amplitude of an observed 
signal in a deterministic environment (the amplitude 
and the frequency are both deterministic) which is 
known as the AM-FM problem [4]. In this situation, 
the concern is the estimate of the time-varying 
frequency/amplitude [5]. 

In this report, we focus on modeling the stochastic 
frequency as an Ornstein-Uhlenbeck (OU) process. 
The frequency is bouncing around some unknown 
constant frequency. We use the maximum likelihood 
method to estimate the parameter of the OU process. 
The observation is a sine wave with slowly varying 
amplitude. This paper is divided as follows: Section 
2 is the description of the estimation problem and 
the introduction of the OU process. We also describe 
the TEO approach to find the instantaneous 
amplitude and the instantaneous frequency. In 
Section 3 we introduce Girsanov theory and the 
maximum likelihood method to estimate the 
parameters of the OU process. We also present the 
statistical properties of the estimates. In Section 3 
we also present the estimate of the amplitude using 
the Ito calculus and the Malliavin calculus [6]. In 
Section 4, we apply the proposed method to 
simulated data and compare the results with the TEO 
method. We present summary and future work. 
There is an Appendix which has most of the 
necessary derivations. 

2. Problem Formulation: 
The observed signal is modeled as a single sinusoid 
with time varying amplitude and stochastic 
frequency. For EEG, we use band pass filter to 
separate the different components such as the alpha, 
delta, beta and theta. For Doppler shifted signal, we 
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directly measure the echo of a stochastic frequency.
  

Assume that the observed signal y(t ) is given by the 
equation: 

))( 2sin()()(   ttftaty   (1) 

Thus, ))( 2(sin)()( 222   ttftaty  

   ))( 2(cos1)( 22   ttfta  

i.e. )()())( 2(cos)( 2222 tytattfta    

a(t) is unknown slowly varying amplitude, and  is 
unknown phase.  

The frequency )(tf  is a stochastic process 
described by the Ornstein-Uhlenbeck SDE: 

)())(()( tdWdttftdf    (2) 

Where W(t) is a Wiener process,   ,  , and   are 
unknown parameters .  
The Malliavin derivative of y(t), )(tyDs ,  is derived 
as:  
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Also
 

    )()())(2(cos)(2)( 2222
tfDtfDttftattyD sss  

 

i.e.
 
      )()()()(2)( 2222

tfDtfDtytattyD sss  

     (3b)  

If we have an estimate for a(t) then we know the 
Malliavin derivative of y(t). 

2.1Why do we need an OU model for the 
frequency: 

It has been observed that a single sinusoid with 
relatively high SNR exhibits a strong peak at the 
unknown frequency when the Fourier transform is 
applied to segments of the observed data. This is 
evident in Fig.1 where we show the Fourier 
transform of a signal with constant amplitude and 
constant frequency at 10 Hz. 

 
As we reduce the SNR, the peak is still clear and at 
the same location i.e. same value.  

In Fig.2a, we present the observed sinusoidal in the 
time y(t) of eqn. (1). The frequency follows an OU 
process. Notice that the time-varying amplitude 
could be estimated through an envelope detector.  
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Fig. 1, Fourier transform of a 
single sinusoid
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When we model the frequency of the signal as a 
random quantity that follows an OU process, several 
things start to happen. The background noise level 
increases and several peaks start to emerge at 
different frequencies as shown in Fig. 2b.  

 
The dominant frequency, in the simulation (which is 
supposed to be 10 Hz), starts to move around and 
small peaks appear and disappear at different 
locations. This is exactly what we observe for the 
EEG signals, see Fig.3, and for the echo from Radar 
targets Fig. 4.  

 
In Fig. 4, we show the Fourier transform of the echo 
of Radar targets. We took the Fourier transform 
using two segments of data. We have two targets. 
Notice the peaks are moving around and the 
background noise level is relatively high. 
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Fig. 2b, Fourier transform of a 
single random sinusoid
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One could argue that using the Fourier transform 
would find the frequency estimate. As we see in Fig. 
2b, the random frequency will flatten the Fourier 
transform which makes it difficult to estimate the 
frequency. Even small but random changes, less than 
5%, in the dominant frequency will blur the 
spectrum or the Fourier transform. Thus, one has to 
resort to time domain estimation techniques albeit 
more complicated. The almost flat Fourier transform 
should be taken as an indication of the presence of 
random frequency. 

