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Abstract: The maximum likelihood method is used to estimate the frequency of the sinusoid when the frequency
is described as a known stochastic process (for example Ornstein-Uhlenbeck process). We use Malliavin calculus
and Ito calculus to derive expressions for the estimate of the slowly varying amplitude. The need for these
estimates occurs in EEG analysis, inverse synthetic aperture radar (ISAR), amplitude modulation-frequency
modulation (AM-FM) problem etc .... The observations are one sinusoid with slowly varying amplitude. The
observations are described as a stochastic differential equation (SDE).
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1. Introduction
In this report, we focus on modeling the stochastic

In not so few applications one is confronted with the i
frequency as an Ornstein-Uhlenbeck (OU) process.

observation of a sinusoid that has a stochastic The f < b ) p K
frequency that could be bouncing around a fixed ¢ requency 1s bouncing around some uninown

unknown quantity. This behavior of the frequency constant frequency. We use the maximum likelihood
could be modeled as an Ornstein-Uhlenbeck (OU) method to estimate the parameter of the OU process.
stochastic process. This situation occurs for example The Qbsewatlgn 1S a sine wave with slowly varying
when measuring the EEG signal [1], the EKG signal amplitude. This paper is divided as follows: Section

[2] where the measured frequency/frequencies are 2 is. the desgription of the estimation problem qnd
changing from period to period or from cycle to the introduction of the OU process. We also describe

cycle. The situation is also observed when the. TEO approach to find the instantaneous

measuring the echo of a moving target as in inverse amphtude and. the 1nstanj[aneous frequency. In
synthetic aperture radar (ISAR) [3] where it is Section 3 we introduce Girsanov theory and the

noticed that the Doppler shift frequency is a random maximum likelihood method to estimate the
parameters of the OU process. We also present the

quantity. . . . .
statistical properties of the estimates. In Section 3
Sometimes the Radar echo is modeled as two closely we also present the estimate of the amplitude using
separated targets that continuously appear and the Ito calculus and the Malliavin calculus [6]. In
disappear. This happens when a small target is Section 4, we apply the proposed method to
hiding behind a big target and it moves around the simulated data and compare the results with the TEO
big target. This causes the echo to have a strong method. We present summary and future work.
frequency component and a small component that is There is an Appendix which has most of the
bouncing around the big component. necessary derivations.
The literature is also concerned with the estimation 2. Problem Formulation:
of the frequency and the amplitude of an observed
signal in a deterministic environment (the amplitude The observed signal is modeled as a single sinusoid
and the frequency are both deterministic) which is with time varying amplitude and stochastic
known as the AM-FM problem [4]. In this situation, frequency. For EEG, we use band pass filter to
the concern is the estimate of the time-varying separate the different components such as the alpha,
frequency/amplitude [5]. delta, beta and theta. For Doppler shifted signal, we
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directly measure the echo of a stochastic frequency.

Assume that the observed signal y(t ) is given by the

equation:

y(t) = a(t)sin(27z f ()t + @) )

Thus, Y>(t)=a’(t)sin’ 2z f ()t + @)
=a’(t)(1—cos* (27 f (Dt +¢))

ie.  a’(t)cos’2zm f(Ot+gp)=a’(t)—y>(t)

a(t) is unknown slowly varying amplitude, and @ is
unknown phase.

The frequency f(t) is a stochastic process
described by the Ornstein-Uhlenbeck SDE:

df O = (- FO)t+dW O ()

Where W(t) is a Wiener process, & , f# , and y are
unknown parameters .

The Malliavin derivative of y(t), D,Y(t), is derived

as:

D, y(t) = a(t) cos(24f ()t + @)24D, f (t)

=27a(t)cos(2Af ()t + @)D, f (t)

=2zt a(t)cos(2A (Ot + @)y e 1, ()
(3a)
1 selo,t]

here 1 )=
where se[O,t]() {0 elsewhere

D f(t)=y e_“(t_s)lsé[o’t](s) is the

Malliavin derivative of f(t)
D, D, y(t) =—(22t)* a(t) sin(27 f (t)t
+o)y* e eI (0100 (9)

an

Also
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(D,y(®) = (22) a*(t) cos* (24 (t)t + @)D, f (1)D, f (t)

1.€.

