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variation of parameters type of formula is derived to construct an integral form of the solution.  The uniqueness 

of the solution is established through the least squares solution of a double-sided matrix equation associated 

with the boundary value problem.   
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1 Introduction 
Boundary value problems arise in almost all 

branches of physical sciences and engineering.  The 

methods commonly used in solving two-point 

boundary value problems are based on idea of 

constructing a Green’s function, in the form of an 

integral equation, and such a function give an 

analytical form for the solution of the two-point 

boundary value problems associated with linear 

system of differential equations.  In this paper, our 

focus is to study the first order linear Lyapunov 

system of equations 

 

' ( ) ( ) ( )T A t T TB t F t , a t b             (1) 

where A, B and T are square matrices of order n and 

( )F t  is an n n square matrix and is usually 

regarded as a forcing matrix function. We now 

adjoin the boundary condition in the matrix form 

( ) ( )MT a NT b                          (2) 

where M and N are given square matrices of order n 

and  is also a given square matrix.  The general 

solution of (1) is discussed in [1, 2], where the state 

matrices are non-invertible, and the analysis is based 

on the construction of  -bounded solutions on the 

time scales. An alternative form of linear Sylvester 

system of equations is studied in [3-5], where the 

Kronecker product of matrices is used to derive a 

formula for the general solution of the equations. 

The importance of the Kronecker product boundary 

value problems for linear system of differential 

equations gained momentum in recent years due to 

its applications in system analysis [6-8], matrix 

calculus and stochastic equations [9-11]. The results 

on Moore-Penrose inverse are detailed in [12]. This 

paper is organized as follows: section 2 presents a 

criterion to establish the general solution of (1) in 

terms of two fundamental matrix solutions of 

'T AT and *'T B T , where * refers to the transpose 

of the complex conjugate matrix, and then we 

develop a variation of parameters type of formula to 

obtain the general solution of the two-point 

boundary value problem (1) and (2).  Section 3 is 

concerned with the least squares solution of the 

double-sided system of equations that closely 

related to the solution of the two-point boundary 

value problem in this paper, followed by conclusive 

remarks in section 4. 

 

Yan Wu 
International Journal of Mathematical and Computational Methods 

http://www.iaras.org/iaras/journals/ijmcm

ISSN: 2367-895X 240 Volume 10, 2025



2 Integral form of the solution 
In this section, we shall be concerned with the 

general solution of the two-point boundary value 

problem.  We first present the variation of 

parameters formula, where A, B, and T stand for 

square matrices of order n and we assume that they 

are all functions of t on [a, b], Y is a fundamental 

matrix solution of ' ( )T A t T  and Z stands for a 

fundamental matrix solution of *' ( )T B t T . 

Theorem 2.1 T is a solution of ' ( ) ( )T A t T TB t  if 

and only if *T YCZ , where C is a constant n by n 

matrix. 

Proof: It is easily verified that T defined by 
*T YCZ  is a solution of ' ( ) ( )T A t T TB t , since 

* *' * *' ' ( ) ( )

( ) ( ) ( ) ( )

T Y CZ YCZ A t YCZ YCZ B t

A t T t T t B t




 

 
Hence, *T YCZ is a solution of (1) with ( ) 0F t  .  

In order to prove that every solution of this equation 

is of the form *T YCZ , let T be a solution and K be 

a matrix given by the equation 1K Y T . Then, 

' 'Y K YK AYK YKB , which leads to *'K KB or 
*' *K BK .  Since Z is a fundamental matrix solution 

of *' ( )T B t T , it follows that there exists a constant 

matrix *C such that * *K ZC , and it is readily seen 

that *T YK YCZ .  

 

We now turn to the non-homogeneous Lyapunov 

system (1). Any solution of the homogeneous linear 

Lyapunov system is of the form *YCZ , where Y is a 

fundamental matrix solution of ' ( )T A t T  and Z 

stands for a fundamental matrix solution of 
*' ( )T B t T . Such a form cannot be a solution of (1) 

where ( ) 0F t  .  Let ( )T t be any solution of (1) and 

( )T t be a particular solution of (1). Then, ( ) ( )T t T t is 

a solution of 

                   ' ( ) ( )T A t T TB t .                        (3)                

Therefore, *( ) ( ) ( ) ( )T t T t Y t CZ t  or  

*( ) ( ) ( ) ( )T t T t Y t CZ t .                    (4)                                                    

We seek a particular solution of (1) in the form 

*( ) ( ) ( ) ( )T t Y t C t Z t . 