2.2 TEO for Ampliltude and Frequency 
Estimation [1]:  

In the TEO method, we assume slowly varying 
amplitude and slowly varying frequency. Taking the 
first derivative with respect to time of the signal y(t) 
we get: 

   )](cos[2)()(
tfta

dt

tdy


 
(4) 

where ))(2()(   ttft  

Taking the second derivative with respect to time, 
assuming constant amplitude, we get: 

  )](sin[2)()( 2
2

2

tfta
dt

tyd
  

   )(2 2
tyf    (5) 

Define the energy tracking operator  )(ty  as: 

  2

22 )()()()(
dt

tyd
ty

dt

tdy
ty 










 
(6) 

 
     )](sin[)()](sin[2)()](cos[2)( 22

ttatftatfta  

 

      )]([sin2)()]([sin12)( 222222 tftatfta  

 

   22 2)( fta   

Which has a discrete version [7]: 

   )1()1()()( 2  nynynyny  

Or     22 /)1()1()()(  nynynyny  

Applying the TEO operator we  get: 

    22 2)()( ftaty    (7) 

and  42 2)()(
fta

dt

tdy











 
(8) 

Hence the estimates of the instantaneous amplitude 
and the instantaneous frequency are obtained as: 

  
 )(

)(

2
ty

dt

tdy

f











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(9) 

And 
 














dt

tdy

ty
ta

)(
)()(

  

(10) 

In this report, it was observe that  )(ny is a better 
estimate for a(t) i.e. less noisy. Unfortunately it has 
to be scaled . 

 

3.Problem Solution; the Proposed 
Approach: 

In this section we develop an SDE for the 
observations y(t). We use the Ito calculus rules to 
find an estimate for the slowly varying amplitude. 
Girsanov theory is used to find the maximum 
likelihood estimates of the parameters of the OU 
process describing the frequency. We also present 
the statistical properties of the estimates [see the 
Appendix]. The Malliavin calculus is used to find an 
estimate for some of the OU parameters. 

3.1An SDE for the Observations: 

We need to find an estimate for the unknown slowly 
varying amplitude a(t) and an estimate for the 

unknown parameters of the OU process  ,  , and 
 . 

Using Ito lemma we get an SDE for the observations 
y(t) as: 
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For slowly varying amplitude 0)(
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get: 
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i.e.
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     (15a) 
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 )(),(),( 23 tftyhtyh    (15c) 

3.2 Amplitude Estimation: 

To find an estimate for the diffusion and thus the 
amplitude, we square dy(t) to get: 

    dtttftattdy 22222 ))( 2(cos)(2)(    

    dtttftat 2222 ))( 2(sin1)(2    

Ahmed S. Abutaleb
International Journal of Mathematical and Computational Methods 

http://www.iaras.org/iaras/journals/ijmcm

ISSN: 2367-895X 250 Volume 10, 2025



    dttytat 2222 )()(2     (16) 

In the above equation we used the Ito rules:  dtdt=0, 
dtdW=0, dWdW=dt. 

Rearrange eqn. (16) and after some manipulations 
we get an expression for a(t) as: 

 
 

dt

tdy

t
tyta

2

22
22 )(

2
1)()(


  (17) 

This is an exact expression for the unknown 
amplitude a(t).  We could improve this estimate by 
passing it through a low pass filter made of  moving 
average. We could also use this equation to find an 
estimate for 2 provided that we have an estimate for 
a(t). Such an estimate for a(t) could be obtained 
through TEO . 

