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Abstract: - In this contribution, a simple mixed approach that considers as independent variables both 
displacements and interface stresses between rigid blocks is described. The work aims to propose an alternative 
computational tool for studying the static equilibrium of rigid blocks connected by elastic interfaces and subjected 
to in-plane actions, representing simple assemblies such as brittle or granular materials, and with particular 
reference to mortar and/or dry-jointed masonry. Assuming a piecewise constant distribution of normal and shear 
stresses along the generic interface, the numerical model converges to the typical stiffness matrix of the interface. 
The proposed tool is here applied to in-plane linear static analysis of rigid bodies connected by elastic interfaces, 
but will allow a further improvement for performing analyses in case of out-of-plane actions and also accounting 
for material nonlinearity. 
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1 Introduction 
Rigid body models for studying brittle material 
behavior are frequently adopted in civil engineering 
fields of research, namely for representing soil, rocks 
or granular materials [1,2,3], concrete potentially 
subjected to cracking [4], masonry structures [5], and 
general engineering structures [6]. 

The discrete or distinct element method (DEM) is 
the most important approach proposed in the past for 
studying this type of problem [1,2,5]. However, 
DEM often adopts large displacement hypothesis, 
requiring the solution of equations in dynamic field, 
and allows the possibility to consider the evolution of 
contacts between the elements, requiring the use of 
contact detection algorithms. Simpler models, 
characterized by small displacement hypothesis and, 
subsequently, not varying the topology of the 
contacts, turn out to be more effective for studying 
static equilibrium problems typical of masonry 
structures [7,8,9,10]. 

In the last decade, the author and his co-workers 
proposed a discrete or rigid block model for studying 
the in-plane behavior of regular masonry by means of 
a simple and effective static algorithm approach [11]. 
This model allowed to determine displacements and 
interface actions of different masonry specimens 
modelled as rigid body assemblies by introducing the 
stiffness matrix of the assemblage, considering 
interface stiffness and a compatibility matrix 
accounting for block relative positions. Such a matrix 

is frequently adopted in limit analysis approaches for 
masonry structures [12,13]. 

In this work, the discrete or rigid block model 
proposed by author and co-workers is further 
investigated by introducing a mixed formulation able 
to determine at the same time block displacements 
and interface actions, with the possibility to consider 
a piecewise constant discretization of interface 
normal and shear stresses. A mixed approach for 
studying masonry was already proposed in the past, 
without highlighting potential interface 
discretization, but considering joint elements [14]. 
The proposed approach follows the procedure 
already adopted in case of the more complex problem 
of a rigid indenter on elastic half-space [15]. Here, a 
linear relationship between interface stresses and 
strain, together with elastic behavior of interfaces and 
in-plane actions are considered. 

After the formulation of the problem in section 2, 
several simple numerical tests are performed in 
section 3, by considering two staked rigid blocks 
connected by an interface. On one hand the tests 
show the convergence of the approach to the existing 
static algorithm, on the other hand the tests show 
model effectiveness in determining block 
displacements and interface stress distribution, with 
particular attention on normal stresses. Further 
developments of the work, highlighted in section 4 
dedicated to conclusions, will focus on nonlinear 
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interface behavior and will take into consideration 
more complex three-dimensional case studies. 
 

 

2 Problem formulation 
This contribution focuses on the elastic behavior of 
an interface between two rigid blocks or bodies (Bi, 
Bj) subjected to in-plane actions (Fig.1). Blocks are 
assumed to have a polygonal shape, characterized by 
flat edges. For simplicity, in this contribution, blocks 
are assumed to be quadrilateral. Plane stress or plane 
strain hypotheses are adopted, hence the same block 
and interface depth s or a unitary depth is considered. 
Small displacement hypothesis is also assumed. The 
flat interface has length l and, in case of not dry joints, 
a thickness parameter e is introduced, which is 
generally negligible with respect to block 
dimensions, and it is going to be considered as a 
parameter for determining interface stiffness, for 
instance in case of masonry mortar joints. 
 