Then, from (1), we have  

'( ) ( ) ( ) ( ) ( ) ( )T t A t T t T t B t F t . 

Hence, as a result of (2) and (3), we have  

* * *'

* *

'( ) ( ) ( ) ( ) '( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

Y t C t Z t Y t C t Z t Y t C t Z t

A t Y t C t Z t Y t C t Z t B t F t




. 

Since Y and Z are fundamental matrix solutions of 

' ( )T A t T  and *' ( )T B t T , respectively, it follows 

that  

* * *

* *

( ) ( ) ( ) ( ) ( ) '( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

A t Y t C t Z t Y t C t Z t Y t C t Z t B t

A t Y t C t Z t Y t C t Z t B t F t




 

Hence, it follows that *( ) '( ) ( ) ( )Y t C t Z t F t , from 

which,  
11 *'( ) ( ) ( ) ( )C t Y t F t Z t

 , then,  

11 *( ) ( ) ( ) ( )
t

a
C t Y s F s Z s ds

   

Hence, a particular solution ( )T t of (1) is given by 

11 * *( ) ( ) ( ) ( ) ( ) ( )
t

a
T t Y t Y s F s Z s ds Z t


 


  

and then, any solution ( )T t of (1) can be written 

as 

11 * * *( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
t

a
T t Y t Y s F s Z s ds Z t Y t CZ t


 


  (5) 

Note that in the equation (1), if we take *B A , then  

*'( ) ( ) ( ) ( )T t A t T TA t F t                (6) 

which is known as the non-homogeneous Lyapunov 

system. 

Theorem 2.2 If Y is a fundamental matrix solution 

of ' ( )T A t T , then the conjugate transpose *Y  is a 

fundamental matrix solution of *' ( )T TA t  

Proof: Differentiate both sides of the identity 
1( ) ( )Y t Y t I  with respect to t, we get 

 
1 1'( ) ( ) ( )( ( )) ' 0Y t Y t Y t Y t   
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1( )( ( )) ' ( )Y t Y t A t   

1 1( ) 'Y Y A  . 

 
Hence, 1( )Y t is a fundamental matrix solution of 

'( ) ( ) ( )T t T t A t .  Similarly, from 
1* *( ) ( )Y t Y t I



 , we 

have, after differentiating both sides with respect to 

t,  

1 1

1 1

* * * *

* * * * *

( ) ' ( ) ' 0

( ) ' 0

Y Y Y Y

Y A Y Y Y








. 

from which, we have 
1 1* * *( )'Y A Y



 . Hence, 
1*Y



is 

a fundamental matrix solution of the system 
*'( ) ( ) ( )T t A t T t .  Now, since Y is a fundamental 

matrix solution of ' ( )T A t T , we have 'Y AY , as 

such, * * *( ) 'Y Y A , and hence *Y is a fundamental 

matrix solution of *' ( ) ( )T T t A t . 

 

Theorem 2.3 Any solution of the non-homogeneous 

Lyapunov system (6) is given by  

1* 1 * *( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
t

a
T t Y t CY t Y t Y s F s Y s ds Y t




  

The proof is immediate if we simply realize that 
* *Z Y in Theorem 2.1. 

We are ready to move on to the two-point boundary 

value problem (1) that satisfies the boundary 

conditions (2).  Substituting the general solution of 

(1) given by (5) in the boundary condition matrix 

equation (2), we get 

1

* *

1 * *

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )
b

a

MY a CZ a NY b CZ b

Y b Y s F s Z s ds Z b 





 



 

and then,  

* *( ) ( ) ( ) ( )MY a CZ a NY b CZ b  , 

 

where 
11 * *( ) ( ) ( ) ( ) ( )

b

a
Y b Y s F s Z s ds Z b




 , or the 

equation can be written into a matrix product form 

 
*

*

0 ( )
( ) ( )

0 ( )

C Z a
MY a NY b

C Z b



 
 

 

 

which is written symbolically as RXS T , where 

 ( ) ( )R MY a NY b , 
0

0

C
X

C






, and 
*

*

( )

( )

Z a
S

Z b


 


.   