3.3 The maximum likelihood estimate of the 
OU parameters: 

 Given the observation y(t), we need to find the 
unknown parameters of the OU model of the 
frequency. The frequency has the solution: 
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i.e.
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The case when 1 : 

To simplify the analysis, we set the parameter 1 . 
This will facilitate the analysis and still we have a 
good model for the frequency. Thus, the SDE for the 
observations y(t) becomes: 
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For large values of “t”, we have the approximation 
(verified through simulation) 
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Comparing eqn. (3b) and eqn. (17) we deduce that: 
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i.e. the Malliavin derivative of y(t) is completely 
known from the observed data y(t). Also the 
Malliavin derivative of the frequency )(tfDs is 
given as: 
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For known diffusion term i.e. ),(2 tyh  is 
completely known, the maximum likelihood 
estimate of  is obtained by maximizing the 
likelihood function [8, Ch.1]: 
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Where  ),(),(),())(,( 321 tyhtyhtyhtyb    
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We could also use “
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The maximization w.r.t. the unknown parameters 
results into the equation: 
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Substitute into the above equation we get: 
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which yields
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Substitute 
   )()(2),())(( 222222

2
2 tytattyhty    ,  

we get: 

 

  



 














T

T

dt

dttyhtyhtdy
tyh

T

0

0
31

2
2

2

),(),()(
),(

1

)(




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
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dttyhtyhtdy
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31
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),(),()(
),(
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     (26) 

This is the maximum likelihood estimate of the 
unknown  . This estimate is dependent on a(t) and 
f(t). An initial guess for the value of f(t) could be 
obtained from the Fourier transform. The estimate 
for a(t) is obtained through eqn. (17). Also the 
estimate is function of  .  The estimate of  is 
given below in eqn. (29). It could also be obtained 
from eqn. (17) if we use TEO to find a(t). 

 

3.4 Statistical properties of the estimate: 

As shown in the appendix, the estimate of  is 
unbiased and its variance equals the Cramer Rao 
lower bound. 

3.5 An equation for 2 : 

To find an estimate for  , we obtain an equation for 
the Malliavin derivative of y(t). We obtain another 
equation from the SDE of y(t). Equating both 
equations will yield an expression for the value of 

2  [see the Appendix]. We could also use eqn. (3b) 
if we have an estimate for a(t). This estimate could 
be found through TEO of eqn. (10). 

Recall that: 

)())(2cos()(2)( tfDttfttatyD ss    
  (27) 

Squaring we get: 
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      )()()()(2)( 2222
tfDtfDtytattyD sss  

     (28) 

From Ito calculus,  

 
 

dt

tdy

t
tyta

2

22
22 )(

2
1)()(


    

Substitute eqn. (3b) into eqn. (28) we get: 

  
  )()()(1)(

2

2
2

tfDtfD
dt

tdy
tyD sss




     
 (29)  

3.6 Estimation of f(t) or 2  through the 
Malliavin derivative:

 We know that the Malliavin derivative of y(t) is 
function of a(t) which has been estimated. It is also 
function of the value of  . The value of 2  could 
have been estimated if we use an estimate for a(t). 
This estimate could be obtained through TEO. In 
this case we use eqn. (3b) to find an estimate for 2 . 
If we use the Malliavin calclulus alone, we need to 
find another equation for  2)(tyDs . Equating both 

expressions we get an estimate for 2 . On the other 

hand if we have an estimate for 2 , we use the 

 2)(tyDs equation to find and estimate for f(t).  

 Through the transformation
   )(arcsin2)( ty

t
tz




 , we get an expression for 

the Malliavin derivative of z(t), )(tzDs , which is 
completely known from the observed data y(t) 
except for f(t). 

 
 

 
)(

)(1

1
2
1
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2
1)(

2
tyD

tyt

tyD
dy

yd

t
tzD

s

ss










 (30) 

 Since the diffusion of the z(t) SDE is unity, the 
Malliavin derivative

 
of z(t), )(tzDs ,

  
satisfies an 

ordinary differential equation which could be solved 
analytically or numerically. This is the second 
equation. Equating both

 
equations we

 
get an 

expression for f(t) as function of  y(t).
 

 tsdttzD
z

ztg
tzdD ss 
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
 ,)(),()(  

Where 
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







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









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2
1)(

2tan2
2
1

2cos t
2sin)()(

),(

22

tf

tzt

tz

tztatf

tzg  

[see the appendix eqn. A.7  for the derivation]. 

