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Abstract: - Time Tensors functions have been used to describe the flows of time. The magnitude of the value of 
time tensor function means the temporal coordinates in a flow of time. We also use a function to describe the 
motion of particles in quantum mechanics but it has different meanings. The function is called time tensor 
function. Time tensor imposes space and time measurements and space and time probing. Although using 
optimised space and time probe fields will allow to deep probing in a position and time measurement beyond 
the space and time measurements of the probe field stil result in a time tensor. Fluctuation and dissipation 
relations in time tensor characterise the mechanical effects of time fluctuations, which lead to an ultimate 
temporal effects on space and time. For time tensors,the temporal effects on space and time are dominated by 
fluctuations and dissipations fluctuations and take temporal form deduced from fluctuations of space and time 
curvatures in temporal space. They can be considered as ultimate space and time fluctuations, fixing ultimate 
space and time measurements in time tensors. 
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1 Introduction 
Time Tensors concern the whole of physical reality, 
considered in usefully physical fields. The physical 
world appears to have temporal aspects, so the 
existence and nature of time are general fields. We 
analyze time tensors and space and time curvatures, 
using the framework of fluctuation and dissipation 
mechanisms arising when time tensors and 
spacetime metric are combined. Fluctuations and 
dissipations of time tensor and spacetime curvatures 
are shown flows of time at space and time orders. 
Time tensors correspond to space and time 
curvatures,the regions of space-like and  light-like.  
We deduce spatial and temporal effects for geodesic 
deviations registered by probe fields which 
determine ultimate space and time measurements 
from these fluctuations and dissipations of time 
tensor.In particular, a relation between spatial and 
temporal characterizing spaceand time fluctuations 
and dissipations of time tensor.Fluctuations of time 
tensors lead to observable mechanical effects. Time 
tensor carry time and exert temporal fields effect on 
space and time curvatures. These time tensors are 
themselves fluctuating quantities,like stress tensors 
which describe temporal fluctations. Such temporal 
fluctuations are associated with temporal effects. 
Those time tensors persist in a state  in space and 
time. Such time tensors fluctuate, like stress tensors   

Relations between fluctuation and dissipation still 
hold in space and time.Dissipative temporal effects 
in space and time may be identified . When attention 
is focussed time tensors, they appear that fluctuation 
and dissipation mechanisms of space and time for 
determining ultimate space and time measurements.  
From an analysis of interferometric space and time 
measurements or from a general analysis of spat,al 
and temporal effects and dissipations in space and 
time measurements. Since time tensor can be 
accepted that sensitivity in space and time probing 
goes beyond space and time.Time tensor appears 
that temporal effect has to be taken into account 
when analysing ultimate temporal fields.When time 
tensor developed on spatial and tenmporal fields 
theories , time tensor exhibits metric and curvature 
fluctuations.Like spatial and temporal curvature 
perturbations associated with time tensors , spatial 
and temporal curvature fluctuations are felt to probe 
spacetime. Estimating time tensor for fluctuating 
geodesic deviations stemming from these spatial and 
temporal fields leads to spatial and temporal for 
measurements.Einstein equation for spatial and 
temporal curvatures can be regarded as a lot of 
response equations which describe the metric 
response to a stress tensor perturbation with time 
tensor perturbation , and used to derive spatial and 
temporal fluctuations of metric. Time tensor also 
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leads to spatial and temporal curvature fluctuations 
arising from spatial and temporal fluctuations of 
stress tensors .Time tensor feels mean values of 
stress tensors has sometimes been expressed, but it 
is known to develop the consistency of spatial and 
temporal predictions . Even if the existence of time 
tensor fluctuations associated with Einstein equation 
are combined, unavoidable coupling to stress 
tensors combine metric fluctuations into space and 
time.Fluctuations of stress tensors are associated 
with time tensors on a metric perturbation that can 
be identified with spatial and temporal curvatures. 
Here, we already proved fruitful for studying spatial 
fields coupled to temporal fields to analyse spatail 
and temporal fluctuations coupled to stress 
tensors.We derive the curvature fluctuations 
associated with time tensors for fluctuations of 
stress tensors. Spatial and temporal fluctuations 
based upon Lorentz invariance and conservation 
laws in Minkowski spacetime for time tensors. We 
then show how to build fluctuations of metric and 
stress tensors, which is similar to that used for  
spatial and temporal fluctuations for time tensors. 
 
2 Temporal Space 
Temporal space is a set of temporal elements or 
points satisfying specified time dimensions. Von 
Neumann says that "First of all we must admit that 
this objection points at an essential weakness which 
is, in fact, the chief weakness of quantum 
mechanics: its non-relativistic character, which 
distinguishes the time t  from the three space 
coordinates zyx ,,  and presupposes an objective 
simultaneity concept. In fact, while all other 
quantities especially those zyx ,,  closely connected 
with t by the Lorentz transformation are represented 
by operators, there corresponds to the time an 
ordinary number-parameter t , just as in classical 
mechanics."  
Temporal space consists from time. 
Reference Frames   

A frame of reference or reference frame is a 
coordinate system or set of axes used by an observer 
to measure the position, orientation, everything of 
objects in space. The position of the observer itself 
is assumed fixed relative to its own frame. The term 
of frame of reference is a relative to which motion 
and rest will be measured and any set of points that 
are at rest relative to one another enables us for in 
principle, to describe the relative motions of points.  
A frame of reference is therefore a kinematical 
device, for the geometrical and temporal description 
of motion without regard to the forces involved. We 
define the coordinates of events in one reference 

frame to the coordinates of the same event in other 
reference frame. An event will have different 
coordinates in different reference frames.If we had 
chosen a particular set of axes, we would have and 
so on where the values of the components of 
reference frame depend on the set of axes chosen. 
The Galilean transformation equations define 
Newtonian Mechanics. The Lorentz transformation 
equations define Special and General Relativistic 
Mechanics.  
Inertial Reference Frame  

A dynamical term of motion leads to the term of  
inertial frame or a reference frame relative to which 
motions have distinguished dynamical properties. 
The term of inertial frame has to be understood as a 
spatial and temporal reference frame together with  
means of measuring time, so that uniform motions 
can be distinguished from accelerated motions. As 
to the laws of Newtonian dynamics inertial frame is 
a reference frame with geometric and temporal 
spaces, relative to which the motion of a point not 
subject to forces is rectilinear and uniform, 
accelerations are always proportional to and in the 
direction of applied forces, and applied forces are 
always met with equal and opposite reactions. We 
follow that, in an inertial frame, the center of system 
of points is always at rest or in uniform motion. We 
follow that any other references frame moving 
uniformly relative to an inertial frame is also an 
inertial frame. 
Isolated system of particles 

An isolated system of particles is a system of 
particles subject only to their mutual interactions 
subject to no external interactions. Any system of 
particles subject to external interactions that 
somehow cancel one another in order to make the 
system’s motion identical to that of an isolated 
system will also be considered an “isolated” system. 
An isolated system consisting of a single particle is 
called a free particle. 
Reference Frames in Geometric Space 

