
Euler’s number e is one of the most important irra-
tional constants in mathematics. Used to describe

growth when the growth rate is proportional to popula-
tion size, most are familiar with its application in mod-
elling population growth and radioactive decay. An ex-
cellent history of the early uses and development of e
appears in [1].

Although associated with Euler, Jacob Bernoulli
stumbled upon the familiar sequence approximation to e
while investigating the growth of savings where interest
is compounded n times per year.

e = lim
n→∞

(
1 +

1

n

)n

Some decades later Euler in investigating series approxi-
mations to functions showed e was the sum of the infinite
series

e =
n∑
i

1

n!

There is a rich history of methods to compute e and
as well as other transcendental numbers and functions.
The goal is to compute high precision approximations
with the least amount of computation. For e, one ap-
proach is to use binary splitting to avoid the costly num-
ber of divisions in summing the series approximation to
e [8]. This technique also requires fast multiplication

methods for large integers in order to gain an advantage
over the straightforward evaluation of the series expan-
sion. Another approach are the arithmetic-Geometric
Mean( AGM )Methods [2]. These date back to Gauss
and Legendre and have been used by authors to produce
rapidly converging approximations to π and e and tran-

scendental functions.[3] The extended abstract [4] pro-
vides a concise overview of techniques used for high pre-
cision evaluation of transcendental functions and num-
bers.

Once one transcendental function can be evaluated,
other elementary functions and constants can be calcu-
lated from it by composition or inversion. The work
we have just discussed addresses the difficult problem
- finding a rapidly convergent method to approximate
just one transcendental function [2] Here we assume the
transcendental function ln(x) is available and develop a
quadratically convergent method for computing e.

The goal is to develop an iterative method for ap-
proximating e that converges quadratically so there is a
doubling of the number of correct digits with each iter-
ation. With the transcendental function ln(x) available,
we are able to take advantage of the quadratic conver-
gence of Newton’s method to approximate e. The use
of Newton’s method is often limited for computing tran-
scendental numbers or functions since if it is applied to
an algebraic function the method will converge to an al-
gebraic result.

The motive here is instructional. We apply various
techniques which will allow the reader to appreciate fun-
damentals such as Newton’s method, quadratic conver-
gence, techniques for computing transcendental numbers
and the use of high precision arithmetic now readily
available in computer languages such as Python. The
method we present requires only rudimentary knowledge
of calculus and allows the reader to appreciate meth-
ods for computing transcendental numbers. For other
examples of computation of transcendental numbers for
pedagogical purposes see [5].

The technique used here takes advantage of an inter-
esting property of the natural log and exponential func-
tions. If one considers the unique value x where

ln(x) =
1

x
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then e = xx.
In the next section, we derive this relation. In the

third section we use Newton’s method to obtain an
approximation to the solution and provide a quadrati-
cally convergent algorithm for computing e. In the fol-
lowing section we discuss the convergence properties of
Newton’s method in this application. The last section
presents numerical results that demonstrate the method
converges quadratically. In addition, we use the variable
precision arithmetic package available for Python so the
algorithm can compute e to any number of digits, limited
only by machine memory and computation time.

e
It is straightforward to show the preceding equation

has a unique solution x and that e = xx. Consider the
function

f(x) = ln (x)− 1

x

The function f(x) is a continuous and strictly increasing
function if x > 0. Since f (1) is less than zero and f(x)
is positive for x sufficiently large, for example, for x =
3, the function has a unique root, denoted as x, in the
interval (1, 3). The result now follows from the definition
of f(x) and the laws of exponents.

Since f(x) has a unique zero, denoted by x, we write

ln (x) =
1

x

Now simple algebraic manipulations, the laws of ex-
ponents and the definition of ln(x) yield the following:

x ln (x) = 1

ex ln (x) = e

(eln (x))
x
= e

xx = e

An approximation to e can now be computed by using
Newton’s method to approximate x.