 
Fig.1 Interface between two rigid blocks, coordinate 
systems and geometric parameters 
 
A global two-dimensional coordinate system OX1X2 
is assumed. In this case, for simplicity, O is 
coincident with block Bi bottom-left corner, X1 
represents horizontal direction and coincides with 
block Bi base, whereas X2 represents vertical 
direction, typical of gravitational loads, and it 
coincides with block Bi height. A local two-
dimensional coordinate system Gxtxn is assumed at 
interface level, with G coincident with interface 
midpoint, xt aligned with interface mid-plane and xn 
orthogonal to interface mid-plane. 
 
 
2.1 Basic relationships 

The displacements of the model are given by rigid 
block in-plane translations u1 u2 and block rotation ω3 
with respect to its centre (Fig.2). 

In case of two blocks, the vector collecting model 
degrees of freedom is: 

1 2 3 1 2 3[ ]i i i j j j Tu u u u q   (1) 

Interface deformations along its length are given 
by relative displacements between the adjacent edges 
of the blocks connected by the interface, namely 
relative shear and normal displacements dt(xt) and 
dn(xt), which can be defined as function of relative 
tangential and normal displacements at interface 
centre: 

,

, ,3

( )
( )

t t G t

n t G n G t

d x d

d x d x




 

   (2) 

 

 
Fig.2 In-plane degrees of freedom of two blocks 
connected by an interface 

 
In particular, relative displacements evaluated at 

interface centre G can be written in vector form as 
follows:  

, , ,3[ ]T

G G t G n Gd d d ,   (3) 
and can be defined as function of block 
displacements in global coordinates (1) by means of 
a rotation matrix R, which considers interface 
orientation θ with respect to the global coordinate 
system (equal to zero in this case, Fig.1), and a 
compatibility matrix B, which considers relative 
distances between blocks and interface centres 
(Fig.3). 
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Fig. 3 Relative distances between blocks and 
interface centres 
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Then, interface relative displacements at its centre 
are related to block global displacements as follows: 

G d RBq      (5) 
 

2.1.1 Mortar joints  

In case of not-dry joints between the blocks, 
interface shear and normal deformations are defined 
from interface relative displacements (2) by 
accounting for its thickness e: 

,

, ,3

( ) ( ) / /
( ) ( ) / ( ) /

t t t t G t

n t n t G n G t

x d x e d e

x d x e d x e



 

 


  

 (6) 

Assuming an elastic interface behavior 
characterized by normal and shear elastic moduli, 
depending on the specific material of the interface 
(namely, mortar modelled as an isotropic material, 
having elastic modulus E and Poisson’s ratio ν), 
normal and shear stresses along interface follow an 
elastic constitutive relationship, being linearly 
dependent on the corresponding strains: 

1

1

( ) / [2(1 )] ( )
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t t t

n t n

x E x

x E x
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  (7) 

Integrating interface stresses over its area, 
resultants in terms of shear forces, normal forces, and 
bending moment can be obtained: 
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   (8) 

It is worth mentioning that these interface actions 
are defined in the local interface coordinate system, 
and can be collected in the following vector: 

[ ]T
T N Mf ,    (9) 

Accounting for the rotation matrix already 
introduced in equation (5), interface actions should 
be in equilibrium with external actions applied to the 
model, by considering the rotation matrix R already 
introduced in (5). 

 
2.1.2 Dry joints  

In case of dry joints, normal and shear strains along 
the interface length cannot be defined. However, 
normal and shear stresses can be directly related to 
interface relative displacements by means of stiffness 
parameters able to describe surface roughness and 
local deformations in case of dry contact 

( ) ( )
( ) ( )

t t t t t

n t n n t

x k d x

x k d x







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              (10) 

Then, equation (8) remains valid also in case of 
dry contact. 

Starting from the constitutive relationships in (7) 
and (10), the determination of interface actions (9) 
can be written in discrete form by highlighting the 
stiffness parameters of the interface: 
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             (12) 

where A and I are interface area and second moment 
of area, respectively, and, in case of mortar joints: 

/ [2(1 )] /
/

t

n

k E e

k E e

 

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             (13) 

 
 
2.2 Numerical model 
In order to numerically study the behavior of a system 
of rigid blocks connected by interfaces, interface area 
is subdivided into equally-spaced m portions along its 
length (Fig.4). 
 