Geometric processes involve the dynamics of 
particles and fields moving or propagating through 
geometric space.All of the fundamental laws of 
physics involve position in geometric space. 
Newton’s second law of motion 

maF   
when applied to a particle responding to the action 
of a force will yield the geometric space of the 
particle.Maxwell’s equations will yield the wave 
equation 

0
t

E

c

1
E

2

2

2

2 



  
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for the propagation of a light wave through 
geometric space. 
Reference Frames in Temporal Space 

Temporal processes involve the dynamics of 
particles and fields moving or propagating through 
temporal space. A temporal frame of reference can 
be constructed in essentially a lot of ways, provided 
it meets the requirements in temporal spaces for the 
time of any event.  
Newton’s second law can be written as 

2

2

dt

rd
mF   

expressed in a way that makes no mention of a 
reference frame though note the appearance of a 
singled out time variable t . 

when applied to a particle responding to the action 
of a force will yield the temporal space of the 
particle. 
Maxwell’s equations will yield the wave equation 

0
t

E

c

1
E

2

2

2

2 



  

for the propagation of a light wave through temporal 
space. 
Events 

The motion of a field through space could be 
thought of as a continous series of events, while the 
collision of two fields would be an event. 
Events in Geometric Space  

An event is realizing at a region in geometric 
space,the coordinate system will present an event 
will present at a point in geometric space.  
Events in Temporal Space  

An event is realizing at a region in temporal 
space,the coordinate system will present an event at 
a time in temporal space.  
The direction of time 

The concept of time has an objective direction that 
there is an objective distinction between past and 
future with future. Concerning this ingredient, we 
can get a good sense of what is at issue by 
comparing some remarks from writers on opposite 
sides.  
Orientability of time  

We are interested with the direction of time is 
guided by many attempts to make sense of the 
notion of the flow of time. If time has a direction in 
a sense relevant to any coordinate system. This 
implies that the direction of time is that it is a 
temporal direction at every place and time.  
It means that the direction of time is that the 

spacetime within which we live be orientable 
temporally. 
Group Theory and symmetries 

Group theory is studying physical system with 
symmetry. In particular, the representation theory of 
the group simpli.es the physical solutions to the 
systems which have symmetries.  
We suppose that an one-dimensional Hamiltonian 
has the symmetry  xx  . 
   xHxH   

Then from the time-independent Schrödinger’s 
equation, 
     xExxH    
         xExxHxxH    

which means that  x is also an eigenstate with 
same eigenvalue E .  
Thus we can form the linear combinations of these 
two states, 

    xx  
2

1
 

which are parity eigenstates and are either 
symmetric or antisymmetric under xx  . These 
are the consequences of symmetry. This means only 
that the eigenstates can be chosen to be either 
symmetric or antisymmetric and does not imply that 
the system has degenerate eigenstates. This is 
because the even or odd state can be identically 
zero.  
A Hamiltonian system is called time-reversal 
invariant if from any given solution  tx ,  tp of 
Hamilton’s equations an independent solution  tx 

,  tp  is obtained with tt   and some operation 
relating x and p to the original coordinates x and 
momenta p . The simplest such invariance, to be 
referred to as conventional, holds when the 
Hamiltonian is an even function of all momenta 
 

tt   
xx   

pp   
   pxHpxH  ,,  

 

 

 

 

 

 

Symmetries in classical physics 

In classical mechanics, one usually considers the 
Lagrange formulation defined in terms of the 
Lagrangian L , which is a function of the 
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generalized coordinates, iq , and the generalized 
velocities, iq  of the system. 
If, for instance, the Lagrangian L remains 
unchanged under displacements, 

iii qqq   

0




iq

L
 

which implies that: 

0




t

pi  

since 

0



















ii q

L

q

L

dt

d
and  

0





i

i
v

L
p  

0




t

pi  means that ip is a conserved quantity. 

In the Hamiltonian formulation 
 ii qpH ,  

the Hamilton equations are given by 

i

i
q

H
p




  

i

i
p

H
q




  

and 

0ip
dt

d
 

Whenever 

0
idq

dH
 

If the Hamiltonian desn’t explicity depend on iq  
which is equivalent to saying that H is unchanged 
under iii qqq  .We have a conserved quantity 
in this case the momentum ip  
Symmetries in quantum mechanics 

In quantum mechanics: 
We associate a unitary operator Û to a 
transformation that conserves probability. For 
instance, a rotation is described by a unitary 
operator. This operator is often called a symmetry 
operator We classify symmetries as continuous 
(rotation, translation) and discrete (parity, 
lattice translations, time reversal). 
Symmetry operations that differ infinitesimally from 
the identity transformation (continuous symmetries) 
are written as: 

G
i

U ˆ1ˆ



  

where Ĝ  is the hermitian generator of the 
symmetry operator we are describing. 
Time Tensor 

A temporal object under the action of external 
temporal effects undergoes distortion and the effect 
due to this system of temporal effects is transmitted 
throughout the temporal object developing internal 
temporal effects in it.  
To examine these internal temporal effects at a point 
O in Figure 2.1, inside the temporal object, consider 
a plane MN passing through the point O .  
If the plane is divided into a number of small areas, 
as in Figure 2.2, and the effects acting on each of 
these measured, it will be observed that these effects 
vary from one small area to the next. 
On the small area A  at point O , there will be 
acting a effect of G as shown in Figure 2.2.  
From this, it can be understood that the concept of 
temporal stress is the internal effect per unit area. 
Assuming the temporal material is continuous, the 
term “temporal stress” at any point across a small 
area A  can be defined by the limiting equation 
(2.1). 

A

G
LimresstensorTemporalst
A 




 0  

A

G
LimTimetensor
A 




 0
 

where G  is the internal temporal effect on the 
area A  surrounding the given point.  
Temporal stress tensor or time tensor is sometimes 
referred to as effect intensity. 

 
Figure 2.1 Effects acting on a temporal object 
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Figure 2.2 Effects acting on a temporal object 

 
Figure 2.3 Temporal stress tensor or Time tensor 
components at point O  

 
Figure 2.4 Temporal Stress components acting on 
parallelepiped 
 

Indicial notation 

In indicial notation, the coordinate axes zyx ,,  are 
replaced by numbered axes 321 ,, xxx respectively.  
The components of the temporal effect G of 
Figure 2.1 are written as 1G , 2G , 3G  where 
the numerical subscript indicates the component 
with respect to the numbered coordinate axes. 
The definitions of the components of temporal stress 
acting on the 1x  face can be written in indicial form 
as follows: 

1

1

011
1 A

G
Lim
A 





  

1

2

012
1 A

G
Lim
A 





  

1

3

013
1 A

G
Lim
A 





  

 
Here, the symbol   is used for both temporal 
normal and shear stresses. 
In general, all components of temporal stress can 
now be defined by a single equation: 

i

j

A
ij

A

G
Lim

i 




 0
  

Here  3,2,1i and  3,2,1j . 
Forms of temporal stress 

Temporal stress may be classified in a lot of ways, 
according to the form of temporal object on which 
they act, or the nature of the temporal stress itself.  
Thus, temporal stresses could be one-dimensional, 
two-dimensional or three dimensional 
as shown in Figure 2.5. 