 

Since R and S are rectangular matrices of orders n 

by 2n and 2n by n matrices, respectively, and non-

invertible in the normal sense, we analyze the 

general form of X in the best least squares sense. 

 

3 Least squares solution to a double-

sided matrix equation 
We will investigate the solution of the following 

double-sided matrix equation with the previously 

developed results, 

 
RXS T                                 (7) 

where R, S, and T are given 2n n , 2n n and n n  

matrices.  Such a double-sided matrix problem 

arises from encryption/decryption of color images, 

control theory, and scientific computing. Depending 

on the applications, the matrices R and S can be 

block Toeplitz, circulant, or unitary. The matrix 

nearness problem considered here is more general 

and we assume that the system (7) is consistent, 

by which a system of equations is said to be 

consistent if it has at least one solution.  The 

implicit form of the best least squares solution of the 

problem over the set of symmetric and skew-

symmetric solution space of the problem (7) will 

be presented in this section.  Let 2n nR  , 2 2n nSR  , and 
2 2n nSSR  be the set of all 2n n real matrices, the set 

of all 2 2n n real symmetric matrices, and the set of 

all 2 2n n skew-symmetric matrices, respectively.  

We denote that TA , A , and A  be used in the 

usual sense, namely, the transpose, Moore-Penrose 

inverse, and the Frobenius 2-norm of the matrix A.  

We also adopt the symbol, vect( ), for the vector 

operator, .e.g. 1 2vect( ) ( , , ..., ) T T T
nA A A A for vectorizing 

the matrix 1 2( , , ..., ) n n
nA A A A R  . Furthermore, the 

Kronecker product of matrices R and S, ( )R S , is 

defined as  

ijR S R S , , 1,2,...,i j n . 
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If R is an m n matrix and S is a p q matrix, then 

( )R S  is an mp nq matrix.  In the literature, many 

authors assumed that the system of equations (7) is 

consistent.  But, equation (7) rarely satisfies the 

consistent condition, since matrices R, S, and T in 

practice are usually constructed from experiment 

data. In this section, we shall be concerned with the 

best least squares solution of (7) in a heuristic way.  

Our interest is in the matrix nearness problems; as 

such we have the following two cases: 

Case 1: For given matrices 2n nR   , 2n nS   , and 
n nT   , let GE be the set of all solutions of the 

consistent system (7).  For a given matrix 
2 2

0
n nX   , we find ˆ

GX E such that  

0 0
ˆ min

GX E
X X X X


 . 

Case 2: For given matrices R, S, and T, let EE be the 

set of all least squares solutions of the minimum 

residual problem 

2 2
min

n nX
RXS T





. 

For a given matrix 2 2
0

n nX   , find ˆ
EX E such that 

0 0
ˆ min

EX E
X X X X


  

In fact, what we are interested in among the two 

cases is to find the best least squares  solutions for a 

given matrix 2 2
0

n nX    over the set of general 

solutions GE  and the set of least squares solutions 

EE of the matrix equation (7), respectively.  

Therefore, it is essential to find the best approximate 

solutions of system (7) in an implicit form.  In order 

to relate our results to existing works in this area, 

we refer to the papers of Peng [13, 14].  They 

established an iterative method to solve the system 

of equations of a similar type with the Frobenius 

norm residual problem.  The two cases we 

mentioned above are to find the best approximate or 

least squares solution of (7).  These problems are 

known as the matrix nearness problems in the 

literature.  The matrix nearness problem is important 

in solving two-point boundary value problems.  In 

general, numerical algorithms or iterative methods 

for solving these problems are available in the area.  

Using the Moore-Penrose inverse, the implicit form 

of the solution is obtained in this section.  We need 

the following preliminary results to establish our 

main results. 

