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1 Introduction 

 
Integral equations of various types play an 
important role in many branches of functional 
analysis and in their applications in physics, 
economics and other fields. In particular, quadratic 
integral equations have many useful applications in 
describing numerous events and problems of the 
real world. For example, quadratic integral 
equations are often applicable in the theory of 
radiative transfer, the kinetic theory of gases, the 
theory of neutron transport, the queuing theory and 
the traffic theory, [1], [2], [3], [4]. 
 
In mathematics, integral equations are equations in 
which an unknown function appears under 
an integral sign. Integral equations are important in 
many applications. Problems in which integral 
equations are encountered include radiative transfer, 
and the oscillation of a string, membrane, or axle. 
 
The class of quadratic integral equations contains, as 
a special case, numerous integral equations 
encountered in the theory of radiative transfer, the 
queuing theory, the kinetic theory of gases and the 
theory of neutron transport [5]. 
 

The authors in [6] Abel's integral equation, one of 
the very first integral equations seriously studied, 
and the corresponding integral operator 
(investigated by Niels Henrik Abel in 1823 and by 
Liouville in 1832 as a fractional power of the 
operator of anti-derivation) have never ceased to 
inspire mathematicians to investigate and to 
generalize them. 
 
The author in [7] presented an existence theorem for 
a nonlinear quadratic integral equation of fractional 
orders, arising in the queuing theory and biology, in 
the Banach space of real functions defined and 
continuous on a bounded and closed interval. The 
concept of measure of noncompactness and a fixed-
point theorem due to Darbo are the main tool in 
carrying out our proof 
 
Quadratic integral equations are often applicable in 
the theory of radiative transfer, kinetic theory of 
gases, in the theory of neutron transport and in the 
traffic theory. Especially, 
the so-called quadratic integral equation of 
Chandrasekher type can be very often encountered 
in many applications [8], [9], [10], [11]. 
 
The authors were provided in [12] correct proof of a 
slightly modified version of the mentioned result. 
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The main tool used in our proof is the technique 
associated with the Hausdorff measure of 
noncompactness. 
 
The authors were studied in [13] a nonlinear 
quadratic integral equation of Volterra type in the 
Banach space of real functions defined and 
continuous on a bounded and closed interval. With 
the help of a suitable measure of noncompactness, 
also showed that the mentioned integral equation 
has monotonic solutions. 
 
 
 
 
2 The Problem with The Solution 

Algorithm: 

 
In my paper, I used two methods to solve QIE 
of Volterra type, ADM and repeated trapezoidal 
[14],  and their results are compared. 
 
Let n,m be two real numbers ≥ 1, 𝐼 = [0, 𝑇], 𝑇 ∈ 𝑅+ 
and E=C(I) the space of continuous functions 
defined on I with norm 

‖x‖ = max
𝑡∈𝐽

│ 𝑥(𝑡) │.   

 
 
Consider the nonlinear QIE, 
x(t)=p(t)+𝑎𝑥𝑛 ∫ 𝑘(𝑡, 𝑠)𝑥𝑚(𝑠)𝑑𝑠.

𝑡

0
 

Where 
 
 

|x(t)| < b, ∀ t ∈ I 
 
 
The solution algorithm of above equation and by 
using the domain decomposition method is: 
 

𝑥0(𝑡) = 𝑝(𝑡),  
… (1) 

 

           𝑥𝑖(𝑡) = 𝑎𝐴𝑖−1(𝑡) ∫ 𝑘(𝑡, 𝑠)𝐵𝑖−1(𝑠)𝑑𝑠.
𝑡

0

, 𝑖 ≥ 1. 

