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Abstract: - In this paper, we present results on the existence and uniqueness of a solution to the first order non-
homogeneous Lyapunov system of differential equations satisfying general two-point boundary conditions. A
variation of parameters type of formula is derived to construct an integral form of the solution. The uniqueness
of the solution is established through the least squares solution of a double-sided matrix equation associated

with the boundary value problem.
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1 Introduction
Boundary value problems arise in almost all
branches of physical sciences and engineering. The
methods commonly used in solving two-point
boundary value problems are based on idea of
constructing a Green’s function, in the form of an
integral equation, and such a function give an
analytical form for the solution of the two-point
boundary value problems associated with linear
system of differential equations. In this paper, our
focus is to study the first order linear Lyapunov
system of equations

T'= AT +TB()+F(t), a<t<b

(1)
where 4, B and T are square matrices of order n and
F(1)

regarded as a forcing matrix function. We now
adjoin the boundary condition in the matrix form

is an mXxmnsquare matrix and is usually

MT(a)+ NT(b) = « Q)
where M and N are given square matrices of order n
and «is also a given square matrix. The general
solution of (1) is discussed in [1, 2], where the state
matrices are non-invertible, and the analysis is based
on the construction of ¢ -bounded solutions on the

ISSN: 2367-895X

240

time scales. An alternative form of linear Sylvester
system of equations is studied in [3-5], where the
Kronecker product of matrices is used to derive a
formula for the general solution of the equations.
The importance of the Kronecker product boundary
value problems for linear system of differential
equations gained momentum in recent years due to
its applications in system analysis [6-8], matrix
calculus and stochastic equations [9-11]. The results
on Moore-Penrose inverse are detailed in [12]. This
paper is organized as follows: section 2 presents a
criterion to establish the general solution of (1) in
terms of two fundamental matrix solutions of
T'=AT and T'=B'T, where * refers to the transpose
of the complex conjugate matrix, and then we
develop a variation of parameters type of formula to
obtain the general solution of the two-point
boundary value problem (1) and (2). Section 3 is
concerned with the least squares solution of the
double-sided system of equations that closely
related to the solution of the two-point boundary
value problem in this paper, followed by conclusive
remarks in section 4.
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2 Integral form of the solution

In this section, we shall be concerned with the
general solution of the two-point boundary value
problem. We first present the wvariation of
parameters formula, where 4, B, and T stand for
square matrices of order n and we assume that they
are all functions of ¢ on [a, b], Y is a fundamental
matrix solution of T'=A4()T and Z stands for a

fundamental matrix solution of 7'= B (1)T .

Theorem 2.1 7 is a solution of 7'= AT +7TB() if

and only if 7=vcz", where C is a constant n by n
matrix.

Proof: It is easily verified that 7" defined by
T=ycZ" is a solution of 7'= 4T +7TB(@), since

T'=Y'CZ +YCZ" = AQt)YCZ" +YCZ B(r)
=ANT@)+T(@)B()

Hence, 7=vCZ"is a solution of (1) with F()=0.
In order to prove that every solution of this equation
is of the form 7=vcz", let T be a solution and K be
a matrix given by the equation K=y 'T. Then,
Y'K +YK'= AYK + YKB , which leads to K'=kKB"or
K" =BK". Since Z is a fundamental matrix solution
of T'=B)T, it follows that there exists a constant
matrix C"such that K" =ZzC", and it is readily seen
that 7 =YK =YCZ".

[l

We now turn to the non-homogeneous Lyapunov
system (1). Any solution of the homogeneous linear
Lyapunov system is of the form vcz", where Y is a
fundamental matrix solution of 7'=4(7r and Z
stands for a fundamental matrix solution of
7'=B"()T . Such a form cannot be a solution of (1)
where F(1)=0. Let T(r) be any solution of (1) and
T(t) be a particular solution of (1). Then, 7(r)—T(t)is

a solution of

T'= AT +TB(7). 3)
Therefore, T(t)—T () =Y()CZ (1) or
T(t)=T(t)+Y()CZ (7). (4)

We seek a particular solution of (1) in the form
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T()=Y()C)Z (1) .
Then, from (1), we have
T'(t)= AT )+ T()B(1t)+ F(7) .
Hence, as a result of (2) and (3), we have

Y'(O)CWH)Z () +Y()C')Z (1) +Y()CH)Z" (1)
= ADOY(OCH)Z )+ Y()C(O)Z (t)B(t) + F(t)

Since Y and Z are fundamental matrix solutions of
T'=AMNT and T'=B'()T, respectively, it follows
that

ADYOCHZ" () +Y(OC()Z ™ (£) + Y()C(H)Z (£)B(¢t)
= AOY(O)CHZ () +Y()C)Z (t)B(t) + F(1)

Hence, it follows that Y(1)C'(t)Z"(t)=F(t), from
which, C'()=Y "()F()Z" (), then,

co=[ Y U)F()Z" (5)ds
Hence, a particular solution 7'(¢) of (1) is given by

()= Y(t)l f Y $)F()Z (s)ds|Z" (1)

and then, any solution 7(¢)of (1) can be written

as
T(t) = Y(f)[f: Y SF$)Z" (5)ds|Z' (0)+Y()CZ' (1) (5)

Note that in the equation (1), if we take B= 4", then
T'(t)= AT +TA () + F(2) 6)

which is known as the non-homogeneous Lyapunov
system.