The vector 1
0

nx   is said to be the best 

approximate solution of the linear system of 

equations, Ax b , where m nA   , if and only if  

(a) 0 0( ) ( ) ( ) ( )T TAx b Ax b Ax b Ax b , 1nx    

(b) 0 0
T Tx x x x  for all 1

0\{ }nx x   satisfying 

0 0( ) ( ) ( ) ( )T TAx b Ax b Ax b Ax b . 

The vector 1
0

nx   is a least squares solution to the 

matrix inconsistent system Ax b if and only if 

( m nA   ) 0 0( ) ( ) ( ) ( )T TAx b Ax b Ax b Ax b for all 

1nx   . 

Let A be an ( m n ) matrix.  Then the generalized 

inverse of the matrix A of ( n m ) is defined as 

(i) AA A A  , (ii) A AA A  , (iii) *( )AA AA  , 

and (iv) *( )A A A A  . It is known that the matrix 

A with the above properties is unique and is known 

as the Moore-Penrose inverse.  The following 

results will be used to derive the least squares 

solution to (7). 

Let GE be the set of all solutions to the consistent 

system Ax b .  For a given 1
0

nx   , the vector 

ˆ
Gx E satisfying 0 0

ˆ min
Gx E

x x x x


  is given by  

0
ˆ ( )Tx A b I A A x                    (8) 

Similar result can be obtained for inconsistent 

systems Ax b  over the set of least squares 

solutions, EE , to the system.   

In what follows, we discuss the best least squares 

solution of (7).  It is assumed that the matrix 

equation RXS T  is an inconsistent system. The 

fundamental question that arises is if we can find a 

matrix X such that RXS T  is minimal. A matrix X 

Yan Wu 
International Journal of Mathematical and Computational Methods 

http://www.iaras.org/iaras/journals/ijmcm

ISSN: 2367-895X 243 Volume 10, 2025



that minimizes RXS T is known as an approximate 

solution to the system (7).  The matrix 2 2ˆ n nX    is 

called the best approximate solution to (7) if it 

satisfies the following two conditions: 

(i) ˆRXS T RXS T  for all 2 2n nX    and 

(ii) ˆX X  for all matrices 2 2 ˆ\{ }n nX X   

satisfying ˆ .RXS T RXS T  

We note that a vector of order 4 1mnx    stands for 

the vector(X) since 2 2m nX   .  Using this notation 

we can always write system of equations RXS T  in 

the form 

( )TS R x t                              (9) 

where TS R  is the Kronecker product of the two 

matrices TS and R, and vector( )t T .  Consequently, 

the solution of the system of equations (7) can be 

obtained via solving the linear system of equations 

(9).  Now, we have the following theorem for the 

best least squares solution of (7). 

Theorem 4.1: Let the system of equations (7) be 

consistent. Then, for a given matrix 2 2
0

n nX   , the 

matrix ˆ
GX E  satisfying  

0 0
ˆ min

GX E
X X X X


  

is given by 

0 0
ˆ T TX R TS X R RX SS  

Proof: For any GX E , it can be written as  

T TX R TS H R RHSS                (10) 

for some 2 2n nH   .  Also, note that equation (7) is 

equivalent (9). Then,  the equation (10) is equivalent 

to the following equation 

( ) [ ( ) ( )]T T T Tx S R t I S R S R h . 

 The problem is turned into finding the best least 

squares solution of the usual linear system of 

equations of the form ( )TS R x t , and according to 

(8), the best least squares solution that satisfies 

nearness condition is given by 

 

0
ˆ ( ) [ ( ) ( )]T T T Tx S R t I S R S R x        (11) 

 

In the matrix form, correspondingly, the least 

squares solution (11) is given by 

 

0 0
ˆ T TX R TS X R RX SS . 

 

 

 

4 Conclusion 
In this paper, we applied the variation of parameters 

technique to derive a closed form solution of the 

first order non-homogeneous Lyapunov system of 

differential equations associated with general two-

point boundary conditions. The uniqueness of the 

solution is established through the least squares 

solution to a double-sided matrix equation that 

satisfies the nearness constraint.  Our future work 

includes exploring applications of the proposed 

algorithm in image processing, new preconditioning 

techniques in solving large sparse systems of linear 

equations, and developing robust methods in 

eigenstructure assignment of closed loop systems. 
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