 … (2) 
 
Where, 𝐴𝑖 and 𝐵𝑖are Adomian polynomials of the 
non-linear tearms 𝑥𝑛 and 𝑥𝑚 respectively, which 
take the form 
 

An =
1

n!
[

𝑑𝑛

dλ𝑛
𝑓 (∑ λ𝑖  

∞

i=0
𝑥𝑖)]

λ=0

                    … (3) 

 
 

Finally, 

𝑥(𝑡) = ∑  
∞

i=0
𝑥𝑖(𝑡) 

…(4) 
 

 
 

3 Convergence analysis 
 

Theorem 3.1.(Existence and uniqueness): Let 
𝑝𝜖𝐶(𝐼) and |𝑘(𝑡, 𝑠)| < 𝑘. 
If  

𝑇 <
1

𝑎𝑘𝑏𝑛+𝑚−1(𝑛 + 𝑚)
 

 
Then the QIE eq.(1) has a unique solution 𝑥 ∈ 𝐶(𝐼). 
 
 
Proof:  

 

The mapping F: E →E is defined as, 
 

𝐹𝑥 = p(t) + 𝑎𝑥𝑛(𝑡) ∫ 𝑘(𝑡, 𝑠)𝑥𝑚(𝑠)𝑑𝑠.
𝑡

0

.  

… (5) 
 
Let   

𝑥, 𝑦 ∈ 𝐸 
then,  
 

𝐹𝑥 − 𝐹𝑦 = 𝑎𝑥𝑛(𝑡) ∫ 𝑘(𝑡, 𝑠)𝑥𝑚(𝑠)𝑑𝑠
𝑡

0

− 𝑎𝑦𝑛(𝑡) ∫ 𝑘(𝑡, 𝑠)𝑦𝑚(𝑠)𝑑𝑠 =
𝑡

0

        

= 𝑎𝑥𝑛(𝑡) ∫ 𝑘(𝑡, 𝑠)𝑥𝑚(𝑠)𝑑𝑠
𝑡

0

− 𝑎𝑦𝑛(𝑡) ∫ 𝑘(𝑡, 𝑠)𝑥𝑚(𝑠)𝑑𝑠
𝑡

0

+ 𝑎𝑦𝑛(𝑡) ∫ 𝑘(𝑡, 𝑠)𝑥𝑚(𝑠)𝑑𝑠
𝑡

0

− 𝑎𝑦𝑛(𝑡) ∫ 𝑘(𝑡, 𝑠)𝑦𝑚(𝑠)𝑑𝑠.
𝑡

0

 

                

= 𝑎[𝑥𝑛 − 𝑦𝑛] ∫ 𝑘(𝑡, 𝑠)𝑥𝑚(𝑠)𝑑𝑠
𝑡

0

+ 𝑎𝑦𝑛 ∫ 𝑘(𝑡, 𝑠)[𝑥𝑚 − 𝑦𝑚]𝑑𝑠.
𝑡

0
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= 𝑎(𝑥 − 𝑦)(𝑥𝑛−1 + 𝑦𝑥𝑛−2 + 𝑦2𝑥𝑛−3 + ⋯

+ 𝑦𝑛−1) ∫ 𝑘(𝑡, 𝑠)𝑥𝑚(𝑠)𝑑𝑠
𝑡

0

+ 𝑎𝑦𝑛 ∫ 𝑘(𝑡, 𝑠)[𝑥 − 𝑦](𝑥𝑚−1
𝑡

0

+ 𝑦𝑥𝑚−2 + 𝑦2𝑥𝑚−3 + ⋯
+ 𝑦𝑚−1)𝑑𝑠. 

 
 
This implies that: 
 

 
 

‖𝐹𝑦 − 𝐹𝑧‖ ≤ (𝑎 𝑚𝑎𝑥
𝑡∈𝐽

|𝑥 − 𝑦||𝑥𝑛−1 + 𝑦𝑥𝑛−2

+ 𝑦2𝑥𝑛−3 + ⋯

+ 𝑦𝑛−1| ∫ |𝑘(𝑡, 𝑠)|
𝑡

0

|𝑥𝑚|𝑑𝑠)

+ (𝑎 𝑚𝑎𝑥
𝑡∈𝐽

|𝑦𝑛| ∫ |𝑘(𝑡, 𝑠)|
𝑡

0

|𝑥

− 𝑦||𝑥𝑚−1 + 𝑦𝑥𝑚−2 + 𝑦2𝑥𝑚−3

+ ⋯ + 𝑦𝑚−1|𝑑𝑠) 