It is interesting to note that the value x is the point
on the x axis where the area under the curve y = 1

x from
1 to x is given by 1

x . In general, for x > 1, the area is
given by the ln (x), which is the way the natural ln(x)was
derived almost a century before Euler computed the base
to be e. In the next section we describe our application
of Newton’s method to find x, the root of f .

e
The function f(x) provides a quadratically conver-

gent method for approximating e. Basically, we just
apply Newton’s method to find the unique root of the
function f (x). Since f (1) < 0 and f (3) > 0 and f is
strictly increasing, the unique root must lie in interval.
Moreover, since the derivative is positive, it is possible
to show the root is unique and Newton’s method will
converge to it if started from x=1.

Recall Newton’s method for finding a zero of a func-
tion has the form

xn+1 = xn − (f ′ (xn))
−1

f(xn)

Starting the iteration sufficiently close to the root,
we expect each iteration to double the number of cor-
rect digits with each approximation of the zero of f(x).
This is verified by the numerical results and convergence
analysis in the Numerical Results section.

Newton’s method to find a root of the function f can
be written as

xn+1 = xn −
(

x2
n

xn + 1

)(
ln (xn)−

1

xn

)
In our implementation we rewrite the correction term

in the above iteration so that only one division is re-
quired. Of course the preceding iteration only approxi-
mates x , the root of f(x). Once an approximation to x
is obtained, the approximation to e can be computed. A
sketch of an algorithm for computing e is as follows:

Algorithm 1 Newton’s Method to Compute e

x← 1
eps← 1.0E − 500
correction← 1
while correction > eps do

correction← (x2 ln(x)− x)/(x+ 1)
x← x− correction
eapproximation← xx

end while

It is not necessary to compute the approximation for
e at each iteration of Newton’s method. When the cor-
rection is less than stopping tolerance, eps, we could ter-
minate the iteration and compute the approximation for
e. We compute the e approximation after each iteration
simply to show how the approximation to e improves
with each iteration.

Finally, if the approximate solution to ln(x)– 1
x = 0

is accurate to k digits, the approximation to e is accu-
rate to approximately k-1 digits. This is easily shown by
consideringf(x) = ϵ, where ϵ is the error. Also, since the
Newton correction allows us to determine the accuracy
of both x and the approximation to e, it is reasonable to
control the Newton iteration by monitoring the correc-
tion. We discuss this in detail in the Numerical Results
section.

Under appropriate conditions Newton’s method ex-
hibits quadratic convergence. Formally, this means that
if x is a root of f , then for successive iterates of the
method we have

| xn+1 − x |< C | xn − x |2

where C is some constant. The preceding inequality im-
plies that if the iterates are sufficiently close to the root,
each step of Newton’s method typically will result in a
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doubling of the number of significant digits in the ap-
proximation. This is certainly what is observed after
the second iteration in numerical results presented in the
next section.

In this application of Newton’s method, the function
f(x) satisfies the necessary conditions for quadratic con-
vergence in a neighborhood sufficiently close to the root.
The function and its first two derivatives are continuous
on [1, 3], the interval containing the root. In addition,
f

′
is positive on the interval sof

′
(x) ̸= 0, a condition

necessary for quadratic convergence.

Determining a neighborhood of the root where New-
ton’s method converges is often very difficult. Formal
statements of the convergence theorems only specify that
in a small enough neighborhood of the root the method
converges quadratically. In this case, however, the be-
havior of f ′ and f ′′ provide some insight. The first
derivative is positive and strictly decreasing on [1,3]. In
addition, the second derivative is negative and strictly
increasing on [1,3]. Thus we can determine bounds on
the magnitudes of the derivatives over the interval by
evaluating them at the endpoints.

Quadratic Convergence of Newton’s method depends
on finding a delta neighborhood of the root r such that
if

c(δ) =
1

2

max
|x−r|≤δ

|f ′′(x)|

min
|x−r|≤δ

|f ′(x|

δc(δ) < 1 [6]. Starting the iteration from a point
within such a neighborhood of the root guarantees the
iterates remain in the neighborhood and convergence is
quadratic. The continuity of the derivatives guarantee
such a neighborhood exists.

