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1 Introduction and preliminaries

It is well known that the Gronwall-Bellman inequal-
ity [1, 8] and their generalizations can provide ex-
plicit bounds for solutions to differential and integral
equations as well as difference equations.Many au-
thors have researched various inequalities and inves-
tigated the boundedness, global existence, unique-
ness, stability, and continuous dependence on the ini-
tial value and parameters of solutions to differential
equations, integral equations see [2− 5, 10]. How-
ever, we notice that the existing results in the liter-
ature are inadequate for researching the qualitative
and quantitative properties of solutions to some frac-
tional integral equations see [9− 11, 13, 17− 18] .

Fractional calculus is the field of mathematical
analysis which deals with the investigation and appli-
cations of integrals and derivatives of arbitrary order
see [13]. However, in this branch of Mathematics we
are not looking at the usual integer order but at the
non-integer order integrals and derivatives. These
are called fractional derivatives and fractional inte-
grals. The first appearance of the concept of a frac-
tional derivative is found in a letter written to Guil-
laume de l’Hôpital by Gottfried Wilhelm Leibniz in
1695. As far as the existence of such a theory is
concerned, the foundations of the subject were laid

by Liouville in a paper from1832. The autodidact
Oliver Heaviside introduce the practical use of frac-
tional differential operators in electrical transmission
line analysis circa 1890. Many authors have estab-
lished a variety of inequalities for those fractional in-
tegral and derivative operators, some of which have
turned out to be useful in analyzing solutions of cer-
tain fractional integral and differential equations, for
example, we refer the reader to [9− 10, 17− 18] and
the references therein.

In [12] , the authors proved the following results :

Theorem 1 Let k, λ ∈ R+. Also, let h and u be
nonnegative and locally integrable functions defined
on [0, X) with X ≤ +∞. Further, let φ(x) be a
nonnegative, non-decreasing, and continuous func-
tion on [0, X) which is bounded on [0, X), that is,
φ(x) ≤ M for all x ∈ [0, X) and some M ∈ R+

. Suppose that the functions h, u, and φ satisfy the
following inequality:

u(x) ≤ h(x)+kφ(x)
∫ x

0
(x− ρ)

λ

k
−1 u (ρ) dρ, x ∈ [0, X) .

(1.1)
Then

u(x) ≤ h(x) +
∑∞
n=1

{kφ(x)Γk(λ)}n
Γk(nλ)

∫ x
0

(x− ρ)n
λ
k
−1 h(ρ)dρ , x ∈ [0, X) .

(1.2)
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Corollary 1 Let k, λ ∈ R+ Also, let h and u be non-
negative and locally integrable functions defined on
[1, X) with X ≤ +∞. Further, let φ(x) be a non-
negative, nondecreasing, and continuous function on
[0, X) which is bounded on [1, X) that is, φ(x)≤M
for all x ∈ [1, X) and some M ∈ R+. Suppose
that the functions h, u, and φ satisfy the following
inequality:

u(x) ≤ h(x) + kφ(x)
∫ x

0

(
ln x

ρ

)λ
k
−1
u (ρ) dρρ ,

(x ∈ [1, X)) .
(1.3)

Then

u(x) ≤ h(x) +
∑∞
n=1

{kφ(x)Γk(λ)}n
Γk(nλ)

∫ x
1

(
ln x

ρ

)nλ
k
−1

h (ρ) dρ
ρ
,

(x ∈ [1, X)) .
(1.4)

In this paper, we establish some new Gronwall-
type inequalities associated with Riemann-Liouville
k− and Hadamard k-fractional derivatives which
generalize some result given in [12] .We also present
some nonlinear integral inequalities with singular
kernels of Bihari type,we apply the results estab-
lished to research boundedness, uniqueness for the
solution to some certain integral equations.

Now, some important properties for the modified
Riemann-Liouville derivative and fractional integral
are listed as follows :

Definition 1 The Riemann-Liouville fractional inte-
gral of order α on the interval [0, x] is defined
by

(Iαf) :=
1

Γ(α)

∫ x

0
(x− τ)α−1 f(τ)dτ (x > 0) ,

(1.5)
where

Γ(α) =
∫ ∞

0
sα−1 exp (−s) ds,

which is well defined for α > 0.