 
Fig.4 Interface subdivided into m equally-spaced 
portions 
 

Then, a piecewise constant shear and normal 
stress distribution is considered, assuming the 
following base function 

1

1 on the th element
( )

0 elsewhere along 
i

x
l




 


            (14) 

allowing to approximate both shear and normal 
interface stresses (7,10) of each interface portion as 
follows: 

,

,
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             (15) 

where rt,i and rn,i are, respectively, shear and normal 
uniform stresses along the i-th interface element, 
which can be collected in the vector 

[ ]T

t nr r r               (16) 

xn

xt1  2  ..  i .. m

li
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In the same manner, interface relative 
displacements (2) should be approximated with the 
base function (14) 

,

,

( ) ( )

( ) ( )

i

t t i t t i

i

n n i t n i

dx x x d

dx x x d




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
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             (17) 

and the vector of discretized interface relative 
displacements is: 

[ ]T

t nd d d               (18) 
Thanks to this discretization, equation (8) can be 

written in discrete form as follows: 
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            (19) 

where A is a matrix collecting interface portion areas 
and S is the matrix of first moments of area 
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            (20) 

whereas equation (2) in discrete form becomes: 

,
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where matrix X collects coordinates of interface 
portions mid points, and it can be demonstrated that 

0iAH H                (22) 
Equation (7), accounting for (13) and (10), can be 

written as 

t t t

n n n

k

k

     
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r I d
r K d

r I d
            (23) 

where the stiffness matrix K of the discretized 
interface is highlighted. Considering expressions 
(19), (21), and (23), the following system of 
equations is obtained 

0

G

T

     
          

0 H d f

H G r 0
             (24) 

where G = K-1 represents the compliance or 
flexibility matrix of the discretized interface. The 
system of equations above turns out to be in 
agreement with the system of equations obtained in 
[15] for a rigid indenter on elastic half-space. In this 
case, however, matrix G turns out to be diagonal. 

Expression (24) represents a mixed approach that 
considers together interface stresses and relative 
displacements. Its numerical solution allows to 
determine stresses and relative displacements with 
assigned interface resultants. 

 

The first relation of system (24) 
Hr f                (25) 

represents the equilibrium of interface stresses and its 
resultants, whereas the solution of second relation of 
(24) 

1
0
T

G

r G H d ,              (26) 
if substituted in (25), returns equation (11), allowing 
to highlight the stiffness matrix of the interface as 
function of its discretization 

1
0
T

G

K HG H .              (27) 
Furthermore, relations in (24) can be re-written in 

terms of block global displacements accounting for 
(5) as follows 

0
T

     
          

0 BRH q F

BRH G r 0
            (28) 

Similarly to (24), expression (28) represents a 
mixed approach that considers together interface 
stresses and the global displacements of the rigid 
block model. Its numerical solution allows to 
determine together stresses and global displacements 
with assigned external actions F. 
 
 
3 Numerical tests 

Several numerical tests are proposed in order to 
evaluate the simplicity and effectiveness of the 
model. On one hand, a convergence test is performed 
in order to evaluate the influence of interface 
discretization in the determination of the stiffness 
parameters, hence by verifying relation (27). Then, 
further static analysis tests are performed by 
determining displacements and interface stresses 
caused by external actions. 
 
 
3.1 Convergence test for the determination of 

interface stiffness 
It is worth mentioning that the results of proposed 
convergence test do not depend on the specific 
interface geometric and mechanical parameters. 
However, an interface having l = 0.2 m, s = 0.1 m, 
and e = 0.01 m is considered. Furthermore, mortar 
joint case is considered, assuming E = 1 GPa and ν = 
0.2. 

Numerical tests are performed by determining the 
values of KG coefficients by applying equation (27) 
and comparing them with respect to equation (12). 
Fig.5 shows relative differences for each stiffness 
parameter. On one hand, in case of normal and shear 
stiffness, results determined with the mixed approach 
are equal to reference solutions. On the other hand, a 
fast convergence to the reference solution is obtained 
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for the bending stiffness parameter, with difference 
smaller than 1% with m ≥ 16. 
 

