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Abstract: This article is about new properties of some special matrices. Matrices of special sequences such as
Naryana, Fibonacci and Lucas sequences are studied. New properties are obtained on the Binet formulas of these
sequences. The three-row column matrix existing in the literature is analyzed. This column matrix is moved to
a new regular matrix order 3rd. Comparisons are made between square matrices formed by special sequences.
The basic relationships between products and divisions are given. Solution methods of linear matrix equations
are considered. Some results on new properties with this approach are given. Studies of Binet’s formula between
special sequences are presented.
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1 Introduction
Pandit made an important contribution to the study of
sequences in the 14th century by solving the natural
problem. He obtained the number series of this natural
problem. The problem describes the natural relation-
ship between a cow and her calf. In short, the story
is ”A cow gives birth to a calf every year [1]. Peso-
vic and Pucanović studied generalized Narayana num-
bers. They studied the conditions under which the cir-
culant matrix and the skew circulant matrix are invert-
ible [2]. Bensella and Behloul generalized Narayana’s
cow numbers and calculated Fibonacci numbers. The
Narayana sequence is characterized by a third-order
recurrence relation as follows [3]

Nn = Nn−1 +Nn−3, n ≥ 3, (1)

where N0 = 0,N1 = 1, and N2 = 1.
In addition to the Naryana sequences, Jacobsthal,

-Oresme-Lucas, Leonardo, Gaussian Fibonacci and
Mersenne sequences are known [4–8]. Altıparmak,
Akkuş and Özkan studied the relationship between
Fibonacci and Lucas sequences and calculated new
properties [9].

For n ∈ N, Fibonacci numbers Fn, Lucas num-
bers Ln, respectively, are

Fn+2 = Fn+1 + Fn (2)

where F0 = 1,F1 = 1.

Ln+2 = Ln+1 + Ln (3)

with F0 = 2,F1 = 1.
The main applications of these sequences are

Graph Theory, Biomathematics, Chemistry and Engi-
neering.

2 Matrix of Sequences and Notation
Let us start with matrix of Naryana sequence.

Definition 1 Matrix of Narayana sequence (MNS) is
defined by

{Nn}∞n=0 =


 1 0 0

0 1 0
0 0 1

 ,

 1 0 1
1 0 0
0 1 0

 , 1 1 1
1 0 1
1 0 0

 ,

 2 1 1
1 1 1
1 0 1

 , . . . ,Nn, . . .


(4)

with being the initial matrices

N0 =

 1 0 0
0 1 0
0 0 1

 ,N1 =

 1 0 1
1 0 0
0 1 0

 ,

N2 =

 1 1 1
1 0 1
1 0 0

 (5)
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and

Nn =

 Nn+1 Nn−1 Nn

Nn Nn−2 Nn−1

Nn−1 Nn−3 Nn−2

 . (6)

In this new definition, any path of the matrix
traced partially to the right and down, such as a stair
step with broken lines, is given below, representing a
Fibonacci sequence of matrices.

Definition 2 Matrix of Fibonacci sequence(MFS) is
defined by

Fn =


F1 F2 F3 · · · Fn

F2 F3 F4 · · · Fn+1

F3 F4 F5 · · ·
...

...
...

...
...

...
Fn Fn+1 Fn+2 · · · F2n−1

 (7)

with fij = Fi+j−1, i, j = 1, · · · , n. That is

Fn = [fij ]n . (8)

The MFS and the MLS are investigated using the
product and division properties of matrices in the
MNS [14]. For any p ∈ R, MFS is

Fn(p) =


p 1 0 · · · 0
0 0 1 · · · 0
...

...
...

...
...

p− 1 0 0 · · · 1
1 0 0 · · · 0


n

. (9)

If p = 2, n = 3, then

F3(p) =

 p 1 0
p− 1 0 1
1 0 0

 . (10)

Definition 3 ( [10]) Matrix of Lucas sequence(MLS)
is defined by

Ln =

 Ln+1 Ln−1 Ln

Ln Ln−2 Ln−1

Ln−1 Ln−3 Ln−2

 , n ∈ Z+. (11)

If n = 0, then

L0 =

 0 3 −2
−2 2 3
3 −5 2

 . (12)

Some notations are given below.

• The set of all n × n diagonal matrices
over a field F is denoted by Dn(F) =
{[aij ]|aij ∈ F, aii ̸= 0, aij = 0 for i ̸= j} .

• The set of all regular matrices order n over a field
F is denoted by Mn(F) = {[aij ]n|aij ∈ F} .

• The (ij)th co-factor of matrix A is denoted by
C(A)ij .

The row and column co-divisors given below are
expressed in different notation.