The root lies in the interval [1,3]. Evaluating the
derivatives at these endpoints, however, shows they are
too far from the solution to be useful in a convergence
analysis. Nonetheless, after one step of Newton’s method
and an examination of the next correction we are led
to consider the interval [1.5,2]. Note that f(1.5) < 0
and f(2) > 0 so the root lies in [1.5 ,2]. The first two
Newton corrections indicate the root is close to 1.73. The
ratio of the maximum of f ′′ and the minimum of f ′ ,
computed from the interval endpoints, is less than 1 on
[1.5,2]. Choosing δ < .2 guarantees the neighborhood of
the root is in the interval and δc(δ) < 1. Thus, after the
first step of Newton’s method we are assured the iterates
converge quadratically, precisely what is observed in the
Numerical Results section.

It is well known that Newton’s method tends to be
self-correcting in the sense that if started at a point
where quadratic convergence is not observed in the first
few iterations, it often enters a region where conver-
gence is quadratic. In this case the first step of Newton’s
method results in a relatively large step that gets close to
the root. The preceding analysis and numerical results
in the next section show the algorithm after the first step
is close enough to the root to converge quadratically.

We implemented the method in Python using the
multi-precision math package [7]. The table Convergence
Results shows just how quickly the algorithm converges
and finds an approximation for e. The algorithm com-
puted e to 1004 digits in just 11 iterations. Here we
compare the computed approximate value for e, i.e., xx,
to a value provided by MPMath, which was correct to
1500 digits. The results in the last two columns show
that if the method produces an approximation x for x
and f(x) = 0 to k digits, the approximation to e will be
correct to k-1 digits.

Convergence Results
step corr ln(x)− 1

x e− xx

1 -5.0E-01 -2.6E-01 -8.8E-01
2 -2.4E-01 -2.5E-02 -1.2E-01
3 -2.8E-02 -2.7E-04 -1.3E-03
4 -3.1E-04 -3.2E-08 -1.6E-07
5 -3.7E-08 -4.6E-16 -2.2E-15
6 -5.1E-16 -9.1E-32 -4.4E-31
7 -1.0E-31 -3.6E-63 -1.7E-62
8 -4.0E-63 -5.6E-126 -2.7E-125
9 -6.3E-126 -1.4E-251 -6.5E-251
10 -1.5E-251 -8.1E-503 -3.8E-502
11 -9.1E-503 -2.9E-1005 -1.3E-1004

In addition, the table shows that with each iteration
after the second iteration, the magnitude of the correc-
tion decreases quadratically as well. The same holds for
the values of f and the error in the approximate values
for e shown in the last column.

Note that the exponent of the error in the approxi-
mation to e, the last column, is roughly double the ex-
ponent of the Newton correction. The method presented
computes a correction, updates x, the approximation to
x, and then updates the approximation to e. Since the
Newton correction also converges quadratically to zero,
the subsequent correction exponent will be double the
previous correction exponent, as is seen in the correction
column in the table. Thus, after a computed correction,
the approximate value of x is actually correct to dou-
ble the number of the current correction digits. Since as
noted the error in xx or the e approximation is about the
same as the error in x, we stop the iteration when the
correction exponent is half the desired exponent for the
error. For example, iteration 11 shows the correction ex-
ponent is -503, while the error approximation exponent
is -1004. To obtain 1000 correct digits for e, eps was set
to 1.E-500, which terminated the iteration.

The paper demonstrates a novel method for rapid,
high precision computation of e that takes advantage of
the fact that a transcendental function is available. New-
ton’s method is employed to compute a transcendental
number by finding the root of a function which is not al-
gebraic . The paper provides a brief overview of methods
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for high precision elementary function evaluation, prop-
erties of exponential and the natural log functions, New-
ton’s method and its convergence properties, and the use
of extended precision arithmetic.
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