Definition 2 The modified Riemann-Liouville
derivative of order α is defined by

(
D
α
x f
)

(x) =


1

Γ(n−α)
d
dx

∫ x
0 (x− ζ)−α (f (ζ)− f(0)) dζ, 0 < α < 1(

f(n) (x)
)(α−n)

, n ≤ α < n + 1, n ≥ 1

(1.6)

The Hadamard fractional integral HD
µ
1,xf of order

µ > 0 is defined by

HD
µ
1,xf :=

1
Γ (µ)

∫ x

1

(
ln
x

τ

)µ−1
f (τ)

dτ

τ
(x > 1)

(1.7)
The Hadamard fractional derivative HD

µ
1,xf of or-

der µ > 0 is defined by

HD
µ
1,xf := 1

Γ(n−µ)

(
x d
dx

)n ∫ x
1

(
ln x

τ

)n−µ−1
f (τ) dττ

(x > 1)
(1.8)

[n = [µ] + 1; x > 0) ,

Here and in the following, let C,R,R+,R+,N,
and Z−0 be the sets of complex numbers, real num-
bers,positive real numbers, nonnegative real num-
bers, positive- integers, and non-positive integer, re-
spectively.

Dı̆az and Pariguan [6] introduced k-gamma func-
tion Γk defined by

Γk(z) =
∫ ∞

0
e−

tk

k tz−1dt
[
[R (z)] > 0; k ∈ R+

)
(1.9)

which has the following relationships:

Γk(z + k) = zΓk(z), Γk(k) = 1 (1.10)

and
Γk(γ) = k

γ
k
−1Γ

(γ
k

)
. (1.11)

Also, k − beta function Bk (α, β) is defined by

Bk (α, β) =

{
1
k

∫ 1

0
t
α
k
−1 (1− t)

β
k
−1 dt (min {R (α) ,R (β)} > 0)

Γk(α)Γk(β)
Γk(α+β)

(
α, β ∈ C�kZ−0

)
,

(1.12)
where kZ−0 denotes the set of k-multiples of the

elements in Z−0 .
Among many generalizations of the Mittag-

Leffler function, one of them is recalled (see [15, 16])
:

Eλ,β =
∞∑
n=0

zn

Γ (λn+ β)
(λ, β ∈ C; R (λ) > 0) ,

(1.13)
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which is further generalized and called k-Mittag-
Leffler function as follows:

Ek,λ,β =
∑∞
n=0

zn

Γk(λn+β)
( λ, β ∈ C; R(λ) > 0; k ∈ R+) .

Lemma 1 ([17]) Suppose 0 < α < 1, f is a contin-
uous function, then

Dα
t (Iαf(t)) = f(t).

Lemma 2 ([7]) Suppose that a ≥ 0, p ≥ q ≥ 0 and
p 6= 0, then

a
q
p ≤ q

p
ε
q−p
p a+

p− q
p

ε
q
p .

for any ε > 0.

Lemma 3 ([17]) Let α > 0, a(t), b(t), u(t) be con-
tinuous functions defined on t ≥ 0.Then for t ≥ 0,

Dα
t u(t) ≤ a(t) + b(t)u(t).

Implies

u(t) ≤ u(0) exp
{∫ tα

Γ(1+α)

0 b
(
sΓ(1 + α))

1
α

)
ds

}
+ 1

Γ(α)

∫ t
0 (t− τ)α−1 a (τ)

× exp
{
−
∫ tα

Γ(1+α)

τα

Γ(1+α)

b (sΓ (1 + α))
1
α )ds

}
dτ.

Definition 3 ([5]) A function w : R+ → R+ is said
to belong to class F, if it satisfies the following con-
ditions

w(x) > 0, is non-decreasing and continuous for x ≥ 0,

1

a
w(x) ≤ w

(x
a

)
, for a > 0 .