 
≤ 𝑎𝑛𝑏𝑛−1𝑘𝑏𝑚𝑇 𝑚𝑎𝑥

𝑡∈𝐽
|𝑥 − 𝑦|

+ 𝑎𝑏𝑛𝑘𝑚𝑏𝑚−1𝑇𝑚𝑎𝑥
𝑡∈𝐽

|𝑥 − 𝑦| 

≤ 𝑎𝑘𝑇𝑏𝑛+𝑚−1(𝑛 + 𝑚)‖𝑥 − 𝑦‖ 
≤ 𝛼‖𝑥 − 𝑦‖ 

 
 
Under the condition  
 

0 < 𝛼 = 𝑎𝑘𝑇𝑏𝑛+𝑚−1(𝑛 + 𝑚) < 1, 
 
 
The mapping F is contraction and hence for  

𝑇 <
1

𝑎𝑘𝑏𝑛+𝑚−1(𝑛 + 𝑚)
 

 
There exists a unique solution 𝑥 ∈ 𝐶(𝐼) 
Of the QIE (1) and this completes the proof. 
 

 

 

 

 

 

Theorem 3.2.  (Proof of convergence): 

 the series solution  

y(t) = ∑ yi(t)
∞

i=0
 

 
 
of the non-linear fractional differential equation 
using Adomain decomposition method converges if  
|𝑦1(𝑡)| < 𝑐, c is a positive constant. 
 
 
Proof 

 
Define the sequence {𝑆𝑝}, such that 𝑆𝑝 = ∑ yi(t)

p
i=0  

Is the sequence of partial sums from the series  
∑ yi(t)∞

i=0  since,  

𝑓 (𝑡, ∑ 𝑐𝑗

𝑡𝑗

𝑗!
+

𝑛−1

𝑗=0

𝐼𝑛𝑦(𝑡), … , 𝐼𝑛−𝜉𝑚𝑦(𝑡)) = 𝑆𝑝 

 
So, we can write 

𝑓 (𝑡, ∑ 𝑐𝑗

𝑡𝑗

𝑗!
+

𝑛−1

𝑗=0

𝐼𝑛𝑆𝑝, … , 𝐼𝑛−𝜉𝑚𝑆𝑝) = ∑ 𝐴𝑖(𝑡)

𝑝

𝑖=0

 

 
 
From equations (4) and (5), we have: 

∑ 𝑦𝑖(𝑡)

∞

𝑖=0

= p(t) + ∑ 𝐴𝑖−1

∞

𝑖=0

 

 
Let Sp and Sq be to arbitrary partial sums with p is 
greater than q, one can get 

𝑆𝑝 = ∑ 𝑦𝑖(𝑡)

𝑝

𝑖=0

= p(t) + ∑ 𝐴𝑖−1

𝑝

𝑖=0

 

 And 

𝑆𝑞 = ∑ 𝑦𝑖(𝑡)

𝑞

𝑖=0

= p(t) + ∑ 𝐴𝑖−1

𝑞

𝑖=0

 

 
 
Now, we are going to prove that, the Cauchy 
sequence {Sp} in this Banach space E, 

𝑆𝑝 − 𝑆𝑞 = ∑ 𝐴𝑖−1

𝑝

𝑖=0

− ∑ 𝐴𝑖−1

𝑝

𝑖=𝑞+1

= ∑ 𝐴𝑖

𝑝−1

𝑖=𝑞

 

= 𝑓 (𝑡, ∑ 𝑐𝑗
𝑡𝑗

𝑗!
+𝑛−1

𝑗=0 𝐼𝑛𝑆𝑝−1, … , 𝐼𝑛−𝜉𝑚𝑆𝑝−1) −

𝑓 (𝑡, ∑ 𝑐𝑗
𝑡𝑗

𝑗!
+𝑛−1

𝑗=0 𝐼𝑛𝑆𝑞−1, … , 𝐼𝑛−𝜉𝑚𝑆𝑞−1) 
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|𝑆𝑝 − 𝑆𝑞| = |𝑓 (𝑡, ∑ 𝑐𝑗

𝑡𝑗

𝑗!