Definition 4 ([Keleş [11–13]]) Let A,B ∈ Mn(F).
Then,

(i) The determinant of the new matrix obtained by
writing the ith column of the matrix B on the jth

column of the matrix A is called ijth the column
co-divisor of the matrix B on the matrix A and

denoted by dcij

(
B
A

)
. That is,

dcij

(
B
A

)
=

n∑
j=1

aijC(A)ij , for some i = 1, ..., n.

For the two matrices satisfying the above condi-
tions, the matrix division is also given by

B

A
:=

1

|A|

[(
dcij

(
B
A

))
ji

]
. (13)

and the solution of the equation AX = B is X =
B

A
.

(ii) The determinant of the new matrix obtained by
writing the ith row of the matrix B on the jth row
of the matrix A is called ijth the row co-divisor
of the matrix B on the matrix A and denoted by
drij(BA). That is,

drij(BA) =

n∑
j=1

aijC(A)ij , for some i = 1, ..., n.

The solution of the linear matrix equation XA =
B is

X =
1

|A|

[(
drij(BA)

)
ij

]
(14)

Their number of co-divisor of columns and rows is n2.

Corollary 5 If A ∈ Mn(F), then there exists B ∈
Mn(F) such that A = BA1, for some A1 ∈ Mn(F).
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Proof: If A ∈ Mn(F), then for any B ∈ Mn(F), B|A,
so A = BA1, for some A1 ∈ Mn(F).

Two different regular matrices of the same order
that are different from the unit matrix always have a
common factor.

Lemma 6 If A,B ∈ Mn(F), then there exists C1 ∈
Mn(F) such that A = C1A1, B = C1B1, for some
A1, B1 ∈ Mn(F).
Proof: If A,B ∈ Mn(F), then for any C1 ∈ Mn(F)

C1|A,A = C1A1 for some A1 ∈ Mn(F).
and

C1|B,B = C1B1 for some B1 ∈ Mn(F).

Corollary 7 If Let A ∈ Mn(F) then

A = C1C2...Ck, for some , C1, ..., Ck ∈ Mn(F), k ∈ Z+.

Proof: The proof of this corollary is clear by Corol-
lary 5.

Theorem 8 (Keleş [11, 13]) Let A,B ∈ Mn(F).
Then there exist A1, A2, B2 ∈ Mn(F) such that A =
A1A2 and B = A1B2. Therefore.

A

B
=

A1A2

A1B2
=

A2

B2
.

Proof: This proof is clear by Lemma 6.

Theorem 9 ( [13]) Let A,B ∈ Mn(F) be any two el-
ements and the linear matrix equation is XA = B.
The following holds.

X =
(
BT

AT

)T
.

Theorem 10 ( [10]) Binet’s formula of MNS is
Aαn + Bβn + Cγn where α, β, γ are the roots of
the equation x3 − x2 − 1 = 0 and A,B,C are the
matrices given by

A =
1

(α− β) (α− γ)

 (1− β) (1− γ) 1 1− β − γ
1− β − γ βγ 1

1 − (β + γ) βγ

.
(15)

B =
1

(β − α) (β − γ)

 (1− α) (1− γ) 1 1− α− γ
1− α− γ αγ 1

1 − (α+ γ) αγ

.
(16)

C =
1

(γ − α) (γ − β)

 (1− α) (1− β) 1 1− α− β
1− α− β αβ 1

1 − (α+ β) αβ

.
(17)

A =
(α− 1)N1 +N2 + βγN0

(α− β) (α− γ)
, (18)

B =
(β − 1)N1 +N2 + αγN0

(β − α) (β − γ)
, (19)

C =
(γ − 1)N1 +N2 + αβN0

(γ − β) (γ − α)
. (20)

3 Divisions and Matrices of Special
Sequences

In this section we work with matrices at most order
3rd.

We write

F3(p) = N2F
1
3(p) =

 p 1 0
p− 1 0 1
1 0 0

 , (21)

where F1
3(p) =

 1 0 0
1 1 −1

p− 2 0 1

,

F3(p)

N2
= F1

3(p) =

 1 0 0
1 1 −1

p− 2 0 1

 . (22)

And

F3(p) = L0F
2
3(p) =

 p 1 0
p− 1 0 1
1 0 0

 , (23)

where F2
3(p) =

1
31

13p− 3 4 9
4p+ 11 6 −2
6p+ 1 9 −3

.