 
Fig.5 Convergence test for the determination of 
interface stiffness parameters with the proposed 
mixed approach 
 
 
3.1 Static analysis of rigid blocks connected 

by elastic interfaces 
Keeping the mechanical parameters of the previous 
sub-section, together with model depth and interface 
thickness, a numerical test is here proposed by 
considering a set of two stacked rigid blocks (Fig.6a) 
with varying interface length l, as depicted in Tab.1. 
The first block is fixed, whereas the second one is 
subjected to varying vertical (F2) (gravitational) and 
fixed horizontal (F1) loads. It is worth mentioning 
that such a model, since the first block is fixed, can 
represent the behavior of a monolithic block, namely 
the second one, resting on an elastic support (Fig.6b). 
For this reason, three different values of the height a 
of the blocks are also considered. 
 

 
Fig.6 (a) two stacked rigid blocks; (b) one rigid block 
on elastic support 
 
Considering the convergence test proposed in the 
previous section, m = 16 subdivisions are assumed 

along interface. The following table summarizes the 
varying parameters adopted (geometric and loads). 
 

Case l [m] a [m] F1 [kN] F2 [kN] 
1 0.2 0.1 1000 0 
2 0.2 0.1 1000 -1000 
3 0.2 0.2 1000 -1000 
4 0.2 0.4 1000 -1000 
5 0.4 0.1 1000 0 
6 0.4 0.1 1000 -1000 
7 0.4 0.2 1000 -2000 
8 0.4 0.4 1000 -4000 

Tab.1 Case studies considered with varying 
geometric parameter and applied loads 
 

Results in terms of translations and rotations of 
the second block with respect to the first one are 
collected in Tab.2, whereas normal stresses along the 
interface between the blocks are proposed in Fig.7 for 
the 8 different case studies taken into consideration. 
Shear stresses are not presented, since they turn out 
to be uniform along interface length and equal to 
F1/(ls). Due to rigid block hypothesis, the applied 
horizontal force generates a bending moment over 
the interface, depending on the distance between 
interface and block 2 center. 

It is worth noting that cases 1 and 5, characterized 
by nil vertical actions, show asymmetric normal 
stresses varying linearly along interface length and 
typical of a section subjected to pure bending. The 
other case studies, characterized by bending moment 
and compressive force, show linearly varying normal 
stresses, with small traction values on the left side 
and large compression values on the right side. Case 
6 is characterized by the interface fully subjected to 
increasing compressive stress, due to the small block 
height, and subsequent small bending moment 
applied to the interface. 
 

Case 2
1u [m] 2

2u [m] 2
3  [rad] 

1 1.66E-06 0 -8.28E-06 
2 1.66E-06 -5.00E-07 -8.28E-06 
3 2.86E-06 -5.00E-07 -1.58E-05 
4 7.53E-06 -5.00E-07 -3.09E-05 
5 6.57E-07 0 -1.04E-06 
6 6.57E-07 -2.50E-07 -1.04E-06 
7 8.08E-07 -2.50E-07 -1.98E-06 
8 1.39E-06 -2.50E-07 -3.86E-06 

Tab.2 Horizontal translation, vertical translation, and 
rotation of the second block 
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Fig.8 Normal stress piecewise distributions along interface length for the 8 case studies considered (Tab.1) 
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4 Conclusion 
This work has proposed a simple mixed approach for 
studying rigid blocks connected by elastic interfaces 
subjected to in-plane actions. The model is able to 
consider as independent variables both block 
displacements and interface stresses between blocks. 
The proposed approach has turned out to be an 
alternative computational tool for studying the static 
equilibrium of rigid blocks, with a fast convergence 
to the results obtained with a standard approach. 

The numerical tests performed have also shown 
the effectiveness of the model, in particular by 
allowing to determine the discretized distribution of 
normal stresses along interfaces. This aspect will be 
useful for the further extension of the approach 
accounting for the nonlinear material behavior of the 
interfaces. For instance, it will be possible to account 
for tensile and compressive strength of mortar and, in 
particular, to consider the shear strength following an 
appropriate strength criterion, namely Mohr-
Coulomb or Drucker-Prager ones. 

Further developments of the approach will also 
consider the three-dimensional case, by increasing 
model complexity to six degrees of freedom for each 
block, namely three translations and three rotations, 
and by considering two components of shear stresses 
along the interface together with the normal stress. 
Consequently, the determination of interface stresses 
and the subsequent application of a strength criterion, 
will allow to better determine the six resultants of 
interface stresses [16]. 

The proposed approach will also be tested on 
more complex case studies, namely masonry walls, 
concrete elements, soil portions, rock masses. 
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