2 Main Results
Theorem 2 Suppose that k, λ ∈ R+, h , u are
nonnegative locally integrable functions defined on
[0, X) with X ≤ +∞. Further, let φ(x)be a non-
negative, nondecreasing, and continuous function on
[0, X) which is bounded on [0, X), that is, φ(x) ≤
M for all x ∈ [0, X) and some M ∈ R+. Suppose
that the functions h, u, and φ satisfy the following
inequality:

up(x) ≤ h(x) + k φ(x)
∫ x

0 (x− ρ)
λ
k
−1 uq (ρ) dρ ,

(x ∈ [0, X)) .
(2.1)

where p 6= 0, p ≥ q > 0, are constants. Then

u(x) ≤
{
h̃(x) +

∑∞
n=1

{kφ̃(x)Γk(λ)}n
Γk(nλ)

∫ x
0

(x− ρ)n
λ
k
−1 h̃(ρ)dρ

} 1
p

,

x ∈ [0, X) ,
(2.2)

where

h̃(x) = h(x)+
k2

λ

p− q
p

ε
q
p x

λ
k φ(x),φ̃(x) =

q

p
ε
q−p
p φ(x) .

(2.3)
Proof. Denote the right-hand side of (2.1) by z(x).
Then we have

u(x) ≤ z
1
p (x), (x ∈ [0, X)) . (2.4)

So it follows that

z(x) ≤ h(x) + kφ(x)
∫ x

0 (x− ρ)
λ
k
−1 z

q
p (ρ) dρ,

(x ∈ [0, X)) .
(2.5)

Using Lemma 2, we obtain that

z(x) ≤ h(x) + kφ(x)
∫ x
0 (x− ρ)

λ
k
−1
(
q
p
ε
q−p
p z (ρ) + p−q

p
ε
q
p

)
dρ,

(x ∈ [0, X)) .
(2.6)

The inequality (2.6) can be rewritten as

z(x) ≤ h̃(x)+kφ̃(x)
∫ x

0
(x− ρ)

λ
k
−1 z(ρ)dρ (2.7)

where and h̃ and k̃ are defined as in (2.3).
Applying Theorem 1 to (2.7), we can get the de-

sired inequality (2.2).
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Remark 1 If p = q = 1, then Theorem 2 reduces to
Theorem 1.

Theorem 3 Let k, λ, p, q are defined as in Theorem
2. Also, let h and u be nonnegative and locally in-
tegrable functions defined on [1, X) with X ≤ +∞.
Further, let φ(x) be a nonnegative, nondecreasing,
and continuous function on [0, X) which is bounded
on [1, X),that is, φ(x) ≤ M for all x ∈ [1, X) and
some M ∈ R+. Suppose that the functions h, u, and
φ satisfy the following inequality:

up(x) ≤ h(x) + kφ(x)
∫ x

0

(
ln x

ρ

)λ
k
−1
uq (ρ) dρρ

(x ∈ [1, X)) .
(2.8)

Then

u(x) ≤
{
h̃(x) +

∑∞
n=1

{
kφ̃(x)Γk(λ)

}n
Γk(nλ)

∫ x
1

(
ln x
ρ

)nλ
k
−1

h̃ (ρ) dρ
ρ

} 1
p
,

(x ∈ [1, X)) ,
(2.9)

where

h̃(x) = h(x) + p−q
p ε

q
pkφ(x)

∫ x
0

(
ln x

ρ

)λ
k
−1

dρ
ρ ,

φ̂(x) = q
pε

q−p
p φ(x) .

(2.10)
Proof. Denote the right-hand side of (2.8) by z(x).
Then we have

u(x) ≤ z
1
p (x), (x ∈ [0, X)) .

So it follows that

z(x) ≤ h(x) + kφ(x)
∫ x

0

(
ln x

ρ

)λ
k
−1
z
q
p (ρ) dρρ ,

(x ∈ [0, X)) .

Using Lemma 2, we obtain that

z(x) ≤ h(x) + kφ(x)
∫ x
0

(
ln x
ρ

)λ
k
−1
(
q
p
ε
q−p
p z (ρ) + p−q

p
ε
q
p

)
dρ
ρ
,

(x ∈ [0, X)) .

The last inequality can be rewritten as

z(x) ≤ h̃(x) + kφ̃(x)
∫ x

0
(x− ρ)

λ
k
−1 z(ρ)

dρ

ρ
,

where h̃ and φ̃ are defined as in (2.10).
Applying Corollary 1 to the above inequality, we

can get the desired inequality (2.9).