(Dy®) =) (@3 t)- y*@®)D, f 4D, f (t)
(3b)

If we have an estimate for a(t) then we know the
Malliavin derivative of y(t).

2.1Why do we need an OU model for the
frequency:

It has been observed that a single sinusoid with
relatively high SNR exhibits a strong peak at the
unknown frequency when the Fourier transform is
applied to segments of the observed data. This is
evident in Fig.1 where we show the Fourier
transform of a signal with constant amplitude and
constant frequency at 10 Hz.

igig 1, Fourier transform of a
single sinusoid
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As we reduce the SNR, the peak is still clear and at
the same location i.e. same value.

In Fig.2a, we present the observed sinusoidal in the
time y(t) of eqn. (1). The frequency follows an OU
process. Notice that the time-varying amplitude
could be estimated through an envelope detector.
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Fig.2a, The observed sinusoidal
with random freqeuncy
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Fig. 3, 10 log magintude of the
Fourier Transform of an EEG signal
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When we model the frequency of the signal as a 10
random quantity that follows an OU process, several 5

things start to happen. The background noise level
increases and several peaks start to emerge at 0
different frequencies as shown in Fig. 2b.
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Sampling Frequency

16 Fig. 2b, Fourier transform of a

14 +—singlerandom ssinusoid ——
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In Fig. 4, we show the Fourier transform of the echo
of Radar targets. We took the Fourier transform

o using two segments of data. We have two targets.
:; J Notice the peaks are moving around and the
3 sy ’ A+ A background noise level is relatively high.
: WIL VAN
e 6 . .
& \/ Fig. 4, 10log magnitude of the
E 4 Fourier Transform of
;o 2 ! simulated two closely spaced
- o targets. Two segments are
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The dominant frequency, in the simulation (which is
supposed to be 10 Hz), starts to move around and 10
small peaks appear and disappear at different 8
locations. This is exactly what we observe for the 6 f
EEG signals, see Fig.3, and for the echo from Radar \ A
targets Fig. 4. N | v
2 —
| |
- < N~ O O OO &N 1N o0 o <
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One could argue that using the Fourier transform
would find the frequency estimate. As we see in Fig.
2b, the random frequency will flatten the Fourier
transform which makes it difficult to estimate the
frequency. Even small but random changes, less than
5%, in the dominant frequency will blur the
spectrum or the Fourier transform. Thus, one has to
resort to time domain estimation techniques albeit
more complicated. The almost flat Fourier transform
should be taken as an indication of the presence of
random frequency.

2.2 TEO for Ampliltude and Frequency
Estimation [1]:

In the TEO method, we assume slowly varying
amplitude and slowly varying frequency. Taking the
first derivative with respect to time of the signal y(t)
we get:

% = a(t)(24f )cos[g(t)]  (4)

where @(t) =24 (H)t+ @)

Taking the second derivative with respect to time,
assuming constant amplitude, we get:

d ;fz(t) =—a(t)(2f )’ sin[4(1)]

=—(24 ) y(t) (5)

Define the energy tracking operator ‘P(y(t)) as:

‘F(y(t))=={5izgzl} yp YO

dt dt? ©)

= {a(t)(27f )cos[(1)]}* +a(t)(27f )’ sin[g(t)]a(t)sin[#(t)]

= a> ()2 ) {l —sin[#(0)]}+a> )2 } sin*[4(1)]

=a’(t)(2A )’
Which has a discrete version [7]:

P(y(n)) = y*(n) - y(n—-1)y(n+1)
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w(ym)= [y’ m-yon-nymn+ )4
Applying the TEO operator we get:

P(y(t))=a’ ()2 )’

O |_ o ‘
\P[ T }_a t)(2f)

Or

(7
and

®)

Hence the estimates of the instantaneous amplitude
and the instantaneous frequency are obtained as:

o

dt
lym)]

B

)

And  a(t) (10)

dt

In this report, it was observe that ‘P(y(n)) is a better

estimate for a(t) i.e. less noisy. Unfortunately it has
to be scaled .

3.Problem Solution; the

Approach:

Proposed

In this section we develop an SDE for the
observations y(t). We use the Ito calculus rules to
find an estimate for the slowly varying amplitude.
Girsanov theory is used to find the maximum
likelihood estimates of the parameters of the OU
process describing the frequency. We also present
the statistical properties of the estimates [see the
Appendix]. The Malliavin calculus is used to find an
estimate for some of the OU parameters.

