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Abstract:- In this study, a new probability distribution called Weibull-epsilon distribution is introduced. Some of the 
basic statistical properties have been described. The density and hazard rate function plots exhibit unimodal and 
bathtub shapes, respectively.. Its varying shapes show it is possible to use in modeling different data generating 
processes. It is fitted to two real-life datasets and provided better fit when compared with the fit of the Weibull 
distribution to the same datasets. Particularly for the carbon fiber breaking stress dataset, the new distribution is a 
better choice over the three parameter Cauchy-Weibull-Logistic distribution, with 1.62 % gain in likelihood per data 
point. It, therefore, holds a good prospect for practical applications in engineering, social and biological systems, 
mortality studies in demography and renewable energy modeling. 
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1 Introduction 

Of recent, many new probability distribution functions are 
being introduced in the literature with applications to real life 
datasets. This is motivated partly by the several methods of 
generating probability distributions that are compatible with the 
requirements of the axioms of probability; and partly by the 
need for new distributions that are flexible enough to provide 
better fit to a wide variety of real-life data generation processes 

Thus, many lifetime probability distributions are constructed 
from standard distributions and are applicable in renewable 
energy modeling, reliability study in biological and mechanical 
systems, and in many other real-life applications. Some 
relevant studies can be found in [1, 2, 3, 4, 5], for examples. 
The newly constructed distributions are found to be more 
flexible than the parent distributions from which they were 
created [3]. For instance, the family of distributions generated 
from the parent epsilon distribution [6] are found to assume 
more flexible shapes [1, 2, 7] typical of the characteristics of, 
and provide better fit to, many real-life random processes.  

Many methods of generating probability distribution functions 
using continuous life time distributions are found in the 
literature. For instance, gamma-G [8], beta-G [3], Weibull-G 
[9], and Kumaraswamy-G [10]. These have been used to 
generate probability distributions both in the discrete and 
continuous variable cases. Addition of parameter(s) through 
exponentiation and frailty process is another method of 
generating new probability distributions [11, 12]. Many of 
these distributions have been applied to real life datasets in 
areas such as engineering, actuarial, environmental and medical 
sciences, biological system studies, demography, economics, 
finance and insurance; see for example [13, 14, 15, 16]. A 
comprehensive survey of some new distributions and their 
applications can be found in [17, 18, 19]. 

The Weibull distribution is a very important distribution in 
practice. Its application in generating probability distributions 
originated with the work of Gurvich et al [20]. In this study, the 
focus is on generating the Weibull-epsilon (WE) distribution 
with the view to applying it to real life datasets. This is new. 
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2 Family of Weibull-G distributions 

The family of Weibull-G distributions proposed by Gurvich et 
al [20] has a general cumulative distribution function given by 

 (      )       (   (   ))                         ( ) 

where           and   is the parameter vector of the 
parent distribution.  (   ) is a monotonically increasing 
function. The density function is given by 

 (      )    (   )   (   (   ))               ( ) 

where  (   ) is the derivative of  (   ). 

Using the expression (1), Bourguignon et al [9] studied the 
properties of a Weibull generator of probability density 
functions, given by 

 ( )   ∫     

 , (   )-

 

   
 
   

     * , (   )-+
 
                                  ( ) 

The corresponding probability density function is given by 

 ( )    , (   )-* , (   )-+     * , (   )-+
 
       ( ) 

The authors used  , (   )-   (   )

   (   )
 to transform the 

cumulative distribution function of the parent distribution, 
 (   ), and  , (   )- in (4) is its derivative.  

Many distributions were generated and studied, for example, 
Weibull-uniform, Weibull-Weibull, Weibull-Burr II and 
Weibull-normal distributions [9]. There are other forms of the 
transformation functions that were used to generate many 
probability distributions, for example, the exponentiated T-X 
family [21]; the Weibull-gamma distribution [22]; a new 
Weibull-Pareto distribution [23], Weibull-inverted exponential 
[24], Weibull-Lindley [25], Weibull-Logistic [26], Weibull-
Pareto [27] and Weibull-Dagum distributions [28]. 

3 The Weibull-Epsilon Distribution 

The transformation   , (   )-   (   )

   (   )
 is used here with the 

parent distribution as the epsilon distribution with    (   ), 
given by 
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Substituting (6) and (7) into (3) and (4) gives the three 
parameter Weibull-epsilon cumulative distribution and 
probability density functions, respectively, as 

 (       )       * ,   - +                     ( ) 

and 

 (       )    
  

     
 ,   -      * ,   - +    ( ) 

where   .   
   
/

 

 
 

,      ,         and    . 