F3(p)

L0
= F2

3(p). (24)

L0

N2
=

 0 3 −2
−2 2 3
3 −5 2

 . (25)

Proposition 11 If F3(p)Xn(F ,L) = Ln, then

Xn(F ,L) = 1

det(F3(p))

[
dcij

(
Ln

F3(p)

)]
. (26)

Proof: If F3(p)Xn(F ,L) = Ln, then by Equation 13,
we have

Xn(F ,L) = 1

det(F3(p))

[
dcij

(
Ln

F3(p)

)]
. (27)

Proposition 12 If NnXn(N ,L) = Ln, then

Xn(N ,L) = 1

det(Nn)

[
dcij

(
Ln

F3(p)

)]
. (28)

Proof: If NnXn(N ,L) = Ln, then by Equation 13,
we write

Xn(N ,L) = 1

det(Nn)

[
dcij

(
Ln

Nn

)]
. (29)
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Proposition 13 If F3(p)Xn(F ,N ) = Nn, then

Xn(F ,N ) =
1

det(F3(p))

[
dcij

(
Nn

F3(p)

)]
. (30)

Proof: If F3(p)Xn(F ,N ) = Nn, then by Equation
13, we calculate

Xn(F ,N ) =
1

det(F3(p))

[
dcij

(
Nn

F3(p)

)]
. (31)

Proposition 14 If Xn(F ,L)F3(p) = Ln, then

Xn(F ,L) = 1

|F3(p)|

[(
drij(LnF3(p))

)
ij

]
. (32)

Proof: If Xn(F ,L)F3(p) = Ln, then by Equation 14,
we write

Xn(F ,L) = 1

|F3(p)|

[(
drij(LnF3(p))

)
ij

]
. (33)

Proposition 15 If Xn(F ,N )F3(p) = Nn, then

Xn(F ,N ) =
1

|F3(p)|

[(
drij(NnF3(p))

)
ij

]
. (34)

Proof: If Xn(F ,N )F3(p) = Nn, then by Equation
14, we have

Xn(F ,N ) =
1

|F3(p)|

[(
drij(NnF3(p))

)
ij

]
. (35)

Proposition 16 If Xn(L,N )Ln = Nn, then

Xn(L,N ) =
1

|Ln|

[(
drij(NnLn)

)
ij

]
. (36)

Proof: If Xn(L,N )Ln = Nn, then by Equation 14,
we calculate

Xn(L,N ) =
1

|Ln|

[(
drij(NnLn)

)
ij

]
. (37)

Theorem 17 The followings hold.

(i) [
dcij

(
Ln

F3(p)

)]
=

[(
drij(LnF3(p))

)
ij

]
. (38)

(ii) [
dcij

(
Nn

F3(p)

)]
=

[(
drij(NnF3(p))

)
ij

]
. (39)

(iii) [
dcij

(
Ln

Nn

)]
=

[(
drij(LnNn)

)
ij

]
. (40)

Proof:

(i) By Proposition 11 and Proposition 11, we calcu-
late[

dcij

(
Ln

F3(p)

)]
=

[(
drij(LnF3(p))

)
ij

]
. (41)

Similarly (ii) and (iii) are clear.

Theorem 18 The following equations hold.

(i)

1

det(F3(p))
=

[(
drij(LnF3(p))

)
ij

]T
=

LT
n

F3(p)T
.

(42)

(ii)

1

det(F3(p))
=

[(
drij(NnF3(p))

)
ij

]T
=

NT
n

F3(p)T
.

(43)

(iii)

1

det(Nn)
=

[(
drij(LnNn)

)
ij

]T
=

LT
n

NT
n

. (44)

Proof:

(i) By Proposition 11 and Theorem 9, we write[
dcij

(
Ln

F3(p)

)]
=

[(
drij(LnF3(p))

)
ij

]
. (45)

By Proposition 12, Proposition 13 and Theorem 9,
similarly (ii) and (iii) are clear.

Theorem 19 Let A,B and C be matrices given The-
orem 10. The following equations hold.

(i)

A

F3(p))
=

1

det(F3(p))

[
dcij

(
A

F3(p)

)]
. (46)

(ii)

B

F3(p))
=

1

det(F3(p))

[
dcij

(
B

F3(p)

)]
. (47)
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(iii)

C

F3(p))
=

1

det(F3(p))

[
dcij

(
C

F3(p)

)]
. (48)

Similar properties to the above between MNS
(Nn) and MLS (Ln) are written down with Binet’s
formulas.
Proof: By Theorem 10 and Definition 4, They are
clear.

(i)

A

F3(p))
=

1

det(F3(p))

[
dcij

(
A

F3(p)

)]
. (49)

(ii)

B

F3(p))
=

1

det(F3(p))

[
dcij

(
B

F3(p)

)]
. (50)

(iii)

C

F3(p))
=

1

det(F3(p))

[
dcij

(
C

F3(p)

)]
. (51)

4 Conclusion
The study revealed that there are many relationships
between MNS, MFS and MLS Coroollary 5,7. These
sequences are written in terms of each other. At least
one of the factors of MNS is MFS and at least one
is MLS by Theorem 9. The same property applies to
each of them.
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