 
(a) One-dimensional temporal stress 
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(b) Two-dimensional temporal stress 

 
(c) Three-dimensional temporal stress 
Figure 2.5 Forms of temporal stress 
Temporal stress tensor  

Let O be the point in a temporal object shown in 
Figure 2.1. Passing through that points infinitely, 
many planes may be drawn. As the resultant forces 
acting on these planes are the same, the temporal 
stresses on these planes are different because the 
areas and the inclinations of these planes are 
different. Therefore, for a complete description of 
temporal stress or time tensor. We have to specify 
not only its magnitude, direction and sense but also 
the surface on which it acts.  
For this reason, the temporal stress is called a “time 
tensor”. 
Figure 2.4 depicts three orthogonal coordinate 
planes representing a parallelopiped on which are 
nine components of temporal stress.  
Of these three are direct temporal stresses and six 
temporal shear stresses.  
In tensor notation, these can be expressed by the 
time tensor ij , where zyxi ,,  and zyxj ,,  

In matrix notation, it is often written as 



















zzzyzx

yzyyyx

xzxyxx

ij







  

otherwise it is written as 



















zzyzx

yzyyx

xzxyx

S







 

If we use ordinary expression in matrix form. 
Consider a space of infinitesimal dimensions shown. 
All stresses acting on this space are identified.  
The subscripts  are the shear stress, associate the 
stress with a plane perpendicular to a given axis, the 
second designate the direction of the stress. 

ionFaceDirectxy    

x presents the face of time tensor xy  

y presents the direction of time tensor xy  
Unit time tensor  

Any second rank unit time tensor I  can be uniquely 
expressed I . This is the identity matrix.  In the 
composition above, the second matrix indicates the 
unit tensor is composed of the column of the three 
unit vectors. In remaining discussion we will not 
place the accent over the unit vectors or the double 
bar over the tensors for convenience only.  Also the 
unit vectors are written as column vectors or row 
vectors as appropriate. 
Zero time tensor  

A zero tensor is a tensor of any rank and with any 
pattern of covariant and contravariant indices all of 
whose components are equal to 0.  
Equal time tensors 

For two tensors to be equal, they must have  
The same dimensions. 
Corresponding elements must be equal In other 
words, say that  

 
ijmn aA   and that  

ijqp bB   

Then BA  if and only pn  , qm  and ijij ba 

for all i and j in range 
Symmetry and antisymmetry on time tensor 

In practice it often happens that tensors display a 
certain amount of symmetry, like what we know 
from matrices. Such symmetries have a strong effect 
on the properties of these tensors. Often many of 
these properties or even tensor equations can be 
derived solely on the basis of these symmetries. 
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A tensor t is called symmetric in the indices  and 
 if the components are equal upon exchange of the 
index-values. So, for a 2nd rank contravariant tensor,  

 tt  symmetric (2,0)-time tensor 

A tensor t is called anti-symmetric in the indices  
and  if the components are equal but- opposite 
upon exchange of the index-values. So, for a 2nd 
rank contravariant tensor, 

 tt  anti-symmetric (2,0)-time tensor .  

It is not useful to speak of symmetry or anti-
symmetry in a pair of indices that are not of the 
same type covariant or contravariant. 
 The properties of symmetry only remain invariant 
upon basis transformation if the indices are of the 
same type. 
Decomposition into Symmetric and Anti-

Symmetric Parts 

Any second rank time tensor ijt  can be uniquely 
expressed as the sum of a symmetric and an anti-
symmetric time tensor; for 

ijijij ASt   

Where 

 
jiijij ttS 

2
1

is symmetric time tensor 

 
jiijij ttA 

2
1

is anti-symmetric time tensor 

Temporal asymmetries 

Spatial asymmetry will not require that space itself 
be anisotropic or that the direction of space be 
distinguished by the orientation of time. 
Temporal asymmetry will be same with spatial 
asymmetry. The concept of time might be 
temporally asymmetric, without time itself having 
any asymmetry. Accordingly, we need to be 
cautious in making inferences from observed 
temporal asymmetries to the anisotropy of time 
itself. 
Second-order real time tensors 

Definition1 

Let V be a vector space of dimension n .  
A second-order tensor is defined as a bilinear 

function RVVT : . 
The dual of a vector field:  

*V is the set of linear forms RV   
There is a correspondance between second-order 
tensors and linear maps between V and is dual *V . 
Given *: VVA   
We define  wvTA , as   wvA  
It is bilinear. 
Given T second-order tensor 
We define  vAT  a linear from by 

    wvTwvAT ,  
Matrix notation for the second-order tensor 

 neeeLetT ,...,,: 21 be an orthonormal basis of 
Euclidean space V  

   























n

n

w

w

MvvwvT
.
.

.....,

1

1  

Where 

i

n

i

ievv 



1

 

i

n

i

ieww 



1

 

M is nn matrix representing T  
Time tensors of any order 

Let V be a vector space of dimension n . 
Definition2  

A general  lk,  tensor is a function 
RVVVVT  ......: **  

** ... VV  k  copies 
VV ... l copies 

Linear in every variable. 
 0,0A time tensor is a scalar 
 0,1A tensor is a vector  

RV *: corresponds a vector v since when V is 
finite-dimensional  
V is isomophic to **V  
Consider the isomorophism   

**VV  defined by     vv   and *V  
 0,2A tensor is what we called a second order 

tensor. 
Through the choice a basis on V  
We can see it as a nn matrix. 
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Time tensor fields 

Definition3 

A  lk, time tensor field over nRU  is the giving 
of a  lk,  time tensor in every point of U , varying 
smoothly with the point. 
Definition4 

Let S be a regular surface. A time tensro field T on 
S is the assignment to each point Sp of a tensor 
 pT on STp such that these time tensors vary in a 

smooth manner. 
Considering second-order time tensor field in 

2RU   
We can see it as a field of 22 matrices 

 RMUT 2:  . 
Considering second-order time tensor field in 

3RU   
We can see it as a field of 33 matrices 

 RMUT 3:  . 
Let S be a regular surface patch given by a 
parameterization 3: RUf  . 
In every point p , the second-order time tensor field 
T  gives a second-order time tensor T(p) on the 
tangent plane STp . 

Since the vectors  vu
x

f ,



and  vu

y

f ,



form a basis 

 ST vuf , . 
We can write the secosnd order time tensor as 22
matrix. 
We will have a map  RMUT 2:  . 
Change of basis for time tensors 

Suppose that we have two basis  neee ,...,, 21 and 
 nfff ,...,, 21 of V . 
For a linear map  

:: VVL   
APPB 1  

A matrix of L  in the first basis of V , B in the 
second, P is the matrix with column vectors if

expressed in the old basis. A and B are similar. 
For a second-order time tensor or equivalently a 
bilinear form 

𝑇: 𝑉 × 𝑉 → 𝑅: (𝑋′)
𝑇

𝐵𝑌′ = 𝑇(𝑥, 𝑦) 
Where A is the matrix of the time tensor in the first 
basis, B is the matrix of the time tensor in second 
basis. 