Remark 2 If p = q = 1, then Theorem 3 reduces to
Corollary 1.

Theorem 4 Suppose that 0 < α < 1 and u, φ, h
∈ C (R+,R+) . Furrther, let g : R+ → R+ is a dif-
ferentiable increasing function on ]0,+∞[ with con-
tinuous nonincreasing first derivative g′on ]0,+∞[.
If

up(x) ≤ h(x) + 1
Γ(α)φ(x)

∫ x
0 (x− ρ)α−1 g(uq (ρ))dρ ,

(x ∈ [0, X))
(2.11)

Then

u(x) ≤ {h(x) + 1
Γ(α)φ(x)

∫ x
0 (x− ρ)α−1 ĥ (ρ)

× exp
(
−
∫ xα

Γ(1+α)

ρα

Γ(1+α)

φ̂
(

(sΓ (1 + α))
1
α

)
ds

)
dρ}

1
p ,

(2.12)
for any p 6= 0, p ≥ q > 0, where

ĥ(x) = g(
q

p
ε
q−p
p h(x) +

p− q
p

ε
q
p ), (2.13)

φ̂(x) =
q

p
ε
q−p
p φ(x)g

′
(
q

p
ε
q−p
p h(x) +

p− q
p

ε
q
p ).

Proof. Define a function v(x) by

v(x) =
1

Γ(α)

∫ x

0
(x− ρ)α−1 g(uq (ρ))dρ ,

(2.14)
then

u(x) ≤ (h(x) + φ(x)v(x))
1
p (x ∈ [0, X)) .

(2.15)
By Lemma 2, we get for any ε > 0 ,

u(t) ≤ q

p
ε
q−p
p (h(x) + φ(x)v(x)) +

p− q
p

ε
q
p ,

(2.16)
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Applying Lemma 1 to (2.14) and using (2.16), we
have

Dα
xv(x) ≤ g

(
(h(x) + φ(x)v(x))

q
p

)
, (2.17)

Dα
xv(x) ≤ g(

q

p
ε
q−p
p (h(x) + φ(x)v(x))+

p− q
p

ε
q
p )

(2.18)
Applying the mean value Theorem for the

function g, then for every x ≥ y > 0 there exists
c ∈ ] y, x[such that

g(x)− g(y) = g
′
(c)(x− y) ≤ g′(y)(x− y),

then

Dα
xv(x) ≤ g( qpε

q−p
p h(x) + p−q

p ε
q
p )

+ q
pε

q−p
p g

′
( qpε

q−p
p h(x) + p−q

p ε
q
p )φ(x)v(x),

The last inequality can be reformulated as

Dα
xv(x) ≤ ĥ(x) + φ̂(x)v(x), (2.19)

where ĥ and φ̂ are defined as in (2.13).
Using Lemma 3 to (2.19), we get

v(x) ≤ 1
Γ(α)

∫ x
0 (x− ρ)α−1 ĥ (ρ)

× exp
{
−
∫ xα

Γ(1+α)

ρα

Γ(1+α)

φ̂
(

(sΓ (1 + α))
1
α

)
ds

}
dρ,

(2.20)
Combining (2.20) and (2.15), we get (2.12).

Corollary 2 Assume that the hypotheses of Theo-
rem 4 hold. If

up(x) ≤ h(x) + 1
Γ(α)φ(x)

∫ x
0 (x− ρ)α−1 arctan (uq (ρ)) dρ

(x ∈ [0, X)) ,

Then

u(x) ≤ {h(x) + φ(x)
∫ x

0 (x− ρ)α−1 ĥ (ρ)

× exp
(
−
∫ xα

Γ(1+α)

ρα

Γ(1+α)

φ̂
(

(sΓ (1 + α))
1
α

)
ds

)
dρ}

1
p .

Where

ĥ(x) = arctan(
q

p
ε
q−p
p h(x) +

p− q
p

ε
q
p )

φ̂(x) =
q
pε

q−p
p φ(x)

1 +
(
q
pε

q−p
p h(x) + p−q

p ε
q
p

)2 .