Plots of the Weibull-epsilon probability density function at 
various parameter values are given in Figure 1 of Appendix 1. 

Lemma 

The density function  ( ) (equation 9) is a true probability 
density function. 

Proof 

It suffices to show that,     ( )   . Note that 

 ( )   (   ) 

 ∫  ( )
 

 

   

      { [(
   

   
)

 
 
 

  ]

 

} 

So that, 
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Since  ( ) is a strictly increasing function and      , the 

proof follows.       

4 Hazard and mean residual life 
functions 

4.1 The hazard rate function 

For the Weibull-epsilon distribution, the hazard rate function 
can be obtained as 
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Plots of the Weibull-epsilon hazard rate function for varying 
parameter values are presented in Figure 2 of Appendix 1.  

The corresponding cumulative hazard rate function is given by 
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4.2 Mean residual life (MRL) function 

The mean residual life (MRL) function is the second most 
important function used to represent life time distributions. It 
determines the remaining life of a component or unit of a 
system that has survived up to a particular point in time. That 
is, it measures the life expectancy of a component or unit that 
has survived up to time  . It is given, for a random variable   
distributed according to the Weibull-epsilon distribution, by 

 ( )   (       ) 
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The full evaluation of the integral is given in Appendix 2. Plots 
of the mean residual life function of the Weibull-epsilon 
distribution at varying parameter values are presented in Figure 
3 of Appendix 1. 

5 Quantile function 

The quantile function is defined by the relation 

     
  ( )                                        (  ) 

where       

For a random variable,  , distributed according to the Weibull-
epsilon distribution, the quantile function is given by 

 ( )   
   

   
                                     (  ) 

where   {  ,    (   )-
 

 }

 

  
,        

6 Distribution of order statistics 

Let  ( )           be order statistics of a random variable 
  characterized according to the Weibull-epsilon distribution. 
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The distribution of the     order statistic,      , is given 
by 

  ( )( )  
  

(   ) (   ) 
 ( ) ( )   ,   ( )-      (  ) 

where  ( ) and  ( ) are Weibull-epsilon cumulative 
distribution and probability density functions, respectively. In 
most statistical applications interest is centered on the 
distribution of the extreme values. Thus, from (15) the 
distributions of the first and     order statistics are obtained by 
substituting     and    , respectively. That is, 
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7 Estimation of parameters 

One of the problems of the construction of new probability 
distributions is that parameter estimates are not explicit, that is, 
there may not exist explicit expressions for the estimate of the 
parameters of the model. The normal distributions, for instance, 
has expressions for the estimates of its parameters in terms of 
the sample values of the random variables; it is not so with the 
distribution in this study. However, modern computers and 
packages enable easy estimation of the parameters of any true 
probability distribution. For example, the fitdistrplus package 
of R statistical programming language enables easy estimation 
of the parameters of any probability distribution when the 
density, distribution and quantile functions can be specified. 

For this study, the density function (9), distribution function (8) 
and the quantile function (14) are specified, respectively, 
below. 

                    (       )    
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The syntax for fitting Weibull-epsilon distribution to a dataset, 
say  , in fitdistrplus of R after the specification above is given 
by 

             (                          (         

           )               ) 

The default for method of estimation is maximum likelihood 
(mle) and does not need to be specified. Other methods include 
matching moments (mme), matching quantiles (qme) and 
maximum goodness of fit (mge). Any of these can replace mle 
as above. 

8 Application 

Here, the applicability of the Weibull-epsilon distribution is 
illustrated by fitting to two real life datasets. It is compared 
with the fit of the Weibull distribution for the first dataset and 
to the Weibull and Cauchy-Weibull-Logistic distribution. 

8.1 Data 

The Weibull-epsilon distribution is applied to two datasets to 
illustrate its flexibility in modeling diverse data generation 
processes. These are the 2015 daily solar radiation (MJ/m2) 
record at Yola [16, 29] and the breaking stress of carbon fibers 
of length 50 mm, obtained from Almheidat et al [30].  

8.2 Parameter Estimation 

8.2.1 Solar Radiation Data 

The result of fitting the Weibull and Weibull-epsilon 
distributions to the solar radiation dataset is presented in Table 
1. The fitted densities superimposed over the histogram of the 
data are presented in Figure 4. 
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Table 1 Weibull and Weibull-epsilon fit result of solar 
radiation dataset 

Dist. = Distribution, Par. = Parameter, Est. = Estimate, Std. E = Standard Error, 
    = negative log-likelihood function value,    = Kolmogorov-Smirnov 
statistic value,       = p-value 

 
Figure 4 Weibull and Weibull-epsilon fit of solar 

radiation data 

8.2.2 Breaking Stress Data  

The results of fitting the Weibull and Weibull-epsilon 
distributions to the breaking stress of carbon fibers dataset is 
presented in Table 2 below, along with the fit result of the 
Cauchy-Weibull-Logistic distribution [30]. The fitted density 
curves superimposed over the histogram of the data are 
presented in Figure 5. 