𝑛−1

𝑗=0

+ 𝐼𝑛𝑆𝑝−1, … , 𝐼𝑛−𝜉𝑚𝑆𝑝−1)

− 𝑓 (𝑡, ∑ 𝑐𝑗

𝑡𝑗

𝑗!

𝑛−1

𝑗=0

+ 𝐼𝑛𝑆𝑞−1, … , 𝐼𝑛−𝜉𝑚𝑆𝑞−1)| 

 

≤ 𝐿 ∑|𝐼𝑛−𝜉1𝑆𝑝−1 − 𝐼𝑛−𝜉1𝑆𝑞−1|

𝑚

𝑖=0

 

 
 

≤ 𝐿
1

𝛤(𝑛 − 𝜉𝑖)
∫ (𝑡 − 𝜏)𝑛−𝜉𝑖−1|𝑆𝑝−1 − 𝑆𝑞−1|𝑑𝜏.

𝑡

0

 

𝑒−𝑁𝑡|𝑆𝑝 − 𝑆𝑞| ≤ 𝐿 ∑
1

𝛤(𝑛 − 𝜉𝑖)
∫ 𝑒−𝑁(𝑡−𝜏)(𝑡

𝑡

0

𝑚

𝑖=0

− 𝜏)𝑛−𝜉𝑖−1𝑒−𝑁𝜏 |(𝑆𝑝−1 − 𝑆𝑞−1| 𝑑𝜏 
 

‖𝑆𝑝 − 𝑆𝑞‖ ≤ 𝐿 ∑
1

𝑁𝑛−𝜉𝑖

𝑚

𝑖=0

‖𝑆𝑝−1 − 𝑆𝑞−1‖ 

≤ 𝛽‖𝑆𝑝−1 − 𝑆𝑞−1‖ 
 
Let p=q+1 then, 
 
‖𝑆𝑞+1 − 𝑆𝑞‖ ≤ 𝛽‖𝑆𝑞 − 𝑆𝑞−1‖ ≤ 𝛽2‖𝑆𝑞−1 − 𝑆𝑞−2‖

≤ ⋯ ≤ 𝛽𝑞‖𝑆1 − 𝑆0‖ 
 

‖𝑆𝑝 − 𝑆𝑞‖ ≤ ‖𝑆𝑞+1 − 𝑆𝑞‖  ≤ ‖𝑆𝑞+2 − 𝑆𝑞+1‖ +

⋯ + ‖𝑆𝑝 − 𝑆𝑝−1‖  

 
≤ 𝛽𝑞 + 𝛽𝑞+1 + ⋯ + 𝛽𝑝−1‖𝑆1 − 𝑆0‖ 

≤ 𝛽𝑞[1 + 𝛽 + ⋯ + 𝛽𝑝−𝑞−1]‖𝑆1 − 𝑆0‖ 

≤ 𝛽𝑞 [
1 − 𝛽𝑝−𝑞

1 − 𝛽
] ‖𝑦1‖ 

 
Since, 0 < 𝛽 = 𝐿 ∑

1

𝑁𝑛−𝜉𝑖
<𝑚

𝑖=0 1, and 𝑝 >

𝑞 𝑡ℎ𝑒𝑛, (1 − 𝛽𝑝−𝑞) ≤ 1. Consequently,  
 

‖𝑆𝑝 − 𝑆𝑞‖ ≤ [
𝛽𝑞

1 − 𝛽
] ‖𝑦1‖ 

≤ [
𝛽𝑞

1 − 𝛽
] 𝑚𝑎𝑥

𝑡∈𝐽
|𝑦1(𝑡)| 

 

But, |𝑦1(𝑡)| < 𝑐,and as 𝑞 → ∞ then, ‖𝑆𝑝 − 𝑆𝑞‖ → 0 
And hence, {𝑆𝑝} is a Cauchy sequence in this 
Banach space E so, the series ∑ yi(t)∞

i=0  
convergence. 
 