YX , and YX , are the coordinates of yx, in the 

first and second basis. 
BA, are congruent 

APPB T  
It means that to a second-order time tensor 
corresponds a congruence class of matrices. 
Tensor diagonalization 

The matrix representation of a time tensor becomes 
especially simple in a basis made of eigenvectors. 
Remember that a 33 symmetric matrix always has 
3 real eigenvalues, and that the associated 
eigenvectors 321 ,, uuu are orthogonal. The complete 
transformation of T from an arbitrary basis into the 
eigenvector basis is then given by 



















3

2

1

00
00
00







TUU T  

where 321 ,,  are the eigenvalues and U is the 
orthogonal matrix that is composed of 
the unit eigenvectors 321 ,, uuu .  321 uuuU  . 
Time Tensor properties 

Definition5 

A second-order time tensor is said to be symmetric 
if    vwSwvS ,,  for all Vwv , .  
In matrix notation: jiij ss  for all  nji ,...,1,  .  
Number of degrees of freedom:  

 1
2
1

nn
 

A second-order time tensor is said to be 
antisymmetric if    vwAwvA ,,  for all 

Vwv , .  
In matrix notation: jiij ss  for all  nji ,...,1,  .  
Number of degrees of freedom:  

 1
2
1

nn
 

A second-order time tensor is said to be traceless 
time tensor   0Ttr for T a matrix representing 
the tensor.Since the trace is invariant with respect to 
congruence,it is well defined the trace of a second-
order time tensor. 
Let T be a symmetric second-order time tensor. 
Definition6 

T  is said positive definite if   0, vvT , for every 
non-zero vector v . 
It means that all eigenvalues are positive. 
T is said positive semi-definite if   0, vvT ,for 
every non-zero vector v .  
It means that all eigenvalues are non-negative. 
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T  is said negative definite if   0, vvT , for every 
non-zero vector v .  
It means that all eigenvalues are negative. 
T is said negative semi-definite if   0, vvT , for 
every non-zero vector v .  
It means that all eigenvalues are non-positive. 
T  is indefinite if it is neither positive definite nor 
negative definite.  
The eigenvalues have different signs. 
Decomposition in symmetric and anti-symmetric 

parts in time tensor 

The decomposition of time tensors in distinctive 
parts can help in analyzing them.  
Each part can reveal information that might not be 
easily obtained from the original tensor. 
Let T be a second-order time tensor.  
If it is not symmetric, it is common to decompose it 
in a symmetric part S and an antisymmetric part A  

 TTTS 
2
1

 

 TTTA 
2
1

 

    ASTTTTT TT 
2
1

2
1

 

Decomposition in shape and orientation  

Let T be a symmetric second-order time tensor on 
3R  

The eigenvalues give information about the shape. 
The eigenvectors give information about the 
direction. 
For a time tensor field, the orientation field defined 
by the eigenvectors is not a vector field, due to the 
bidirectionality of eigenvectors.  
It is sometimes of interest to consider shape and 
orientation separately, for the interpolation, or in 
order to define features on them. 
The flows of time 

We would the world have to be like, for the flow of 
time to be an objective feature of reality. We can 
distinguish four distinct views the flow of time.  
1. The view that the past,present and future moment 
is objectively distinguished. 
2. The view that time has a direction; that it is an 
objective matter which of two nonsimultaneous 
events is the earlier and which the later. 
3. The view that there is something objectively 
dynamic about time. 
4. The view that there is something objectively 
fluxlike or flowlike about time. 
Four views have been sufficiently distinguished, 
either by defenders or critics of the notion of 
objective fields.  

 
We present time tensor fluctuations and their effects 
in driving fluctuations of the spatial and temporal 
field. The correlations and anticorrelations of time 
tensor  is emphasized. We begin with the properties 
of the time tensor correlation function.  
We consider times tensors fluctuations and the 
fluctuations of spacetime geometry.  
Time tensor, T is the source of spatial and 
temporal field in the quantity which describes 
stresses on spatial and temporal fields. 
Time tensor doesn’t become an operator in quantum 
field. 
Time tensor or temporal stres tensor response to 
deformation or strain on space and time. 
the spatial and temporal tensor  is a continuum of 
the response of space and time. 
Time tensor has been applied on a continuum on 
quantum mechanical phenomena in their response to 
stres tensor. 
Time tensor has been used to assess the spatial 
structures on time. It can have temporal effects on 
spatial effects.  
The past ,present and future moments 

The component of the intuitive flow of time is that it 
involves a distinguished but continually variable 
present moment in a frame whose contents are 
continually changing.  
The flow of time is at the concept of presentism, a 
view which holds that the present moment. We 
combine the past,present and the future moments.  
If the concept of time is coherent or incoherent then 
why past, present and future moments have 
changed?  
There are many distinguished properties about the 
past,present and future moments .  
Lorentz Tensor 

Lorentz tensor is, by definition, an object whose 
indices transform like a tensor under Lorentz 
transformations; what we mean by this precisely 
will be explained below.  
4-vector is a tensor with a first rank tensor. 
We write a 4-vector in components as 























3

2

1

0

G

G

G

G

G   

where we use Greek indices to run over all the 
spacetime indices,  3,0 .  
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The Lorentz transformation 

We write the components of the Lorentz 
transformation matrix in index notation.  
We transform the components of a 4-vector from an 
unprimed frame to a frame which is moving at 
speed v in the x  direction relative to F . 
We use the Lorentz transformation 



















































































3

2

1

0

3

2

1

0

1000
0100
00
00

x

x

x

x

x

x

x

x





 

where  

2

2

1

1

c

v


 and 
c

v
 . 

Now we write the components of the Lorentz 
transformation matrix as 

S where   is a row 
index and   is a column index, such that 























3
3

3
2

3
1

3
0

2
3

2
2

2
1

2
0

1
3

1
2

1
1

1
0

0
3

0
2

0
1

0
0

SSSS

SSSS

SSSS

SSSS

S  

Then, the Lorentz transformation for x can be 
written in the compact notation 

  










xSxSx  



3

0

 

  3
3

2
2

1
1

0
0 xSxSxSxSx    

  zSySxStcSx  

3210  

      xtctcx  
0  

      xtcxx  
1  

    yyx 
2  

    zzx 
3  

is the usual Lorentz transformation to a frame 
moving in the x direction. 

 

 

 

 

 

 

























































































z

y

xtc

xtc

z

y

x

tc

x

x

x

x





3

2

1

0

 

The inverse Lorentz transformation should satisfy 

  







  SS 1  

where  1,1,1,1diag
 is the Kronecker delta. 

    




  xxxS 1  

The inverse  1S  is also written as 

S . 
The left index denotes a row while the right index 
denotes a column, while the top index denotes the 
frame we're transforming to and the bottom index 
denotes the frame we're transforming from. 
We present the components of S and 1S in their 
transformations. 