3.1An SDE for the Observations:

We need to find an estimate for the unknown slowly

varying amplitude a(t) and an estimate for the

unknown parameters of the OU process & , [, and
V.

Using Ito lemma we get an SDE for the observations
y(t) as:
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dy(t) = 8ya(tt) dt + aéi(f) df (t) + %%(df )

(11)
dy(t) =27 f(t)a(t)cos(2z f ()t + @)dt + azit) sin(27z T (Dt + @)dt + (22t )a(t) cos(27 f (D)t + @)df

_ % (22t) a(t)sin(2z f (D)t + @)(df (1))’

B sinar t (1)t + )+ 27 f(Hat) cos2r f Ot + )

dy(t) = dt
+ (27t )a(t) cos(2z f (D)t + @)a(B - f (1)) - % (22t) a(t)sin(27 f (t)t + @)y

+ (27t )a(t) cos(27 T (t)t + @) ydW (t)

~ 0, and we

oa(t)
ot

For slowly varying amplitude
(12)

get:
dy(t) ~ {2;; f (D)a(t) cos(27 f ()t +p)— % (2t)* a(t)sin2z f (Ot +@)y* + (22t )a(t) cos(2z f (DOt +@)a(f - | (t))}dt

+ (27t Ja(t) cos(27 f (D)t +@)ydW (t)

(13) Or

dy(t) =a(t)| 2z f(t)cos(Rzr f (Ot + @) — 1 27) sin(27 f (Ot + @)y + (27t)cos(2x f (D)t +@)a(B — (1)) |dt
2

+ (27t )a(t) cos(27 f ()t + @) dW (1)

N0 =27 02 Oy’ O - () yo’

(152)
which has the form: h(y.0) ( ) (H)cos2 £ )
y,t)=(2xt Ja(t)cos(2z f ()t + @
dy(®) = [h, (y,) + h, (y.0ap + ah, (v, O Jt ’ M
_ ~ (15b)
£, (y.tydW () =(atha’ -y @
(14) hy (y,t) = h,(y.t)(~of (1)) (159
h (y,t) =27z f(t)a(t 27 f ()t +
where 1(1y )=2m Ha)cos@z TOL+¢) 3.2 Amplitude Estimation:
2 .
- E (27Zt) a(t)sin(2z f (Ot + @)y ’ To find an estimate for the diffusion and thus the
amplitude, we square dy(t) to get:
e (dy()) = (22t ) a*(t)cos> (27 ()t + @)y dt

= 27ty a>(t)(1 —sin> (27 f (D)t + @) dlt

ISSN: 2367-895X 250 Volume 10, 2025



International Journal of Mathematical and Computational Methods

Ahmed S. Abutaleb

= (22} (> ®) - y> (@)t (16)

In the above equation we used the Ito rules: dtdt=0,
dtdW=0, dWdW=dt.

Rearrange eqn. (16) and after some manipulations
we get an expression for a(t) as:

1 (dy®)

a’(y=y (t)+(27zt)2;/2 ot

(17

This is an exact expression for the unknown
amplitude a(t). We could improve this estimate by
passing it through a low pass filter made of moving
average. We could also use this equation to find an
estimate for yzprovided that we have an estimate for

a(t). Such an estimate for a(t) could be obtained
through TEO .

3.3 The maximum likelihood estimate of the
OU parameters:

Given the observation y(t), we need to find the
unknown parameters of the OU model of the
frequency. The frequency has the solution:

t

fty=B+e“(f(0)-B)+y j e~ (Ydw (u)
0 (18)

ie.

fO-p=e(f(0-p)+ yfe"(t“)dww)

0

The case when ox =1:

To simplify the analysis, we set the parameter =1.
This will facilitate the analysis and still we have a
good model for the frequency. Thus, the SDE for the
observations y(t) becomes:

27z f(t)a(t)cos(2z f (Ot + @)
dy(t) ~| — %(m)2 a(t)sin(2z f (Ot + @)y’ dt

+(2at)a(t) cos(2z f (Ot + @) (B — (1))

+ (22t )a(t) cos(2z f (D)t + @)ydW (t)