 
Theorem 3.3. (Error analysis): 

The maximum absolute truncation error of the 
solution equation (4) to the QIE (1) is estimated to 
be, 
 

 max
𝑡∈𝐽

│ 𝑥(𝑡) − ∑ 𝑥𝑖(𝑡)
𝑞
𝑖=0 │    ≤

𝛼𝑞

1−𝛼
max

𝑡∈𝐽
|𝑥1(𝑡)|     

 
 

 

Proof 

From theorem (4), we have 
 

‖𝑆𝑝 − 𝑆𝑞‖ ≤
𝛼𝑞

1 − 𝛼
(𝑚𝑎𝑥

𝑡∈𝐽
)|𝑥1(𝑡)| 

 

 
but, 

𝑆𝑝 = ∑ xi,
𝑝

i=0
 

 
as     

𝑝 → ∞,     𝑆𝑝 → 𝑥(𝑡), 
 
so, 

‖𝑥 − 𝑆𝑞‖ ≤
𝛼𝑞

1 − 𝛼
(𝑚𝑎𝑥

𝑡∈𝐽
)|𝑥1(𝑡)| 

 
 
So, the maximum absolute truncation error in the 
interval I is, 
 

max
𝑡∈𝐽

│ 𝑥(𝑡) − ∑ 𝑥𝑖(𝑡)
𝑞

𝑖=0
│    ≤

𝛼𝑞

1 − 𝛼
max

𝑡∈𝐽
|𝑥1(𝑡)| 

 
This is completes the proof. 
 

 

4. Numerical Examples: 

 
Example (4.1):  

 
Consider the following non-linear QIE, 

𝑥(𝑡) = (𝑡3 −
𝑡12

40
) +

1

5
𝑥(𝑡) ∫ (𝑡𝑠)𝑥2(𝑠)𝑑𝑠,

𝑡

0
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… (21) 
 

 And has the exact solution 𝑥(𝑡) = 𝑡3. 
 

Applying ADM to above equation, we 
 

𝑥0(𝑡) = (𝑡3 −
𝑡12

40
) 

 

𝑥𝑖(𝑡) =
1

5
𝑥𝑖−1(𝑡) ∫ (𝑡𝑠)𝐴𝑖−1(𝑠)𝑑𝑠,

𝑡

0

    𝑖 ≥ 1. 

 
 

Where  𝐴𝑖 are Adomain polynomials of the 
nonlinear term  (𝑥)2 and the solution will be, 

 
 

𝑥(𝑡) = ∑ 𝑥𝑖(𝑡)
𝑞

𝑖=0
 

 
This series solution converges if 𝑇 < 1.1362194. 
 
 
Table 1 shows a caparison between the absolute 
error of ADM solution and repeated trapezoidal 
(RT) solution, while table 2 shows the maximum 
absolute truncated error at different values of q 
(when t=1) and table 3 shows the maximum 
absolute error of RT at different values of h (h is the 
step size). 
 
 
 
Table [1]: Absolute Error 

t Error of ADM (q=5) Error of RT (h=0.01) 

0.1 1.21323*𝟏𝟎−𝟐𝟒 1.16096*𝟏𝟎−𝟏𝟓 

0.2 2.54434*𝟏𝟎−𝟏𝟖 1.19317*𝟏𝟎−𝟏𝟐 

0.3 1.26909*𝟏𝟎−𝟏𝟒 6.88523*𝟏𝟎−𝟏𝟏 

0.4 5.33583*𝟏𝟎−𝟏𝟐 1.22297*𝟏𝟎−𝟗 

0.5 5.78484*𝟏𝟎−𝟏𝟎 1.13921*𝟏𝟎−𝟖 

0.6 2.66071*𝟏𝟎−𝟖 7.05709*𝟏𝟎−𝟖 

0.7 6.76878*𝟏𝟎−𝟕 3.30211*𝟏𝟎−𝟕 

0.8 0.000011148 1.26135*𝟏𝟎−𝟔 

0.9 0.000131325 4.15054*𝟏𝟎−𝟔 

1 0.0011805 0.0000122957 

 
 
 
 
Table [2]: Max. Absolute Error 

q max. error of ADM 

5 0.00462792 

10 0.000359867 

15 0.0000279832 

20 2.17598*𝟏𝟎−𝟔 

 
 
