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Abstract: In this paper, we purpose and apply the parametric iteration method (PIM) for the
numerical solution of partial integro- differential equations (PIDES).The approximate solutions
arise according to the auxiliary parameter h. The solution process is illustrated by some of
examples. The results of PIM have compared with the exact solution for illustration of simplicity
and efficiency of PIM. The convergence of proposed method has been provided.
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1. Introduction

Partial integro differential equations appear in
the many various fields. For example, they
arise in modeling of heat conduction in
materials with memory; population dynamics,
viscoelasticity and theory of nuclear reactors
[1-6].Also some of finance mathematics
problems are modeled as a Partial integro
differential equation and some of linear
system arise of partial differential equation
and integral equation [7]. So far various
numerical schemes are proposed for solving
PIDE [1,8-11]. In this paper, we purpose a
parametric iteration method for solving
partial integro differential equations. Now,
we consider partial integro-differential
equation as following:

o"u
ox"

a(x) ‘;‘j +b(x)

=g(x,t)+c(X)u+ Ajk(x,t, s)u(x, s)ds

1)
(with prescribed conditions) , where
a(x),b(x),c(x)and g(x,t)are known
functions and u(x,t) is an unknown function. In
this work the numerical solution of (1)
provides by PIM when g,k,u, are continuous.
PIM provides a sequence of iterations for the
solution of PIDE. Some examples are
approximated by PIM and the results are
compared with the exact solution.
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2. The basic idea of the PIM

In this section, the basic concepts the PIM are
described for the PIDE. Then the convergence
analysis is discussed.

2.1. PIM
The PIM provides the solution of Eq. (1) as a
sequence of approximations. For this purpose
we assume L is the continuous operator
onC[a,b] respectively. To describe the basic
idea of the PIM, we consider Eq. (1) as
follows:

L(u) =g(x1),
)
where L has the property L(g) =0
wheng =0. That L is an auxiliary linear

operator with respect tou, and g(xt) is the
known continuous function.

Now, we construct a family of iterative
processes for Eq. (1) as follows:

LUy, (¥) —u (X)]=hH (x, ) Alu, (x, )],

(3)

where,

Al (x0]=aZY 4+ p YU —ljk(t,s)u(x,s)ds—g(x,t)
“ an " )

(k=01..), 4)
(with prescribed conditions) ,and ug(X,t) is the
initial guess which can be chosen arbitrary but
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the suitable selection is effective for rate of
convergence [12],or it can also be solved from
its corresponding linear homogeneous equation
Lluy(x,t)]=0 or linear non homogeneous
equation L[uy(x)]=g(x) and using of
prescribed conditions. The parameter h=0
and the function H(x,t) =0 denote the so-
called auxiliary parameter and auxiliary
function. Also we have the great freedom to
choose the auxiliary linear operator L, the
auxiliary parameter h, the auxiliary function
H(x,t)and the initial approximationu,(X,t) .
Therefore, if the successive approximations
U, (x,t), k>0 obtained by PIM in terms of the
auxiliary parameter h then exact solution may
be given by u(x,t) =limu, (x,t).

k—o0
Now we let V be the solution space of Eq. (1)
and {g; (x,t):¢; (x,t)eV,i, j=01,...; denote the
set of basis functions
that ¢; (x,t) = ¢ (X)e; (1), (i, j =01,...) . Hence
we can represent the solution in the

seriesu(x,t) = > > ;¢ (X); (t) , where c; are
i=0 j=0

real coefficient. The auxiliary linear operator L,
the initial approximation u,(x,t) and the
auxiliary function H(x,t) should be chosen in
such a way that all solutions of the
corresponding PIM equation (4) exist and can
be expressed by this set of base functions. Now
we choose use the following the base functions
as basis for solution space i.e.

{(x—a)m Im=01,... } , therefore,
& (1) =4(0¢; (t) = (x—a)' (t—-a)’, (i, j =01,...)

(5)

Therefore we consider
U(X!t) = chij ¢Ij (X,t)

i=0 j=0
(6)
where ¢; be determined. Now, for solving Eq.

(1) we set the auxiliary operator L as the
follows:

Lu(x,t)] =2

"u
atn

(")
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Now we truncate the infinite series (6) as
below:

N M
u(,t) = D> ¢ ¢ (X)

i=0 j=0
8
If we set N =2, M =2 then we can consider
the initial guess as following:

)
Up(X,t) = chij @ (X)e; (t)

i=0 j=0
9)

That with due attention to L[u, (X, t)] = g(x,t)
and prescribed conditions

Coo+ Co1+ Cozs Cros Cu1: G2 01 €21, Cop Will b
determined. Also we set H(x,t) =1, and we use

the PIM for the computation approximation
solutions of (1).

2.2 The h- curve and the valid region

of h

Assume that we obtain a family of solution
series in the auxiliary parameter h by means of
PIM. We consider this solution as a function
in terms of h, X ,t then we derive (once or
more) this function respect to x,t in
x=a,t= fthat «, S €[a,b] i.e. we let
y =G(x,t,h) thaty is the solution of (1) then
we set

0""G

= A lewicpr o Belab],

(n,m=12,.)

(10)
therefore T"will be in terms of h, now we plot
curve of I', according to these h curves, it is
easy to discover the valid region of h, which
correspond to the line segments nearly parallel
to the horizontal axis. This region is called

valid region of h that we note it with R;,. We
ensure the solution series converge for the
anyheR,,.