Theorem 2.2 If Y is a fundamental matrix solution
of T'= AT, then the conjugate transpose Y~ is a

fundamental matrix solution of 7'=74"(r)

Proof: Differentiate both sides of the identity
Y()Y (1) = I with respect to ¢, we get

YOy ' O+ Y@ (1) =0

Volume 10, 2025



Yan Wu

Y)Y (1) =—A@)
¥ H=-v'4.

Hence, Y !(r)is a fundamental matrix solution of
T'()=—-T(@®)A() . Similarly, from Y)Y ¢)=1, we
have, after differentiating both sides with respect to
t,

@YY +Y @ ) =0
YAY 47 @y=0

from which, we have (v"')'=—4v"'. Hence, ¥" ' is
a fundamental matrix solution of the system
T'()=—-A"®"T(). Now, since Y is a fundamental
matrix solution of 7'=A(#)T, we have Y'=4Y, as
such, (¥")'=Y"4", and hence Y'is a fundamental
matrix solution of 7'=T()4"(r) .

l

Theorem 2.3 Any solution of the non-homogeneous
Lyapunov system (6) is given by

T()=Y®)CY (t) + Y(t)[ f rY’l(s)F(s)Y* (s)ds|Y' (1)

The proof is immediate if we simply realize that
Z"=Y"in Theorem 2.1.

We are ready to move on to the two-point boundary
value problem (1) that satisfies the boundary
conditions (2). Substituting the general solution of
(1) given by (5) in the boundary condition matrix
equation (2), we get

MY (a)CZ (a)+ NY(b)CZ" (b) +

b w1 *
Y(b) f Y $)F()Z" (5)ds|Z"(b) = a

and then,

MY (a)CZ  (a) ++NY(B)CZ (b)) =0,

where g=a—Y(b) f bY“l(s)F(s)Z* '(s)ds|Z* (), or the

equation can be written into a matrix product form

c 0
0 C

Z"(a)
Z'(b)

=

MY(a) NY(b) {

ISSN: 2367-895X

International Journal of Mathematical and Computational Methods

242

http://www.iaras.org/iaras/journals/ijmcm

which is written symbolically as RXS =T , where
Z'(a)
Z"(b)

0
,and S =

R= MY(a) NY(b) , X_{g c

Since R and S are rectangular matrices of orders »
by 2n and 2n by n matrices, respectively, and non-
invertible in the normal sense, we analyze the
general form of X in the best least squares sense.

3 Least squares solution to a double-

sided matrix equation

We will investigate the solution of the following
double-sided matrix equation with the previously
developed results,

RXS =T

(7

where R, S, and T are given nx2n, 2nxnand nxn
matrices. Such a double-sided matrix problem
arises from encryption/decryption of color images,
control theory, and scientific computing. Depending
on the applications, the matrices R and S can be
block Toeplitz, circulant, or unitary. The matrix
nearness problem considered here is more general
and we assume that the system (7) is consistent,
by which a system of equations is said to be
The
implicit form of the best least squares solution of the

consistent if it has at least one solution.

problem over the set of symmetric and skew-
symmetric solution space of the problem (7) will
be presented in this section. Let rR™?", SR**", and
SSR*™*" be the set of all nx2nreal matrices, the set
of all 2nx2n real symmetric matrices, and the set of
all 2nx2n skew-symmetric matrices, respectively.
We denote that 4", 4", and |4] be used in the
usual sense, namely, the transpose, Moore-Penrose
inverse, and the Frobenius 2-norm of the matrix A.
We also adopt the symbol, vect( ), for the vector
operator, .e.g. vect(4)=(4/, A4, .., A") for vectorizing
the matrix A=(4,4,,..,4,)€R”" . Furthermore, the
Kronecker product of matrices R and S, (R®S), is
defined as

ROS=R;S, i,j=12,.n.
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If R is an mxnmatrix and S is a pxg¢ matrix, then
(R®S) is an mp xng matrix. In the literature, many
authors assumed that the system of equations (7) is
consistent. But, equation (7) rarely satisfies the
consistent condition, since matrices R, S, and 7T in
practice are usually constructed from experiment
data. In this section, we shall be concerned with the
best least squares solution of (7) in a heuristic way.
Our interest is in the matrix nearness problems; as
such we have the following two cases:

Case 1: For given matrices RecR"”*", ScR*™", and
TeR™, let E;be the set of all solutions of the
consistent system (7).
X, eR*? we find X € E; such that

For a given matrix

o]~ il
Case 2: For given matrices R, S, and 7, let E, be the

set of all least squares solutions of the minimum
residual problem

min
X c RZ’!XZ n

|RXS —T|.
For a given matrix X, e R>**, find X e E, such that

| & x| = min | x - x|

X€EE,

In fact, what we are interested in among the two
cases is to find the best least squares solutions for a
given matrix X, cR*”*" over the set of general

solutions E; and the set of least squares solutions

E;of the matrix equation (7), respectively.