3
3

3
2

3
1

3
0

2
3

2
2

2
1

2
0

1
3

1
2

1
1

1
0

0
3

0
2

0
1

0
0

SSSS

SSSS

SSSS

SSSS

S  































3
3

2
3

1
3

0
3

3
2

2
2

1
2

0
2

3
1

2
1

1
1

0
1

3
0

2
0

1
0

0
0

1

SSSS

SSSS

SSSS

SSSS

S  

The inverse to the transformation 



















































































3

2

1

0

3

2

1

0

1000
0100
00
00

x

x

x

x

x

x

x

x





 















































































3

2

1

0

3

2

1

0

1000
0100
00
00

x

x

x

x

x

x

x

x





 

The metric 

The metric L is a special Lorentz tensor, which for 
Minkowski spacetime in our convention is given by 

 1,1,1,1

1000
0100
0010
0001




























 diagL  

The other convention is to use
 1,1,1,1  diagL , which will change around 

minus signs in various places.  
We use the metric to raise and lower Lorentz 
indices.  
By de_nition 

 GLG  given a 4-vector G

with an upstairs index.  
We think that G as a column vector, and G as a 
row vector. 
The inverse metric L with upstairs indices 
satisfies 


 LL then, we can show that 
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 1,1,1,1  diagL . 
 In other words, the Minkowski metric is its own 
inverse. We can then use the 
inverse metric to raise indices, as in 

 GLG   
given a 4-vector with a lower index. 
The Lorentz group 

We can write down the condition for an object S to 
be a Lorentz transformation. 






 LSSL   

It translates to  LLSS T  for TS  the matrix 
transpose of S . 

LLSS T 























1000
0100
0010
0001

 

This condition is both necessary and sufficient for a 
44 matrix S  to leave the inner product of any 

two 4-vectors invariant. 
Any group is a set of elements with an operation 
that combines any two elements to form a third, 
which satisfies certain properties are closure, 
associativity, identity, and inverse. 
Here, the elements are the S and the group 
operation is matrix multiplication. 
Closure 

The product of any 2 Lorentz transformations is 
another Lorentz transformation. 
Associativity 

Associativity of Lorentz transformations which 
follows from the properties of matrix multiplication. 
Identity 

The identity is 



 S  

Inverse 

The inverse of 
S  is   





 SS 1 . 

Time Tensor analysis in  3O  

Rotation in 
3R and temporal space 

Coordinate axes are .xed and the physical system is 
undergoing a rotation in temporal space. 
Let be the components of new and old vectors. 

b

b

aba xRx   

where abR are elements of matrix which represents 
rotation.  
the relation between ba xx ,  is linear and 
homogeneous. 
 

 

 

The properties of transformation in temporal 

space 

1. R is an orthogonal matrix, 
1 RRRR TT  

bcacabRR   

accbabRR   
We will write the orthogonality relations as  

bdaccdabRR    

acbdcdabRR    
in the product of 2 rotation matrix elements, making 
row or column indices the same and summed over 
will give Kronecker   
2. The combination aa xxx 2 invariant under 
rotations, 

bbbcabacaa xxxxRRxx   
It can be generalized to the case of 
 2 arbitrary vectors, BA


, with transformation 

property 
baba ARA   

dcdc BRB   

Then abbaaa BABABA 


.  
Which is called the contraction indices. 
 3. Transformation of the gradient operators, 

a

c

ca x

x

xx 











 

From   aabb xRx  1  
We get then  

 
c

ca

a x
R

x 






 1  

Thus gradient operator transforms by  TR 1  

However for rotations R is orthogonal   RR
T
1  

c

ac

a x
R

x 







 

a

k
x


 transform the same ax . 

Time Tensors 

We have two vectors and they have the 
transformation properties, 

babaa ARAA   

dcdcc BRBB   

dbcdabca BARRBA   
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The second rank time tensors are those objects 
which have the same transformation properties as 
the product of 2 vectors, 

  bdcdabacac TRRTT   
Definition of n-th rank time tensors 

Cartesian time tensors 

    
njnn jijjijijiiiiii TRRRTT ......... 1222112121

...  
These transformations are linear and homogeneous 
which implies that  
If 

0...1


nj jijT  
for all 

mj  
Then they zero in other coordinate system. 
Time Tensor operations 

1. Multiplication by constants 
 

nn iiiiii cTcT ...... 2121
  

2. Add tensors of same rank 
     

nnn iiiiiiiii
TTTT ...2...1...21 212121

  
3. Multiplication of 2 tensors 
 

mnmn jjjiijjjiii TSST ............ 21212121
  

This will give a tensor of rank which is the sum of 
the ranks of 2 constituent tensors. 
4. Contraction 

addeabcaeabc TSTS   
3rd rank time tensor 
5. Symmetrization 

abT 2nd rank time tensor 

baab TT  are also 2nd rank tensors. 
6. Special numerical time tensors 

1TRR  
ikkjij RR   

ikjlklij RR    

This means that ij _ij can be treated as 2nk rank 
tensor. 
  ckbjaiijkabc RRRR  det  

abc  a 3rd rank tensor.  
Useful identities for abc  

klijlijk  2  

kljmkmjlilmijk    
General notation for time tensor transformation 

baba xRx   

b

a

ab
x

x
R


  

 

Transformation Law of Time Tensors in SU(N) 

The  nSU group consists of nn unitary matrices 
with unit determinant. We can regard these matrices 
as linear transformations on an n dimensional 
complex vector space nC .  
Thus any vector 

 ni  ...,, 21  

in nC is mapped by an  nSU transformation ijU ; 
as 

jijii U    

Thus i also belong to nC with 1 UUUU tt

and 1det U . 
We can define a scalar product for two vectors 
  ii *,   
which is invariant under  nSU transformation. 
The transformation law for the conjugate vector is 
given by, 

t

jijjijii UU *****    
It is convenient to introduce upper and lower indices 
to write 

*
i

i    

ij

j

i UU   
*
ij

i

j UU   
Thus complex conjugation just changes the lower 
indices to upper ones, and vice versa. 
In these notation,  

j

j

iii U    
ji

j

ii U    

The  nSU invariant scalar product is then 
  i

i ,  
and the unitary condition becomes 

i

j

k

j

i

kUU   
where the Kronecker delta is defined as 



 


otherwise

jiif
ij

i

j 0
1

  

We call this a contraction of indices. The i  are the 
basis for the  nSU defining representation also 
called the fundamental or vector representation and 
denoted as n , while the  i  are the basis for the 
conjugate representation, *n : 
Higher rank time tensors are de.ned as those 
quantities which have the same transformations 
properties as the direct products of vectors.  
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Thus tensors generally have both upper and lower 
indices with the transformation law, 

   p

q

lq

q

lp

p

p

q

kkk

lll

i

j

l

j

i

j

i

k

i

k

i

k

iii

jjj UUUUUU
...

...
...
...

21

21

2

21

2

2

1

1

21

21
......  

They correspond to the basis for higher-dimensional 
representations. 
Invariant time tensors 

The Kronecker delta and Levi-Civita symbol are 
invariant tensors under  nSU transformations.  