(19)
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For large values of “t”, we have the approximation
(verified through simulation)

dy(t) =~ (27" y(t) e
+ (27t )a(t) cos(2z f(t)t + @)ydW (1)

b

t>>1
(20)

Comparing eqn. (3b) and eqn. (17) we deduce that:

(Ds y(t))2 = % e_Z(t_S)ISE[O,t](S) >

a=1 Q1)

i.e. the Malliavin derivative of y(t) is completely
known from the observed data y(t). Also the
Malliavin derivative of the frequency D,f (t)is

given as:

t
D, f (t) =D, [e dW (u) = y e 1 g y(5), = 1
0
(22)

dy(t) = [h, (y,t) + h, (y,t) 8 + h, (y, t)dt

+h, (y,H)dW (t)
,a=1

For known diffusion term ie. h,(y,t)y is
completely known, the maximum likelihood
estimate of [fis obtained by maximizing the

likelihood function [8, Ch.1]:

FOO.YO) 4 1TDOY0)
A = 7! (y(1)

(23)
Where b(@, y(t)) =[h, (y,t) +h, (y,t) 8+ h, (y,1)]
S (y) = (v, = 2@ M) - y* (1))
0=p

and

ab(8,y(1))/ 60 =h,(y.1)
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13

We could also

f(ty=p+e'(f(0)- )+ 7je‘“(t‘”)dW (u)”.

In this case

use

ob(8,y(t))/ 00 =

oh (y,t _
DD s ehy(y.)

= 27;( —et )a(t) cos(2z f (Ot + @)
+e ' (2at)a(t) cos(27 f ()t + @)
=2ma(t)cos2xr ()t +¢)

+27e7 (t—1)a(t) cos(2z f (Dt + )

=2y (t) - y2(t) + 27z (t - 1)@’ (t) — y* (t)
—omfal () -y’ (Oi+e(t-1)]

The maximization w.r.t. the unknown parameters
results into the equation:

] ab(0,y(1)/ 06

o o (YD)
(24)

[dy(t)—b(@, y(t)dt]=
Substitute into the above equation we get:

T h(y.b)

——=——|dy(t)—(h,(y,t)+h,(y,t h,(y,t))dt|=
| oy @ O- 00 hDs+h 0k
, for given f(t) (25)

1.e.

h, (y,t)

h(y.0) T
_I 2(y(t)

ﬂj o’ (y(t)

which yields

t h2(yat)
=252 Tgyt)y—(h (y,t) + hy (y,1))dt
!Gz(y(t))[yo (h(y,H)+hy(y,t))dt]

3T
hZ (y,t
J‘ (y)

o (Y(t))
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Substitute
S(y) =2 (v,0)7* = 22 @0 - y2())

we get:

! 1

] ( [dy® — (h, (v, ) + hy (v, D)et]
~ ’h t J
ﬂ(T)=}/2 0 7/ 2(y ) .

[dt

0

1 T
= { [h 5 t)J [dy(®)—(h,(y,t)+h, (y,t))dt]
(26)

This is the maximum likelihood estimate of the
unknown /3. This estimate is dependent on a(t) and

f(t). An initial guess for the value of f(t) could be
obtained from the Fourier transform. The estimate
for a(t) is obtained through eqn. (17). Also the
estimate is function of ». The estimate of yis

given below in eqn. (29). It could also be obtained
from eqn. (17) if we use TEO to find a(t).

3.4 Statistical properties of the estimate:

As shown in the appendix, the estimate of [ is

unbiased and its variance equals the Cramer Rao
lower bound.

3.5 An equation for y’:

To find an estimate for ), we obtain an equation for

the Malliavin derivative of y(t). We obtain another
equation from the SDE of y(t). Equating both
equations will yield an expression for the value of

[see the Appendix]. We could also use eqn. (3b)

if we have an estimate for a(t). This estimate could
be found through TEO of eqn. (10).

Recall that:

D, y(t) = 2ta(t) cos(2f (Ot + @)D, f (t)
(27)

Squaring we get:
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(D,y®) = ()@ - y>®)D, f ©)D, f (1)
(28)

From Ito calculus,

1 (y®)

ar®-y (= Cay,

Substitute eqn. (3b) into eqn. (28) we get:

(D.y®) = (dyé?) D, f(®)D, f (1)

(29)

3.6 Estimation of f(t) or »* through the
Malliavin derivative:

We know that the Malliavin derivative of y(t) is
function of a(t) which has been estimated. It is also
function of the value of y . The value of )/2 could

have been estimated if we use an estimate for a(t).
This estimate could be obtained through TEO. In

this case we use eqn. (3b) to find an estimate for }/2.