Therefore, it is essential to find the best approximate
solutions of system (7) in an implicit form. In order
to relate our results to existing works in this area,
we refer to the papers of Peng [13, 14]. They
established an iterative method to solve the system
of equations of a similar type with the Frobenius
norm residual problem. The two cases we
mentioned above are to find the best approximate or
least squares solution of (7). These problems are
known as the matrix nearness problems in the
literature. The matrix nearness problem is important
in solving two-point boundary value problems. In
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general, numerical algorithms or iterative methods
for solving these problems are available in the area.
Using the Moore-Penrose inverse, the implicit form
of the solution is obtained in this section. We need
the following preliminary results to establish our
main results.

the best

approximate solution of the linear system of

The vector x,eR™'is said to be

equations, 4x=5, where 4cR™", if and only if
(a) (Ax—b)" (Ax—b) > (Ax, —b) (Ax, —b) , Yx € R™

(b) for all xeR™\{x}

(Ax —B) (Ax —b) = (Axy —b)' (Ax, —b) .

x> xgx, satisfying

The vector x,c R™"'is a least squares solution to the
matrix inconsistent system Ax=»if and only if
(AE€R™") (Ax—b)" (Ax —b) > (Ax, —b)" (4x, —b) for all

xe Rnxl

Let A be an (mxn) matrix. Then the generalized
inverse of the matrix 4" of (nxm) is defined as

(1) A4"a=4, (ii) ATa4t=4", (iii) (447) = 44",
and (iv) (4"4)" = 4"4. It is known that the matrix
A" with the above properties is unique and is known
as the Moore-Penrose inverse. The following
results will be used to derive the least squares

solution to (7).

Let E_.be the set of all solutions to the consistent

system Ax=b. For a given x,cR™, the vector

X € Eg satisfying |z — x| = miEn"x — x| is given by
xekg

X=Ab+ U — A" A)x, 8
Similar result can be obtained for inconsistent
systems Ax=»b over the set of least squares

solutions, £, to the system.

In what follows, we discuss the best least squares
solution of (7). It is assumed that the matrix
equation RXS=T 1is an inconsistent system. The
fundamental question that arises is if we can find a
matrix X such that |RXS—7] is minimal. A matrix X
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that minimizes |RXS —T]/is known as an approximate

solution to the system (7). The matrix X e R*™" is
called the best approximate solution to (7) if it
satisfies the following two conditions:

(i) [[Rxs — 7| >RAs ~ 7] for all x e and

(i) |lx]> ||X|| for all matrices X eR>\{X}
satisfying ||RXS — 7= "RXS - T||
We note that a vector of order xeR*™! stands for

the vector(X) since X e R*™?".
we can always write system of equations RXS=7 in

Using this notation

the form

STQR)x=t

)

where S” @R is the Kronecker product of the two
matrices S’ and R, and ¢=vector(7). Consequently,
the solution of the system of equations (7) can be
obtained via solving the linear system of equations
(9). Now, we have the following theorem for the
best least squares solution of (7).

Theorem 4.1: Let the system of equations (7) be
consistent. Then, for a given matrix X, c R*>*", the

matrix X € E, satisfying

| = x| = min [ — xq

X€E,
is given by
X =R'TS" 4+ X, — RTRX,SS”
Proof: For any X € E, it can be written as

X =R'TS" + H— RTRHSST

(10)

for some H eR*> . Also, note that equation (7) is

equivalent (9). Then, the equation (10) is equivalent
to the following equation

x=T QR 1+ = (STOR) (ST @R .

The problem is turned into finding the best least
squares solution of the usual linear system of
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equations of the form (S” ® R)x =, and according to
(8), the best least squares solution that satisfies

nearness condition is given by
=T @R 1+ - (ST @R (ST @ R)Ix, (11)

In the matrix form, correspondingly, the least
squares solution (11) is given by

X =R'TS™ + X, —RTRX,SS" .

4 Conclusion

In this paper, we applied the variation of parameters
technique to derive a closed form solution of the
first order non-homogeneous Lyapunov system of
differential equations associated with general two-
point boundary conditions. The uniqueness of the
solution is established through the least squares
solution to a double-sided matrix equation that
satisfies the nearness constraint. Our future work
includes exploring applications of the proposed
algorithm in image processing, new preconditioning
techniques in solving large sparse systems of linear
equations, and developing robust methods in
eigenstructure assignment of closed loop systems.
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