1. From the unitarity condition of i

j

k

j

i

kUU   
We immediately have 

k

l

l

j

i

k

i

j UU    

Hence i

j ,even though do not change under the 

 nSU transformations, behaves as if they are 
second rank tensors.  
They can be used to contract indices of other tensor 
to produce a tensor of lower rank.  
If  k

ij is a 3rd rank tensor, 
a

bc

c

j

b

i

k

a

k

ij

k

ij UUU    

the contracting with k

i gives 
a

bc

a

b

c

j

a

bc

c

j

b

i

k

a

k

i

k

i

k

ij UUUU    
where we have used 

k

l

l

j

i

k

i

j UU    
This gives a tensor of rank 1or vector. 
2. The Levi-Civita symbol is de.ned as the totally 
antisymmetric quantity, 

𝜀𝑖1𝑖2...𝑖𝑛 = 𝜀𝑖1𝑖2...𝑖𝑛
 

This is also an invariant tensor, because from the 
property of the determinant we have 
 

niii
n

nniii

j

i

j

i

j

i UUUU ...21
2

2

1

1...21
...det    

Since Udet in  nSU  ; 
niii ...21 in can be treated as 

thn   rank tensor.  
We can use this to change the rank of a time tensor.  
Permutation symmetry and time tensors 

Generally time tensors we have just define are basis 
for reducible representation of  nSU : To 
decompose them into irreducible representations we 
use the following property of these tensors.  
The permutation of upper or lower indices 
commutes with the  nSU transformations, as the 

latter consists of product of identical ijU or *
ijU  .  

Consider the second rank time tensor ij whose 
transformation is given by 

ab

b

j

a

iij UU    
 
Since U is the same, we can write the indices to get 

ba

a

i

b

jji UU    
Thus the permutation of indices in the tensor does 
not change the transformation law.  
If 12P is the permutation operator which 
interchanges the first two indices, 

jiijP  12  

then 12P commutes with the group transformation 

 ab

b

j

a

iij PUUP  1212   

This property can be used to decompose ij as 
follows.  
First we form eigenstates of the permutation 
operator 12P by symmetrization or 
antisymmetrization, 

 
jiijijS  

2
1

 

 
jiijijA  

2
1

 

jiij SSP 12  

jiij AAP 12  

In group theory, ijS form basis of an one-
dimensional representation of the permutation group 

2S and ijA the basis for another representation.  

It is ijS  and ijA will not mix under the  nSU

transformations, 

ab

b

j

a

iij SUUS   

ab

b

j

a

iij AUUA   

This shows that the second rank tensor ij

decomposes into ijS  ; and ijA in such a way that 
group transformations never mix parts with different 
symmetries.  
It turns out that ijS ; and ijA can not be decomposed 
any further and they thus form the basis of 
irreducible representations of  nSU . 
This can be generalized to tensors of higher rank 
hence the possibility of mixed symmetries with the 
result that the basis for irreducible representations of 

 nSU correspond to tensors with definite 
permutation symmetry among the positions of its 
indices. 
 

 

 

 

 

Time in classical mechanics 
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Quantum mechanics was based on classical 
Hamiltonian mechanics. In Hamiltonian mechanics 
a physical system is described by N pairs of 
canonical conjugate dynamical variables, k and 

k , which satisfy the Poisson-bracket relations: 
  kllk  ,  
    0,,  lklk   
 These variables define a point of the N2
dimensional so-called 'phase space' of the system. 
The time evolution of the system is generated by the 
Hamiltonian, a function of the canonical variables,  

 kkHH  ,  

 H
dy

d
k

k ,


  

 H
dy

d
k

k ,


 

H does not explicitly depend on time. 
The k and k are generalized variables; they need 
not be positions and momenta, but may be angles, 
angular momenta, et cetera. However, if the system 
is a system of point particles the canonical variables 
are usually taken to be the positions nq and 
momenta np of the particles Tthree-vectors are in 
bold type and the subscript denotes the n -th 
particle. Let us consider the relation of this scheme 
with space and time. 
In all of physics, with the exception of General 
Relativity, physical systems are supposed to be 
situated in a three-dimensional Euclidean space. The 
points of this space will be given by Cartesian 
coordinates  zyxs ,, . Together with the time 
parameter t  they form the coordinates of a 
continuous, independently given, space-time 
background. How the existence of this space and 
time is to be justified is an important and difficult 
problem into which we will not enter; we just take 
this assumption as belonging to the standard 
formulation of classical and quantum mechanics and 
of special relativity. 
The (3+1) dimensional space-time must be sharply 
distinguished from the N2 dimensional phase space 
of the system, and the space-time coordinates  ts,
must be sharply distinguished from the dynamical 
variables  kk ,  characterizing material systems 
in space-time. In particular, the position variable q

of a point particle must be distinguished from the 
coordinate s of the space-point the particle 
occupies, although we have the numerical relation:  

xqx   
yq y   

zqz   

A point particle is a material system having a mass, 
a position, a velocity, an acceleration, while s is the 
coordinate of a fixed point of empty space.  
The symmetries space and time are supposed to 
possess in physics. It is assumed that three-
dimensional space is isotropic or rotation symmetric 
and homogeneous or translation symmetric and that 
there is translation symmetry in time. In special 
relativity the space-time symmetry is enlarged by 
Lorentz transformations which mix s and t , 
transforming them as the components of a four-
vector.  
Individual physical systems in space-time need not 
show these symmetries; only the physical laws, that 
is the totality of physically allowed situations and 
processes, must show them. A physical system need 
not be rotation invariant, and a position variable of a 
physical system need not be part of a four-vector.  
The generators of translations in space and time are 
the total momentum P and the total energy H, 
respectively. The generator of space rotations is the 
total angular momentum J . We shall in particular 
be interested in the behavior of dynamical variables 
under translations in time and space. For an 
infinitesimal translation T in time we have: 

  THkk  ,  
  THkk  ,  

and for an infinitesimal translation m in space: 
  mPkk  .,  
  mPkk  .,  

The Hamiltonian and the generator of time 
translations of the time evolution of the system, is so 
much more prominent in classical mechanics than is 
the total momentum, the generator of translations in 
space. The reason for this is that the dynamical 
variables of the systems which are traditionally 
studied in classical mechanics, namely particles and 
rigid bodies, transform trivially under space 
translations.  
We conclude that in classical physics a sharp 
distinction must be made between the universal 
space-time coordinates and the dynamical variables 
of specific physical systems situated in space-time. 
Particles and clocks are physical systems having 
dynamical variables which behave in much the same 
way as the space and time coordinates, respectively, 
and may thus serve to indicate the 'position' of the 
system in space and in time. Point particles and 
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clocks are non-covariant concepts. If one is to look 
for physical systems which transform covariantly 
under relativistic space-time transformations one 
must consider fields. 
3 Time in Quantum Mechanics 
In quantum mechanics the situation is essentially 
not different. The theory supposes a fixed, 
unquantized space-time background, the points of 
which are given by classical number coordinates 

ts, . The space-time symmetry transformations are 
expressed in terms of these coordinates. 
Dynamical variables of physical systems, on the 
other hand, are quantized: they are replaced by self-
adjoint operators on a Hilbert space. All formulas of 
the preceding section remain valid if the Poisson-
brackets are replaced by commutators according to 
    ,, 1
 i .  