If we use the Malliavin calclulus alone, we need to
find another equation for (DS y(t))2 . Equating both

expressions we get an estimate for y ?. On the other
hand if we have an estimate for ]/2, we use the

(Ds y(t))2 equation to find and estimate for f(t).
Through the transformation
Z(t) = ( )arcsm y(t), we get an expression for

the Malliavin derivative of z(t), D,z(t), which is

completely known from the observed data y(t)
except for f(t).

D, 2(t) = 1 darcsiny D.y(t)

y(2at)  dy
-1 1 pyw
) oy
(30)

Since the diffusion of the z(t) SDE is unity, the
Malliavin derivative of z(t), D z(t), satisfies an
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ordinary differential equation which could be solved
analytically or numerically. This is the second
equation. Equating both equations we get an
expression for f(t) as function of y(t).

dD,z(t) = agg’ D p2(t)dt,s <t
A

f(D/a? (1) —sin® (z(2t)y)
yt cos(Z(Zzzt);/)

_%(M)y tan(z(22)y ) +

_fo .1
14 2

Where g(z,1) = s
4

[see the appendix eqn. A.7 for the derivation].

The Malliavin derivative D_z(t)has the explicit
solution

D,z(t) = eXpU(%jduJ,s <t

Equating both expressions for the Malliavin
derivative of z(t), eqn. (30) and eqn. (A.10) we get:

L (69(u,2)
Xpm o jd”}
VOO
-y

This is a closed form equation in the value of f(t)
where the right hand side is completely known. The
solution of this equation is not easy and numerical
methods should be employed.

Se[O,t] (S)

Results and Conclusions:

In this Section we simulate a sinusoidal with slowly
varying amplitude and random frequency. We then
apply the proposed method to find an estimate for:

(1) a(t), (2) The parameter of the OU S, (3) f(t),
and (4) ;/2.

Assume that the observed signal y(t ) is given by the
equation:
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y(t) = a(t)sin(27 f(t))
a(t) =0.6sin(2z f,t)
Where f, =1.0

The frequency f(t) is a stochastic process
described by the Ornstein-Uhlenbeck SDE:

df (t) = (B — f(O)dt +dW (1)
where =10, y=0.1

The sampling interval At =0.01

4.1 The estimate of the amplitude and of 7 *

In Fig. 5, we show the true amplitude a(t), the
estimates of the smoothed amplitude using Ito
calculus (MA-Ito) and using TEO (psi(y)MA).

Fig.5, True a(t) and estimated
smoothed amplitude using TEO
(psi(y)-MA, and Ito calculus (MA-Ito)

08
0,6 o]
0,4 / \
0,2

0
N OO MM = n
— N <IN~

113
127
141
155
169
183
197
211
225
239
253

m— (1)

psi(y)-MA

The estimate of ¥ was obtained by minimizing the

sum of squared error between the estimated smooth
amplitude of TEO (eqn.10 ) and the estimated
smooth amplitude of the Ito calculus (eqn. 17). The
estimated amplitudes were biased downward. We
must adjust the estimated amplitudes by multiplying
by a scale factor. Since the amplitude is slowly
varying, the scale factor could be the maximum y(t)
divided by the maximum of the amplitude estimates.
Following the above procedures, we found the
estimate of y =0.09 which is close to the true value.
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4.2 The estimate of f:

Through simulation, it was found that the peak of
the FFT changes from one segment to the other (we
divide the data into segments of 128 points). This is
due to the randomness of the frequency. Taking the
average of the peaks yields good initial estimate for
[ that could be used as an estimate for f{(t) in eqn.