Table [3]: Max. absolute error 

h Error of RT 

0.1 0.001231 

0.01 0.0000122957 

0.001 1.22955*𝟏𝟎−𝟕 

 
 
 
 
 
Example (4.2):  

 
Consider the following non-linear QIE, 

𝑥(𝑡) = (𝑡2 −
𝑡11

630
) +

1

6
𝑥2(𝑡) ∫ (𝑡 − 𝑠2)𝑥2(𝑠)𝑑𝑠,

𝑡

0

 

 
… (21) 

 
 And has the exact solution 𝑥(𝑡) = 𝑡2. 

 
Applying ADM to above equation, we get: 
 

𝑥0(𝑡) = (𝑡2 −
𝑡11

630
) 

 

𝑥𝑖(𝑡) =
1

6
𝐴𝑖−1(𝑡) ∫ (𝑡 − 𝑠2)𝐴𝑖−1(𝑠)𝑑𝑠,

𝑡

0

    𝑖 ≥ 1. 

 
 

Where  𝐴𝑖 are Adomain polynomials of the non-
linear term  (𝑥)2 . This series solution converges if 
𝑇 < 1.0699132. 
 
 
Table 4 shows a caparison between the absolute 
error of ADM solution and repeated trapezoidal 
(RT) solution, while table 5 shows the maximum 
absolute truncated error at different values of q 
(when t=1) and table 6 shows the maximum 
absolute error of RT at different values of h . 
 
 
 
Table [4]: Absolute Error 

t Error of ADM (m=5) Error of RT (h=0.01) 

0.1 5.35416*𝟏𝟎−𝟐𝟔 5.20417*𝟏𝟎−𝟏𝟖 

0.2 5.61407*𝟏𝟎−𝟐𝟎 7.07767*𝟏𝟎−𝟏𝟔 

0.3 1.86682*𝟏𝟎−𝟏𝟔 1.21431*𝟏𝟎−𝟏𝟒 
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0.4 5.88678*𝟏𝟎−𝟏𝟒 9.09828*𝟏𝟎−𝟏𝟒 

0.5 5.10595*𝟏𝟎−𝟏𝟐 4.33903*𝟏𝟎−𝟏𝟑 

0.6 1.95748*𝟏𝟎−𝟏𝟎 1.55492*𝟏𝟎−𝟏𝟐 

0.7 4.27188*𝟏𝟎−𝟗 4.5728*𝟏𝟎−𝟏𝟐 

0.8 6.1718*𝟏𝟎−𝟖 1.16553*𝟏𝟎−𝟏𝟏 

0.9 6.50635*𝟏𝟎−𝟕 2.66075*𝟏𝟎−𝟏𝟏 

1 5.34794*𝟏𝟎−𝟔 5.57567*𝟏𝟎−𝟏𝟏 

 
 
 
 
Table [5]: Max. Absolute Error 

m max. error of ADM 

5 0.00062496895 

10 0.00008230044 

15 0.00001083792 

20 1.42722*𝟏𝟎−𝟔 

 
 
Table [6]: Max. absolute error 

h Error of RT 

0.1 5.5362*𝟏𝟎−𝟕 

0.01 5.57567*𝟏𝟎−𝟏𝟏 

0.001 5.66214*𝟏𝟎−𝟏𝟓 

 

 
 
 
 

6 Conclusion 
In this paper, I used the Adomian decomposition 
method to solve the quadratic integral equations, 
some new theorems are introduced, which give the 
sufficient conditions of existence, uniqueness, 
convergence, and maximum absolute truncation 
error to Adomian decomposition method series 
solution when applied to these equations. Some 
numerical examples are discussed and solved by 
using the Adomian decomposition method. 
We see from the results that the exact error 
coincides with the approximate error obtained from 
using the theorems, see for example. 
We use a numerical method for comparison, we see 
that after we overcome the disadvantage of this 
method. 
The two methods which we used to solve quadratic 
integral equations (ADM and the repeated 
trapezoidal method), each method has an advantage 
over the other.  
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