Corollary 3 Assume that the hypotheses of Theo-
rem 4 hold. If

up(x) ≤ h(x) + 1
Γ(α)φ(x)

∫ x
0 (x− ρ)α−1 log (1 + uq (ρ)) dρ

(x ∈ [0, X)) .

Then

u(x) ≤ {h(x) + φ(x)
∫ x

0 (x− ρ)α−1 ĥ (ρ)

× exp
(
−
∫ xα

Γ(1+α)

ρα

Γ(1+α)

φ̂
(

(sΓ (1 + α))
1
α

)
ds

)
dρ}

1
p ,

where

ĥ(x) = log(1 +
q

p
ε
q−p
p h(x) +

p− q
p

ε
q
p ),

φ̂(x) =
q
pε

q−p
p φ(x)

1 +
(
q
pε

q−p
p h(x) + p−q

p ε
q
p

) .

Theorem 5 Suppose that 0 < α < 1 and u, φ, h
∈ C (R+,R+) . Furrther, let S ∈ C

(
R2

+,R+

)
be a

continuous function such that

0 ≤ S(t, x)−S(t, y) ≤ L(t, y)(x−y), x ≥ y ≥ 0,
(2.21)

for t ∈ [0, X),where L : R2
+ → R+ is a continuous

function. If

up(x) ≤ h(x)+
1

Γ (α)
φ(x)

∫ x

0
(x− ρ)α−1 S(ρ, uq (ρ))dρ.

(2.22)
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Then

u(x) ≤ {h1(x) + φ1(x) 1
Γ(α)

∫ x
0 (x− ρ)α−1 h1 (ρ)

× exp
{
−
∫ xα

Γ(1+α)

ρα

Γ(1+α)

φ1

(
(sΓ (1 + α))

1
α

)
ds

}
dρ}

1
p ,

(2.23)
where

h1(x) = S

(
x,
q

p
ε
q−p
p h(x) +

p− q
p

ε
q
p

)
, (2.24)

φ1(x) =
q

p
ε
q−p
p L

(
x,
q

p
ε
q−p
p h(x) +

p− q
p

ε
q
p

)
φ(x).

Proof. Let

z(x) =
1

Γ (α)

∫ x

0
(x− ρ)α−1 S(ρ, uq (ρ))dρ

so we can get z(0) = 0 . From (2.22), we have

u(x) ≤ (h(x) + φ(x)z(x))
1
p . (2.25)

By Lemma 2 we obtain for any ε > 0 ,

uq(x) ≤ q

p
ε
q−p
p (h(x) + φ(x)z(x)) +

p− q
p

ε
q
p ,

(2.26)
By Lemma 1, we have

Dα
xz(x) = S(x, uq(x)). (2.27)

From Lemma 2 and using (2.21),(2.26), one has for
any ε > 0

S(x, uq(x)) ≤ S(x, (h(x) + φ(x)z(x))
q
p )

≤ S
(
x, q

p
ε
q−p
p (h(x) + φ(x)z(x)) + p−q

p
ε
q
p

)
≤ q

p
ε
q−p
p L

(
x, q

p
ε
q−p
p h(x) + p−q

p
ε
q
p

)
φ(x)z(x)

+S
(
x, q

p
ε
q−p
p h(x) + p−q

p
ε
q
p

)
.

(2.28)

From (2.27) and (2.28), we have

Dαx z(x) ≤ q
p
ε
q−p
p L

(
x, q
p
ε
q−p
p h(x) + p−q

p
ε
q
p

)
φ(x)z(x)

+S

(
x, q
p
ε
q−p
p h(x) + p−q

p
ε
q
p

)
= h1(x) + φ1(x)z(x),

(2.29)

where h1(x), φ1(x) are defned as in (2.24).

By Lemma 3, we get

z(x) ≤
1

Γ(α)

∫ x
0

(x− ρ)α−1
h1 (ρ) exp

−
∫ xα

Γ(1+α)
ρα

Γ(1+α)

φ1

(
(sΓ (1 + α))

1
α

)
ds

 dρ.
(2.30)

Combining (2.30) and (2.25), we get (2.23).