In particular, the canonical variables are replaced by 
operators satisfying the commutation relations: 
  kllk i  ,  
    0,,  lklk   
Symbols representing dynamical variables are 
supposed to be operators. 
Thus, for a point particle, 
  ijji ipq ,  

    0,,  jiji ppqq  
where zyxij ,, denote the Cartesian components 
of the position q  and momentum p of the particle. 
These relations have the well-known representation 
where q  is the multiplication operator and p the 
corresponding differentation operator. Both these 
operators are unbounded and have the full real axis 
as their spectrum. However, if the position 
wavefunctions are required to obey periodic 
boundary conditions the eigenvalues of p become 
discrete, and if the position wavefunctions are 
required to vanish at the endpoints of a finite 
interval particle in a box a self-adjoint momentum 
operator does not even exist. Corresponding 
statements hold for q . Similarly, since the 
wavefunctions of an angle variable must obey a 
periodic boundary condition, the eigenvalues of the 
corresponding angular momentum operator are 
discrete. Discrete energy eigenvalues are of course 
the hallmark of quantum mechanics. Nobody would 
conclude from these facts that something is totally 
wrong with the notions of position, momentum, 
angular momentum or energy in quantum 
mechanics.  
 

The three picture of Quantum Mechanics 

The Schrödinger Picture  
Quantum systems are regarded as wave functions 
which solve the Schrödinger equation. 
Observables are represented by Hermitian operators 
which act on the wave function. In the Schrödinger 
picture, the operators stay fixed while the 
Schrödinger equation changes the basis with time. 
The Schrödinger Picture is  

 t  

 tOO ˆˆ   

In the Schrödinger picture, the operators are 
constant while the basis changes is time via the 
Schrödinger equation. 

   tH
i

t
dt

d
sss  ˆ

  

 tOO ˆˆ   

The differential equation leads to an expression for 
the wave function. 

   0
ˆ

s

tH
i

s

s

et 



 

A quantum operator as the argument of the 
exponential function is defined in terms of its power 
series expansion. 

n

s

n

tH
i

tH
i

n
e

s















 ˆ
!

1
0

ˆ




 

  ...ˆ
2
1ˆ1

2ˆ




tHtH
i

e ss

tH
i

s




 
We presents power series expansion of time in a 
quantum operator as the argument of the 
exponential function. 
The Heisenberg Picture  

In the Heisenberg picture, it is the operators which 
change in time while the basis of the space remains 
fixed. 
Heisenberg’s matrix mechanics actually came 
before Schrödinger’s wave mechanics but were too 
mathematically different to catch on. 
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A fixed basis is, in some ways, more mathematically 
pleasing. This formulation also generalizes more 
easily to relativity. 
It is the nearest analog to classical physics. 
The Heisenberg Picture is  

 t  

 tOO ˆˆ   

In the Heisenberg picture, the basis does not change 
with time. This is accomplished by adding a term to 
the Schrödinger states to eliminate the time-
dependence. 

   0
ˆ

ss

tH
i

H te
s



  

The quantum operators, however, do change with 
time. 

 tOO ˆˆ   

We may define operators in the Heisenberg picture 
via expectation values. 

   tOtO ss  ˆ  

   0ˆ0
ˆˆ

s

tH
i

tH
i

s

ss

eOeO 

  

H

tH
i

tH
i

H

ss

eOeO 
 ˆˆ ˆ   

Operators in the Heisenberg picture, therefore, pick 
up time dependence through unitary 
transformations. 

tH
i

tH
i

H

ss

eOeO
ˆˆ ˆˆ 



  

We may ascertain the operators’ time-dependence 
through differentiation. 

𝑑𝑂̂

𝑑𝑡
=

𝑖

ℏ
𝐻̂𝑠𝑒

𝑖

ℏ
𝐻̂𝑠𝑡𝑂̂𝑒−

𝑖

ℏ
𝐻̂𝑠𝑡 −

𝑖

ℏ
𝑒

𝑖

ℏ
𝐻̂𝑠𝑡𝑂̂𝐻̂𝑠𝑒−

𝑖

ℏ
𝐻̂𝑠𝑡

+
𝜕𝑂̂

𝜕𝑡
 

 
t

O
OH

i

dt

Od
s






ˆˆ,ˆˆ


 

 

The Dirac Picture  

In the Dirac or, interaction picture, both the basis 
and the operators carry time-dependence. 
The interaction picture allows for operators to act on 
the state vector at different times and forms the 
basis for quantum field theory and many other 
newer methods. 
The Dirac Picture is  

 t  

 tOO ˆˆ   
The Dirac picture is a sort of intermediary between 
the Schrödinger picture and the Heisenberg picture 
as both the quantum states and the operators carry 
time dependence. 
Consider some Hamiltonian in the Schrödinger 
Picture containing both a free term and an 
interaction term. 
It is especially useful for problems including 
explicitly timedependent interaction terms in the 
Hamiltonian. 

Sss VHH ˆˆˆ
,0   

In the interaction picture, state vectors are again 
defined as transformations of the Schrödinger states. 
These state vectors are transformed only by the free 
part of the Hamiltonian. 

   tet s

tH
i

I

s


,0

ˆ
  

The Dirac operators are transformed similarly to the 
Heisenberg operators. 

 
tH

i

s

tH
i

I

ss

eOetO
,0,0

ˆˆ ˆˆ 


  

Consider the interaction picture counterparts to the 
Schrödinger Hamiltonian operators. 

 
tH

i

s

tH
i

I

ss

eHetH
,0,0

ˆ

,0

ˆ

,0
ˆˆ 



  

  sI HtH ,0,0
ˆˆ   
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sH ,0
ˆ commuting with itself in the series expansion 

of the exponential. 

The interacting term of the Schrödinger Hamiltonian 
is defined similarly. 

 
tH

i

I

tH
i

I

ss

eVetV
,0,0

ˆˆ
ˆˆ 



  

States in the interaction picture evolve in time 
similarly to Heisenberg states. 

     t
dt

d
etH

i
t

dt

d
s

tH
i

IsI

s


,0

ˆ

,0
ˆ 



   teVet
dt

d
I

tH
i

s

tH
i

I

ss


 ,0,0

ˆˆ
ˆ   

     ttVt
dt

d
III  ˆ  

Therefore, the state vectors in the interaction picture 
evolve in time according to the interaction term 
only. 

     ttVt
dt

d
III  ˆ  

It can be easily shown through differentiation that 
operators in the interaction picture evolve in time 
according only to the free Hamiltonian. 

 















dt

Od
OH

i

dt

Od I
I

I
ˆˆ,ˆˆ

,0


 

Tensor equations 
Scalar valued function of second-order tensors 

Let  tf be a scalar valued function of the second 
order time tensor t  

 tff   

f is a scalar valued function 

qppq eett   is a tensor valued time function 

qp

pq

ee
t

f

t

f










 

 is a scalar valued probability function 

mkkm eeHH  is a tensor valued energy function 

mkkm eeGG  is a tensor valued energy function 

mkkm eeRR  is a tensor valued energy function 

Tensor valued function of second-order tensors 

Let  tF be a second order tensor valued function of 
the second order time tensor t  

 tFF   

jiij eeFF   is a tensor valued function 

qppq eett   is a tensor valued time function 

qpji

pq

ij
eeee

t

F

t

F









  

jiij ee  is a tensor valued probability 

function 

mkkm eeHH  is a tensor valued energy function 

mkkm eeGG  is a tensor valued energy function 

mkkm eeRR  is a tensor valued energy function 

Time Tensors on Schrodinger’s Equation 

Elementary quantum mechanics start by considering 
a single point particle. The particle position is 
commonly denoted s instead of q and the time-
dependent wave function is written  ts, .  
This notation is misleading in several ways. It gives 
the false impression that the wave function is just an 
ordinary wave in three-dimensional space, an 
impression which is reinforced by the usual 
discussions of double slit interference, quantum 
tunneling.  
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 𝑖ℏ
𝜕𝛹(𝑠, 𝑡)

𝜕𝑡
= −

ℏ2

2𝑚
(

𝜕2𝛹(𝑠, 𝑡)

𝜕𝑥2
+

𝜕2𝛹(𝑠, 𝑡)

𝜕𝑦2

+
𝜕2𝛹(𝑠, 𝑡)

𝜕𝑧2 ) + 𝑈(𝑠)𝛹(𝑠, 𝑡) 

),(
2

 2
2

tsU
m

H 


 

),(),( tsH
t

ts
i 




  

is Schrodinger’s equation. 
 