The Malliavin derivative )(tzDs has the explicit 
solution 

 tsdu
z

zug
tzD

t

s

s 



















  ,),(exp)(

 
Equating both expressions for the Malliavin 
derivative of z(t), eqn. (30) and eqn. (A.10) we get: 

 
  )(1

)(1

)()(

),(exp

,0
2

2

22

se
ty

tyta

du
z

zug

ts

st

t

s


































 

This is a closed form equation in the value of f(t) 
where the right hand side is completely known. The 
solution of this equation is not easy and numerical 
methods should be employed. 

4. Results and Conclusions: 
In this Section we simulate a sinusoidal with slowly 
varying amplitude and random frequency. We then 
apply the proposed method to find an estimate for: 
(1) a(t), (2) The parameter of the OU  , (3) )(tf , 

and (4) 2 .  

Assume that the observed signal y(t ) is given by the 
equation: 
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 ))( 2sin()()( ttftaty   

 ) 2sin(6.0)( tfta a  

Where 0.1af   

The frequency )(tf  is a stochastic process 
described by the Ornstein-Uhlenbeck SDE: 

 )())(()( tdWdttftdf    

where 10 , 1.0  

The sampling interval 01.0t  

 

4.1 The estimate of the amplitude and of  : 
In Fig. 5, we show the true amplitude a(t), the 
estimates of the smoothed amplitude using Ito 
calculus (MA-Ito) and using TEO (psi(y)MA).  

 

The estimate of   was obtained by minimizing the 
sum of squared error between the estimated smooth 
amplitude of TEO (eqn.10 ) and the estimated 
smooth amplitude of the Ito calculus (eqn. 17). The 
estimated amplitudes were biased downward. We 
must adjust the estimated amplitudes by multiplying 
by a scale factor. Since the amplitude is slowly 
varying, the scale factor could be the maximum y(t) 
divided by the maximum of the amplitude estimates. 
Following the above procedures, we found the 
estimate of  =0.09 which is close to the true value. 

4.2 The estimate of  : 

Through simulation, it was found that the peak of 
the FFT changes from one segment to the other (we 
divide the data into segments of 128 points). This is 
due to the randomness of the frequency. Taking the 
average of the peaks yields good initial estimate for 
  that could be used as an estimate for f(t) in eqn. 
(26). 

 

   









T

dttyhtyhtdy
tyhT

T
0

31
2

),(),()(
),(

11)(


     (26) 

Recall that:
  

 

  2222
1 )(2

2
1)()()( 2),(  tyttytatftyh   

 

  )()(2

))( 2cos()(2),(
22

2

tytat

ttftattyh









  

 )(),(),( 23 tftyhtyh 

 
 
  

For 
numeri
cal 
reason
s, one 
should 
make 
sure 
that 

)())( ( 22 tytaestimated 

even if we have to scale up the estimates of the 
amplitude. 
The value of the smoothed )(T


is shown in Fig. 6.  
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4,3 The estimate of f(t): 

It was found that [see the Appendix] the unknown 
frequency satisfy the equation: 

  

 

    

 
  
















)(1)()()(1ln

..)(

,0

2

2 stfDtfD
dt

tdy

duuf

tsss

t

s


 

 

This is not an easy to solve equation and one has to 
resort to numerical methods.  

The true frequency, the smoothed estimated 
frequency using eqn. (A.12) and the smoothed 
estimated frequency using TEO of eqn. 9 are shown 
in Fig. 7. 

 

4.4 Conclusions: 

In this report we studied a signal that is made of one 
sinusoid with random frequency and slowly varying 
amplitude. The frequency was modeled as an OU 
process. The Ito calculus was used to find an SDE 
that describes the signal. The amplitude was 
estimated using Ito calculus rules. The Radon-
Nikodym derivative, which is the likelihood 
function, was used to estimate the parameters of the 

OU process. The Malliavin calculus was used to find 
an estimate for the frequency. 

In the future we need to find a closed formula for 
discrete Malliavin derivative. This will offer a 
different way to study the problem of sum of 
sinusoids.    

 

 

Appendix A 

In this appendix we present the derivations for the 
statistical properties of the maximum likelihood 
estimate  of   .  We also find the Malliavin calculus 
based estimates of f(t) and  . 