Table 2 3-P CW{L}*
, Weibull and Weibull-epsilon fit result of 

breaking stress dataset 
Dist. Par. Est. Std. E     

(   ) 
   

(     ) 
Remark 

3-P 
CW{L} 

  2.144 0.722 86.99 
(180.0) 

0.057 
(0.983) 

Good 
fit   7.932 1.889 

  2.953 0.108 
Weibull Shape 3.441 0.331 86.08 

(178.2) 
0.082 
(0.761) 

Good 
fit Scale 3.062 0.115 

Weibull-
Epsilon 

  2.514 0.245 85.93 
(177.8) 

0.088 
(0.655) 

Good 
fit   0.223 0.008 

  3866 1532 
Dist. = Distribution, Par. = Parameter, Est. = Estimate, Std. E = Standard Error, 
    = negative log-likelihood function value,    = Kolmogorov-Smirnov 

statistic value,       = p-value, 3-P CW{L} = 3 parameter Cauchy-Weibull-
Logistic distribution adopted from [30] 
  

 
Figure 5 Weibull and Weibull-epsilon fit of 

breaking stress (in Gba) of carbon fibers 

9 Discussion 

The plots of the density function of the Weibull-epsilon 
distribution introduced in this study shows flexibility in taking 
any form of shape – J-shape, reversed J-shape, positively and 
negatively skewed shapes. This suggests that it can be used in 
modeling datasets from different data generating processes. The 
varying shapes of the plots of its hazard rate function also show 
it has a potential for modeling in lifetime and reliability studies. 

The results in Table 1 show that the Weibull-epsilon 
distribution provides a good fit to the solar radiation dataset 
while the Weibull distribution does not. This is depicted in 
Figure 4. This shows that the distribution can be applicable in 
modeling solar power for informed deployment of solar panels 
that will attain maximum energy generating efficiency. The 
likelihood gain per data point of the Weibull-epsilon 
distribution is 13.2 % over the Weibull distribution. 

The results in Table 2 for the breaking stress of carbon fibers 
(Gba) data show that the parameter estimates of both the 
Weibull and Weibull-epsilon distributions are very small; that 
is, they are precise estimates. This implies that they are very 
close to their true parameter values. The overall goodness-of-fit 
results also show that both distributions are compatible with the 
data. The fit of the distribution to the data shown in Figure 5 
gives a pictorial evidence that the models are compatible with 
the dataset. 

Dist. Par. Est. Std. E     
(   ) 

   
 (     ) 

Remark 

Weibull Shape 6.083 0.274 590.2 
(1184) 

0.134 
(0.000) 

Poor fit 
Scale 6.380 0.057 

Weibull
-Epsilon 

  2.766 0.168 544.9 
(1096) 

0.071 
(0.063) 

Good 
fit   0.080 0.002 

  8.515 0.157 
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Table 2 also shows that the Weibull-epsilon distribution fit 
performs better than the Weibull and Cauchy-Weibull-Logistic 
distributions with a percent gain in likelihood per data point of 
0.23 % and 1.62 %, respectively. 

10 Conclusion 

A new probability distribution, called the Weibull-epsilon 
distribution, is constructed in this study. It is shown to be 
compatible with solar radiation and breaking stress of carbon 
fibers datasets. It brings about improvement in fit when 
compared with the Weibull distribution for the two datasets 
considered. It is also better than the Cauchy-Weibull-Logistic 
distribution in fit to the breaking stress of carbon fibers 
datasets. 

The distribution can assume different shapes within its 
parameter range indicating it holds a good potential in 
modeling different lifetime data generating processes. The 
bathtub shapes of its hazard rate function also show the model 
can be used in reliability studies. This flexibility in shape 
creates avenue for further research interest in applications, 
particularly in reliability studies in engineering, social and 
biological systems, mortality studies in demography and 
renewable energy modeling. 

This study also provide scope for further research on the 
properties of the distribution, particularly the derivation of 
moments, and using the distribution as a base for generating 
other distributions. 
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Appendix 1 

 
Figure 1 Weibull-Epsilon Density Plots at various parameter values 
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Figure 2 Weibull-epsilon hazard rate function plots 

 

 
Figure 3 Mean Residual Life function of the Weibull-epsilon distribution at parameter values 
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