(26).

j[d)’(t)—(hl(yat)Jrh3(y,t))dt]

(26)

~ 1y 1
b m_?![hz(y,t)

Recall that:

N0 =27 FOVa -y’ O - () vy

h, (y,t
2 (%1 Fig.7, True frequency, estimated
= (Zﬂt)\/ frequency using Malliavin calculus,
and estimated frequenc using TEO
followed by moving average
h3 (ya t) 1 25
20
For . 15 — ——f(k)-true
numeri
cal 10 WV f(k)-Malliavin
reason f-TEO-MA
s, one 5
should
make 0
sure —“ O @M~ WL S M
that w0 e gISRA

(estimated a“(t)) > y“(t)
even if we have to scale up the estimates of the
amplitude.

The value of the smoothed ,B(T ) is shown in Fig. 6.
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Fig. 6, Smoothed estimate of beta
12
10 1 bt nn MAAA ANt
8,,,,7, y Ay
6
4
2
0
OO NN MO d NN MO Ad NN M
MmN M™~NOOO N O 0 - MW
I v = = = = N N N

4,3 The estimate of f(t):

It was found that [see the Appendix] the unknown
frequency satisfy the equation:

[f(w)()+()Jdu

1 (dy)”
7/ dt

O ey

=In| — D, f(t)D, f(t)lsem](sﬂ

This is not an easy to solve equation and one has to
resort to numerical methods.

The true frequency, the smoothed estimated
frequency using eqn. (A.12) and the smoothed
estimated frequency using TEO of eqn. 9 are shown
in Fig. 7.

4.4 Conclusions:

In this report we studied a signal that is made of one
sinusoid with random frequency and slowly varying
amplitude. The frequency was modeled as an OU
process. The Ito calculus was used to find an SDE
that describes the signal. The amplitude was
estimated using Ito calculus rules. The Radon-
Nikodym derivative, which is the likelihood
function, was used to estimate the parameters of the
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OU process. The Malliavin calculus was used to find
an estimate for the frequency.

In the future we need to find a closed formula for
discrete Malliavin derivative. This will offer a
different way to study the problem of sum of
sinusoids.

Appendix A

In this appendix we present the derivations for the
statistical properties of the maximum likelihood

estimate of f. We also find the Malliavin calculus
based estimates of f(t) and .

To study the statistical properties of the estimate, we
substitute for:

dy(t) = [h, (y,t) + h, (y,t) 8 + h, (y,t) ]t
+h, (y, /W (1)

into the maximum likelihood equation to obtain:

_ 1 T [hl(yat)+hz(yat)ﬂ+h3(yat)]dt
ﬂ(T)=;![h 5 t)] +h, (y, D)W (1)
_(hl (ya t) + h3 (yat))dt

l T
= j (h 5 t)J {h, (y,0)Adt +h, (y,),dW (t)}

Tl I {pdt + 7w (1)}

;
P
_ﬁ+?_(|:dW(t) (A.1)

Taking the expectation of both sides, we obtain:

E{ﬁ(‘l’)}:ﬂtll_EﬁdW(t)}
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=p (A.2)
1.€. the estimate 1s unbiased.

We now derive an expression for the variance of the
estimate. From eqn. (A.1), we have:

el -) |- (%Jz[EﬁdW(s)ldwa)H
)t

(A.3)

Cramer-Rao lower bound:

In order to find the Cramer-Rao lower bound for the
unbiased estimate, it is easier if we have the
diffusion part unity. Thus, we use a transformation
on the observed SDE as follows:

Find the transformation z=U(y) such that the SDE of
z(t) has unity diffusion. Using Ito lemma we get:

ouU 1 6°U
dz(t) = —dy(t) +—
() 5 JORS ¥
Recall that
dy(t) = [h, (y,t) + h, (y,t)eB + ah, (y,0)dt

+h, (y,)dW (1)

h, (y,t) =27 f(t)a(t)cos2z f(t)t+ @)

where 1

-5 (27t a®sin(27 f Ot + )y’

(dy(v))’

1.€.