2.3 The convergence of PIM
Definition2.3.1: for «, B e Z!

andp e C*(R"), p,4(0) = sup\x“aﬂgo(x)\ is

xeR"

defined that we show it as ||(0||a 41131,
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Definition2.3.2: the Schwartz space S(R") kli_rgA[uk(x)]:!m[a;—nnuk(x,t)+b;(—:uk(x,t)—g(x,t)—iKuk”(x,s)]
or S, consist of all functions ¢ € C”(R") ~ajim ;T"nuk(x,t)mklim %uk(x,t)-!im 9k~ AK fim u, (x5
o0 —® OX —0 —®

such that ||(0||a’ﬂ is finite for pair of multi- :a%(klim uk(xltmb%qim o 00— 02K )
-0 X" koo —0 —n

1 1 n n n
indicesr, f e Z..[13]. :a%(U(x,t)Hb%(U(x,t))—g(x,t)—iK(U(x,s))

Proposition: Polynomials in R" are Schwartz (17)

functions.[13] and (16) (17) the foIIowing term is obtained.
Lemma: for each « € Z! the partial

differential operator 6 : S — S is continuous

linear operator inS . Hence, U (x,t) should be the exact solution of

Proof:[13]. the Eq. (1).
Now, we set K = j k(x,t,s)ds and we rewrite .
5 3. Hlustrative Examples
Eqg. (1) as the follows: In this section, we use the PIM for solving
an o'y the partial integro- differential equations and
—+b =g(x,t)+cu+ AKu(x,s) compare the results with the exact solution to
8t ox" show efficiency of PIM.
(11) Example 3.1: We consider the partial
Theorem (convergence): Let K, L and 0" be integro- differential equations with the exact
continuous operators inS . It is proved that the solutionu(x,t) = xt , as the following:
sequence {u, (x)}- where u, (x) is produced by t
the parametric iteration formulation of (5) - XUy = Uy +xsmt+jsm(t—s)u(x,s)ds,
converges to the exact solution of (1). 0
Proof. If the sequence u, (x,t) converges, we O<x<t<l
can write With the conditions
U (x.t) = lim u, (x,t) ux0) =0, udn=t, ux0=x
k—0 For solving this equations by PIM we define,
(12) 62
Then Llu(x,t)]=—
U (X!t) = kll_rl;louk+l(xit) (18)
(13) Then we set initial approximation from (9) as
With attention to (9), (11), (12) 2 2
Uo(%,t) =D "¢ ¢ (X); (t) Now for

i=0 j=0
$im L[t (68) =y (6] = LM g (x.8) - lim Uk( fm@nlng coefficients we should use
L[Uy (x,t)]=g(x,t) that g(x,t) = xsint and
. (14) conditions (). Therefore the coefficients are
According to (5) we have obtained as below:
¢, =1 and other coefficients are zero, thus

Ll - = lim hH =
ki'l[“kﬂ(x’t) U (X0 o (AU (x1)] othe initial guess isu, (x,t) = xt

(15)
Sinceh =0 and H(x,t) =0, we obtain With using (3), (14), the iterative scheme for
kIim Alu, (x,t)]=0 Eq. (13) is as follows:
—® ts v
(16) U (6) =U (6 ) +h| = U, (x,) +xsmt+“ X%Jk J' sin(v—r)uy (x, r)dr)dvds) |, k=01,...
Thus according to continuity of the operators K " ’
and 0", (15) gives For this example the exact solution is

achieved i.e. u, (x,t)=xt,(k=0.1,...).Also the
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valid region of hi.e. Ry, was presented in
figure 1.

Example 3.2: As a second example, we
consider the partial integro- differential of the
second kind with exact

solutionu(x,t) =e* cost, as the following:
t
Uy=U + Zj(t—s)u(x,s)ds—ZeX,
0

0<x<t<1
Such that,

u(x,0)=x% u(x,0=1 u(,t)=t, u,0,t)=0.

Similar to example (1) we set;
2
L[u(x,t)] = gt_g ,and g (x,t) = —2¢*, then we

consider initial solution as following:

2 2
Up(X,t) = chij @ (X)p; (1)

i=0 j=0
Therefore by using L[uy(X,t)]=g(x,t) and
conditions ().The coefficients are obtained as
below:
Coo =1, ,Cpp =—1,¢p =1, ¢, =—1, And other
coefficients are zero.
If we let H(x,t) =1 then we obtain iteration
formula from (3), (14) as following:

v

U (68 = U (%, ) +h| u (X, 1) +e* (-1+17) +j'j'(—%1k (x,v)— 2(_[ (V—=r)u, (x,r)dr)dvds)

00 0

The obtained result for 8" iteration
was shown in table 2; also the valid region of h

i.e. R;, was presented in figure 2.

4. Numerical Results and Figures
In the previous section obtained exact

solution for example 1. thus for example 2, we

present the numerical method in table 1 and plot
the h-curve for two examples. All of computation

was done with Maplel5.

Table 1: Numerical results of example2,

Xi 1:i Ug (X' t) uexact(x1t)
0 0 1 1
0.125| 0.125 |1.124307249 | 1.124307252
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0.25 | 0.25 |1.244108176 | 1.244108176
0.375| 0.375 | 1.353880601 | 1.353880601
0.5 0.5 1.446889037 | 1.446889037
0.625 | 0.625 | 1.515078567 | 1.515078569
0.75 | 0.75 | 1.548985348 | 1.548985348
0.875| 0.875 |1.537671528 | 1.537671527
1 1 1.468693940 | 1.468693940

Figl: valid region of h for example 2:
R, =[-1.8,0)

6000
3000
40004
3000
20004

10004

,k=01...

5. Conclusion

In this paper, we applied parametric iteration
for solving partial integro- differential
equations of the second. The results
compared with the corresponding values of
exact solutions show that PIM is simplicity in
practice and highly accurately for partial
integro- differential equations. Also we
present the convergence of PIM for solutions
of partial integro- differential equations in the
valid region of h (Ry,). More ever, if we

increase iterations by PIM scheme, leads to
more accurate solutions.
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