To study the statistical properties of the estimate, we 
substitute for: 
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into the maximum likelihood equation to obtain: 
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Taking the expectation of both sides, we obtain: 
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Fig. 6, Smoothed estimate of beta
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      (A.2) 

i.e. the estimate is unbiased. 

We now derive an expression for the variance of the 
estimate. From eqn. (A.1), we have: 
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  (A.3)

 Cramer-Rao lower bound: 

In order to find the Cramer-Rao lower bound for the 
unbiased estimate, it is easier if we have the 
diffusion part unity. Thus, we use a transformation 
on the observed SDE as follows:  
Find the transformation z=U(y) such that the SDE of 
z(t) has unity diffusion.  Using Ito lemma we get: 
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i.e.
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 (A.4) 
Integrating w.r.t. y , we get:
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Substitute
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Rearrange we get: 
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The Cramer-Rao lower bound is given as [9, Ch.7]: 
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Thus, the variance of the estimates is equal to the 
Cramer-Rao lower bound.

  

Also  
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 which is reduced to: 
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All the variables are  known except for f(t).  

Define
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Substitute for
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The Malliavin derivative )(tzDs has the explicit 
solution 

tsdu
z

zug
tzD

t

s

s 



















  ,),(exp)(

 
(A.10)

 

  
   

Equating both expressions for the Malliavin 
derivative of z(t) (eqn.29 and eqn. A.10)  we get: 
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Notice that right hand side of eqn. (A.11) is 
completely known at any instant “t”. 

Equation (A.11) has the form: 
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This is a closed form equation in the value of f(t). 

 

 

 

 

Ahmed S. Abutaleb
International Journal of Mathematical and Computational Methods 

http://www.iaras.org/iaras/journals/ijmcm

ISSN: 2367-895X 258 Volume 10, 2025



References: 

[1] A.Abutaleb, 2023, “The Estimation of the 
Instantaneous Amplitudes and the Instantaneous 
Frequencies of the EEG when both are 
Stochastic Processes”, Int. J. Signal Processing, 
Vol. 8, pp. 1-13. 

[2]J. Van Zaen, 2012, Efficient Schemes for 
Adaptive Frequency Tracking and their 
Relevance for EEG and ECG, Ph. D. 
Dissertation, ÉCOLE POLYTECHNIQUE 
FÉDÉRALE DE AUSANNE, Switzerland. 

[3]Y. Wang , Y. Li , J. Song and G. Zhao, 2024, 
“Random Stepped Frequency ISAR 2D Joint 
Imaging and Autofocusing by Using 2D-
AFCIFSBL”, Remote Sens. 2024, 16, 2521. 
https:// doi.org/10.3390/rs16142521 

[4] C.  Zhang,  A.  Mousavi, S.  Masri, and 
G. Gholipour, 2025,” The State-of-the-Art on 
Time-Frequency Signal Processing Techniques 
for High-Resolution Representation of 
Nonlinear Systems in Engineering”, Archives of 
Computational Methods in Engineering (2025) 
32:785–806 https://doi.org/10.1007/s11831-
024-10153-z. 

[5] H. Razzaq, and Z.  Hussain,2023, 
“Instantaneous Frequency Estimation of FM 
Signals under Gaussian and Symmetric α-Stable 
Noise: Deep Learning versus Time–Frequency 
Analysis”, Information 2023, 14, 18. 
https://doi.org/10.3390/ info14010018 

[6] D. Nualart, 2006, The Malliavin Calculus 
and Related Topics, Springer.  

[7] S. Pal and B. Biswas, 2012, “On The 
Fundamental Aspects of Demodulation”, Signal 
Processing: An International Journal (SPIJ), 
Volume (6) : Issue (3), pp. 86-96 

[8] Y. Kutoyants, 2004, Statistical Inference for 
Ergodic Diffusion Processes, Springer. 

[9] R. Lipster and A. Shiryaev, 1978, Statistics 
of Random Processes, Springer. 

 

 

Ahmed S. Abutaleb
International Journal of Mathematical and Computational Methods 

http://www.iaras.org/iaras/journals/ijmcm

ISSN: 2367-895X 259 Volume 10, 2025