Theorem 6 Suppose that 0 < α < 1 and u, φ, h
∈ C (R+,R+).Furrther, let g : R+ → R+ belongs
to class F (see Definition 3), and h(t) be nonde-
creasing function in [0, X) . If

u(x) ≤ h(x) + 1
Γ(α)φ(x)

∫ x
0 (x− ρ)α−1 g (u (ρ)) dρ

(x ∈ [0, X))
(2.31)

Then

u(x) ≤ h(x)
{

Ω−1
n

[
Ω
(
2n−1

)
+ 1

n
(1− e−nx)Kn,mφ

n(x)
]} 1

n ,
0 ≤ x ≤ X1 < X,

(2.32)
where

α = 1
1+z , z > 0, n = 1

α + r = 1 + z + r,

m = 1+z+r
z+r , r > 0,Ωn (υ) =

∫ υ
υ0

dσ

gn
(
σ

1
n

) ,
(2.33)

and

Kn,m = 2n−1
{

1
Γ(α)

emx

m1−βmΓ (1− βm)
} n
m
,

β = 1− α = z
1+z ,

(2.34)
and X1 > 0 is such that[

Ω
(
2n−1

)
+ 1

n(1− e−nx)Kn,mφ
n(x)

]
∈ Dom

(
Ω−1
n

)
,

x ∈ [0, X1]
(2.35)

Proof. The inequality (2.31) can be rewritten as

u(x)
h(x)

≤ 1+
1
h(x)

1
Γ (α)

φ(x)
∫ x

0
(x− ρ)α−1 g (u (ρ)) dρ .

(2.36)
Since h(x) is nondecreasing function, we get

u(x)

h(x)
≤ 1 +

1

Γ (α)
φ(x)

∫ x
0

1

h(ρ)

[
(x− ρ)α−1

g (u (ρ))
]
dρ.
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Let z(x) = u(x)
h(x) .Since g belongs to class F, one has

z(x) ≤ 1+
1

Γ (α)
φ(x)

∫ x

0

[
(x− ρ)α−1 g (z (ρ))

]
dρ.

(2.37)
Obviously 1

m + 1
n = 1.Using the Höder inequality

we obtain from (2.37)

z(x) ≤ 1 + 1
Γ(α)φ(x)

∫ x
0

[
(x− ρ)α−1 eρe−ρg (z (ρ))

]
dρ

≤ 1 + 1
Γ(α)φ(x)

[∫ x
0 (x− ρ)−βm emρdρ

] 1
m
[∫ x

0 e−nρg (z (ρ))n dρ
] 1
n .

(2.38)

Since (A+B)n ≤ 2n−1 (An +Bn) holds for any
A ≥ 0, B ≥ 0 and∫ x

0
(x− ρ)−βm emρdρ ≤ emx

m1−βmΓ (1− βm) ,

1 − βm = r
(1+z)(z+r) > 0,we obtain from (2.38)

that

zn (x) ≤ 2n−1 +Kn,mφ
n(x)

∫ x

0
e−nρgn (z(ρ)) dρ.

Let x∗ ∈ [0, x] be a positive constant chosen, we get

zn (x) ≤ 2n−1+Kn,mφ
n(x∗)

∫ x

0
e−nρgn (z(ρ)) dρ,

(2.39)
where Kn,m is defined by (2.34) . Let G(x) be
the right-hand side of the inequality (2.39) . Then
z (x) ≤ G

1
n (x) and this yields gn (z(x)) ≤

gn
(
G

1
n (x)

)
. From (2.39) , we obtain

G′(x)

gn
(
G

1
n (x)

) ≤ Kn,mφ
n(x∗)e−nxgn (z(x))

gn
(
G

1
n (x)

) ,

i.e.,

d

dx

∫ G(x)

0

dσ

gn
(
σ

1
n

) ≤ Kn,me
−nxφn(x∗),

or
d

dx
Ωn (G (x)) ≤ Kn,me

−nxφn(x∗),

where Ωn is defined by (2.33) .

Integrating this inequality from 0 to x, we obtain

Ωn (z (x)n) ≤ Ωn

(
2n−1

)
+φn(x∗)Kn,m

∫ x

0
e−nρdρ,

(2.40)
Letting x = x∗ in (2.40) and considering x∗ > 0 is
arbitary, after substituting x∗ with x, we get

Ωn (z (x)n) ≤ Ωn

(
2n−1

)
+φn(x)Kn,m

∫ x

0
e−nρdρ.