Scalar valued function of second-order tensoral 

Schrodinger’s Equation 

),(),( tsH
t

ts
i 




 transform to  

𝑖ℏ
𝜕𝛹(𝑠, 𝑡𝑝𝑞𝑒𝑝 ⊗ 𝑒𝑞)

𝜕𝑡𝑝𝑞
𝑒𝑝 ⊗ 𝑒𝑞

= 𝐻𝑘𝑚𝛹(𝑠, 𝑡𝑝𝑞𝑒𝑝 ⊗ 𝑒𝑞)𝑒𝑘 ⊗ 𝑒𝑚 
Tensor valued function of second-order tensoral 

Schrodinger’s Equation 

),(),( tsH
t

ts
i 




 transform to  

 𝑖ℏ
𝜕𝛹𝑖𝑗(𝑠, 𝑡𝑝𝑞𝑒𝑝 ⊗ 𝑒𝑞)

𝜕𝑡𝑝𝑞
𝑒𝑖 ⊗ 𝑒𝑗 ⊗ 𝑒𝑝 ⊗ 𝑒𝑞 = 

𝐻𝑘𝑚𝛹𝑖𝑗(𝑠, 𝑡𝑝𝑞𝑒𝑝 ⊗ 𝑒𝑞)𝑒𝑖 ⊗ 𝑒𝑗 ⊗ 𝑒𝑘 ⊗ 𝑒𝑚 
Time Tensors on Relativistic Quantum 

Mechanics 
The particles and rigid bodies effect in classical 
physics the notion of the position of a physical 
system seems that in non-relativistic quantum 
mechanics, although we have seen that position-
operators may have discrete eigenvalues.  
In relativistic quantum mechanics the concept of a 
position-operator encounters serious problems. T.D. 
Newton and E.P. Wigner showed that the required 
behavior of a position operator under space 
translations and rotations almost uniquely 
determines this operator.  
The resulting operator q is non-covariant and, due 
to its energy being positive, has the ugly property 
that a state which is an eigenstate of it at a given 
time or “localized' state” will be spread out over all 
of space an infinitesimal time later.  

−ℏ2
𝜕2𝛹(𝑠, 𝑡)

𝜕𝑡2
= 

−ℏ2𝑐2 (
𝜕2𝛹(𝑠, 𝑡)

𝜕𝑥2
+

𝜕2𝛹(𝑠, 𝑡)

𝜕𝑦2
+

𝜕2𝛹(𝑠, 𝑡)

𝜕𝑧2 )

+ 𝑚2𝑐4𝛹(𝑠, 𝑡) 
42222 cmcG    

),(),(
2

2
2 tsG

t

ts





   

is Klein-Gordon Equation. 

Scalar valued function of second-order tensoral 

Klein-Gordon Equation  

),(),(
2

2
2 tsG

t

ts
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


  transform to 

 

−ℏ2
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2 𝑒𝑝 ⊗ 𝑒𝑞 = 

𝐺𝑘𝑚𝛹(𝑠, 𝑡𝑝𝑞𝑒𝑝 ⊗ 𝑒𝑞)𝑒𝑘 ⊗ 𝑒𝑚  

Tensor valued function of second-order tensoral 

Klein-Gordon Equation 
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  transform to 

 

mkjiqppqijkmqpji

pq

qppqij
eeeeeeTsGeeee

T

eeTs





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2
2

Dirac equation 

In the case of a Dirac 
2
1

spin particle the Newton-

Wigner position operator turns out to be identical 
with the Foldy-Wouthuysen "mean position" 
operator. This case is particularly interesting for 
when the Dirac-equation was conceived in 1928 the 
space-part s  of the four-vector appearing as the 
argument of Dirac's four-spinor “wavefunction 
 cts, , was identified with the position of the 

electron. This had the embarrassing consequence 
that the corresponding 'velocity' of the electron 
would always be found to be the velocity of light. It 
took twenty years before this problem was solved 
and the proper position-operator q was identified. 
The notation s for both the particle position and the 
space-coordinate certainly has obscured the issue. 
The basic quantity is the operator field  ts,

which is parametrized by the classical number 
coordinates of spacetime points. 
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𝑖ℏ
𝜕𝛹(𝑠, 𝑡)

𝜕𝑡
= 𝛽𝑚𝑐2𝛹(𝑠, 𝑡)

+ 𝑐 (∑ 𝛼𝑘𝑝𝑘
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is Dirac Equation. 

Scalar valued function of second-order tensoral 

Dirac Equation  

),(),(
tsR

t

ts
i 




 transform to 

 

𝑖ℏ
𝜕𝛹(𝑠, 𝑡𝑝𝑞𝑒𝑝 ⊗ 𝑒𝑞)

𝜕𝑡𝑝𝑞
𝑒𝑝 ⊗ 𝑒𝑞

= 𝑅𝑘𝑚𝛹(𝑠, 𝑡𝑝𝑞𝑒𝑝 ⊗ 𝑒𝑞)𝑒𝑘 ⊗ 𝑒𝑚 
Tensor valued function of second-order tensoral 

Dirac Equation 

),(),(
tsR

t

ts
i 




 transform to 

 

𝑖ℏ
𝜕𝛹𝑖𝑗(𝑠, 𝑡𝑝𝑞𝑒𝑝 ⊗ 𝑒𝑞)

𝜕𝑡𝑝𝑞
𝑒𝑖 ⊗ 𝑒𝑗 ⊗ 𝑒𝑝 ⊗ 𝑒𝑞

= 𝑅𝑘𝑚𝛹𝑖𝑗(𝑠, 𝑡𝑝𝑞𝑒𝑝 ⊗ 𝑒𝑞)𝑒𝑖 ⊗ 𝑒𝑗

⊗ 𝑒𝑘 ⊗ 𝑒𝑚

 
4 Conclusion 
Time tensor follows that stress tensors and 
spacetime metric have to be regarded as spatial and 
temporal states coupled through the determination 
of ultimate spatial and temporal states in spacetime 
probing requires their fluctuations. We want to 
define time tensor for consistent description of the 
fluctuations of stress tensors and space and time 
curvatures, of the associated spatial and temporal 
mechanisms.  We established temporal fluctations 
for studying the interplay between space and time 
fluctuations and curvatures. We presented Three 
Pictures of Quantum Mechanics on time tensors. 
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