N0 =27 FO)a -y — (2) yor
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-1
We need % = 1/(h2(y,t);/)= (Zﬂt) (1— yz)_l/2
(A.4)
Integrating w.r.t. y , we get:
1
z=U(y)=———=arcsin y and
y(2nt)
y =sin(z(27t)y)

2 -1
0 Lj :my(l—yz)%/zand the SDE
v

(A.5)

Thus,

for z(t) becomes:

dz(t) = (@ (az(t) B yz)—l/zJ
[0, (y.t) + h, (v, DB + ah, (y, ) Jdt
+dW (t)

. %(@ yl@m-y?)*"” J(hz (y.t)y) dt

((w) @ (t)_yz)—uzJ(hl(y,t)+h2(y,t>aﬂJ
v

+ah, (y,1)
(@A) v )
{5( p (@*t-vy?) ](hz(y,t)y)J
+dW (t)
!
h,(y,t) + h,(y,t)af + ah, (y,t
) m(y,t)( (y,0) + h, (y,)aB + ahy (v, 1)) .
1
_+ (E hz(y,t)ﬂ/)
+ dW ()
Substitute

h, (y,0) = (27t)a)cos27 f(OL+9) = 2 a O -y h(y,t) =27 f(t)ya’(t) -y —%(Zﬂt)z y®)y®

hy(y,t) = h,(y,H)(= (1))
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=2 f(t)\/az(t)—sinz(Z(Zﬂt)y)—%(27&)27/2 sin(z(27t)y) 1 (hl(y,t)+h2(y, t)aﬂj
dZ: }/hz(y’t) +ah3(y9t) dt+dW(t)

h, (y,t) = (27t )a(t)cos(27 f ()t + @) = (27t)cos(z(27t)y) + G h, (Y, t)yj
hy(y,t) =hy(y.t)(= f (1)

. h(y.9) af__ T
We get: M (Y. t) ) , j 5 Jdt +dW (1),
Substitute y =sin(z(27t)y) we get:

27 f(tnfa’ (O) —sin’ (222)y) - ; )y sineCaty) L5 o),
+__

" Aor)eos(zony) P AT
=g(z,t)dt+dW (t) (A.6)
Where
Rearrange we get:
f(t)ya(t) —sin®(z(22t)y)
dz = ytcos(z(27zt)}/) dt
- Gy an(ay)+ L -atD 2y
2 14 y 2
+dW (1)
[ fmyai ) -sin®(z2at)y) 1 af ) 1
9(z,t) = o cos(Z(27zt)7/) —5(272'()}/ tan(z(2;z't)7/)+7 -a 7 +5 ¥
A.7 A\
(A7) o E{(ﬁ—ﬂ(t)) }2 1 :
The Cramer-Rao lower bound is given as [9, Ch.7]: {t a9(z, S)} }
E¢f ds
oL 9B
__ . _r
E{jazds} @t
(A.8)
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Thus, the variance of the estimates is equal to the Also
Cramer-Rao lower bound.

3g(t.2) _ (y t)eos(z(2at)y)f (0@’ (t) - sin (z(2at)y)) " (- 222t )y )sin(z(2at)y )eos(z(2t)y)

0z (;/ t)2 cos’ (2(272'()7/)
. ety sin(z(2at)y )t (Dya’ () —sin’ (22at)y) 1 otan(z(27t )y)
(1)’ cos?(z(27t)y) 2(27ﬂ)}/ 0z

which is reduced to:

dg(t.2) _ f(vla’(t) - sin*(z(2at)y)) " (- 47)sin(z(22t)y)

oz (}/ t)
27 sin(z2(272 )y ) f (t)/a> (t) — sin?(z(27t )y) ,
—(nt 2t
: S (sec (2ot
exp D (_6g fau’ Z)jdu}
(A.9) s 22 (A1)
All the variables are known except for f(t). _ Lz (dyg[)) D, f(t)D, f (t)lse[O,t] (s)
Define Y
: ()

1 darcsiny z(t) = arcsin y(t)

¢(t,8)=D,z(t) = D, y(t) 4
y(2at)  dy
1 1 Notice that right hand side of eqn. (A.11) is
D, y(®)

completely known at any instant “t”.

“ ) oy

Substitute for D, y(t), we get:

Equation (A.11) has the form:

£(t,s)=D.z(t) = Me(ts)lsqm](s) “f W)+ ()du

1 (dy(t))’
and dg(t,s)zwcj(t,s)dt,sst =In —2( 10) D, f (D, f (D)1, (5)
0z y dt
(A.12)

The Malliavin derivative D_z(t)has the explicit
solution

D,z(t) = exp“(%jdu} s<t (A.10)

This is a closed form equation in the value of f(t).

Equating both expressions for the Malliavin
derivative of z(t) (eqn.29 and eqn. A.10) we get:
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