(2.41)
Then

z(x) ≤
{

Ω−1
n

[
Ω
(
2n−1

)
+

1
n

(1− e−nx)Kn,mφ
n(x)

]} 1
n

.

(2.42)
This completes the proof of Theorem 6.

3 Applications
In this section, we present some applications of the
inequalities (2.11) in Theorem 4 for studying the
boundedness and uniqueness of certain fractional in-
tegral equation with the Riemann Liouville (R-L)
fractional operator. Consider the following fractional
integral equation:

up(x) = h(x) + Iα(F (x, u(x))), (3.1)

where 0 < α < 1 , p ≥ 1 and F ∈ C(R× R,R),
h ∈ C (R,R) .

Example 1 Assume that F (x, u(x)) satisfies

|F (x, u)| ≤ φ(x)g (|u|) , (3.2)

where g, φ are defined as in Theorem 4, and φ(x)
is nondecreasing function in x ≥ 0, then we have the
following estimate for u(x)

|u(x)| ≤ {|h(x)|+ 1
Γ(α)φ(x)

∫ x
0 (x− ρ)α−1 ĥ (ρ)

× exp
(
−
∫ xα

Γ(1+α)

ρα

Γ(1+α)

φ̂
(

(sΓ (1 + α))
1
α

)
ds

)
dρ}

1
p ,

(3.3)
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where

ĥ(x) = g(
1
p
ε

1−p
p |h(x)|+ p− 1

p
ε

1
p ) (3.4)

φ̂(x) =
1
p
ε

1−p
p g

′
(
1
p
ε

1−p
p |h(x)|+ p− 1

p
ε

1
p ) .

Proof. According to Definition 1, from (3.1)-(3.2),

we have

up(x) = h(x)+
1

Γ(α)

∫ x

0
(x−ρ)α−1(F (ρ, u(ρ))dρ,

(3.5)

|up(x)| ≤ |h(x)|+ 1

Γ(α)

∫ x

0

(x− ρ)α−1 |(F (ρ, u(ρ))| dρ,

(3.6)

|up(x)| ≤ |h(x)|+ 1

Γ(α)

∫ x

0

(x− ρ)α−1φ(ρ)g |u(ρ)| dρ,

taking into account that φ is nondecreasing func-
tion, we get

|up(x)| ≤ |h(x)|+ φ(x)
Γ(α)

∫ x

0
(x−ρ)α−1g(|u(ρ)|)dρ.

Letting q = 1, and applying Theorem 4, we get the
desired estimate in (3.3).

Example 2 Assume that

|F (x, u)− F (x, u)| ≤ φ(x)g (|u− u|) , (3.7)

where g is defined as in Theorem 4 such that g(0) =
0 and φ(x) is nondecreasing functions in x ≥ 0.
Then equation (3.1) has a unique solution.
Proof. Suppose u(x), u(x) are two solutions of
equation (3.1), then we have

u(x) = h(x) +
1

Γ(α)

∫ x

0
(x− ρ)α−1F (ρ, u(ρ))dρ,

u(x) = h(x) +
1

Γ(α)

∫ x

0
(x− ρ)α−1F (ρ, u(ρ))dρ,

Furthermore,

u(x)−u(x) =
1

Γ(α)

∫ x

0

(x−ρ)α−1 [F (ρ, u(ρ))− F (ρ, u(ρ))] dρ,

which implies

|u(x)− u(x)| ≤ 1
Γ(α)

∫ x

0
(x−ρ)α−1φ(ρ)g (|u(ρ)− u(ρ)|) dρ.

Taking into account that φ is nondecreasing func-
tion, we get

|u(x)− u(x)| ≤ φ(x)
Γ(α)

∫ x

0
(x−ρ)α−1g (|u(ρ)− u(ρ)|) dρ.

(3.8)
Through a suitable application of Theorem 4

to (3.8) (with p = q = 1), we obtain that
|u(x)− u(x)| ≤ 0, which implies u(x) = u(x) .
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