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Abstract: - This paper presents a variation of Newton’s method, based on a diagonal Jacobian approximation 

scheme on an accelerated Shamanskii process for systems of nonlinear equations especially on problems with 

singular Fréchet derivative at the solution points. This method aims to reduce the computation cost and storage 

requirements as in Newton-type methods. Numerical results are presented to illustrate the efficiency of the 

proposed scheme. 
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1 Introduction 
Consider the system of nonlinear equations of the 

form: 

𝐹(𝑥) = 0     (1) 

where 𝐹 is continuously differentiable from a 

Banach space 𝐸 into itself and the point 𝑥∗ ∈ 𝐸 is 

the solution of the function 𝐹(𝑥∗) = 0. These 

systems (1), are often solved by Newton-type 

methods. The most well-known method being the 

classical Newton’s method is computed via the 

following scheme.  

𝑥𝑘+1 = 𝑥𝑘 − 𝐹′(𝑥𝑘)−1𝐹(𝑥𝑘)     (2) 

Supposed the initial point 𝑥0 is sufficiently chosen 

near the solution point 𝑥∗, then Newton’s method 

would converge quadratically, i.e.,  

‖𝑥𝑘+1 − 𝑥∗‖ ≤ 𝐾𝑐‖𝑥𝑘 − 𝑥∗‖     (3) 

for some 𝐾𝑐, provided 𝐹′(𝑥∗) is nonsingular [2], 

[11]. Some of the drawbacks of this method include; 

evaluating and storing the  Jacobian matrix at every 

iteration,  solving the systems of 𝑛 linear equations 

for 𝑠(𝑥𝑘) = −𝐹′(𝑥𝑘)−1𝐹(𝑥𝑘), and time 

consumption due to increase in equation dimension 

which makes the method very expensive. To 

overcome these lapses, a variation of Newton 

method has been proposed. This includes; the Chord 

Newton method, which computes the Jacobian 

matrix 𝐹′(𝑥0)−1 only once for finite dimensional 

problems [3]. This method generates its sequence 
{𝑥𝑘} of iterate as follows; 

𝑥𝑘+1 = 𝑥𝑘 − 𝐹′(𝑥0)−1𝐹(𝑥𝑘)     (5) 

The strategy reduces the computational cost at each 

iteration. However, the convergence rate of the 

Chord method is reduced to linear, i.e.,  

‖𝑥𝑘+1 − 𝑥∗‖ ≤ 𝐾𝑐‖𝑥0 − 𝑥∗‖‖𝑥𝑘 − 𝑥∗‖     (6) 

which continue to improve with an improvement of 

the initial points [1].  

Motivated by the low cost of Jacobian computation 

of the Chord method and rapid convergence of 

Newton’s method, Shamanskii [7], developed a 

multiple pseudo-Newton iteration scheme that lies 

between the chord and Newton's methods. 

Numerous researchers such as [4], [5], [6], [10] 

have analysed this method in details. This method is 

described as follows 

𝑥
𝑘+

1
2

= 𝑥𝑘 − 𝐹′(𝑥𝑘)−1𝐹(𝑥𝑘) 

𝑥𝑘+1 = 𝑥
𝑘+

1
2

− 𝐹′(𝑥𝑘)−1𝐹 (𝑥
𝑘+

1
2

) 

which can be rewritten as  

𝑥𝑘+1 = 𝑥𝑘 − 𝐹′(𝑥𝑘)−1𝑄     (7) 

 
𝑄 = [𝐹(𝑥𝑘) + 𝐹(𝑥𝑘 − 𝐹′(𝑥𝑘)−1𝐹(𝑥𝑘))]. 

The shamanskii method is regarded as very efficient 

as it overcomes the complexity encountered by 

other iterative methods by using only one factored 

Jacobian for computing more than one pseudo-
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Newton’s iterates. The convergence of the 

shamanskii method is and easy aftermath of (5) and 

the linear convergence (6) of the Chord method. 

Supposed the initial point 𝑥0 is sufficiently chosen 

near the solution point 𝑥∗, then this method would 

converge 𝑚-step 𝑔-superlinearly with 𝑔-order of at 

least 𝑚 + 1. [6], i.e., there exist some 𝐾𝑠 > 0 such 

that 

‖𝑥𝑘+1 − 𝑥∗‖ ≤ 𝐾𝑠‖𝑥𝑘 − 𝑥∗‖𝑚+1     (8) 

provided 𝐹′(𝑥∗) is nonsingular [2]. The 

convergence analysis of the considered shamanskii 

method has been established.  
 

Theorem 1 [8]. Suppose 𝐹: 𝐷 ⊂ 𝑅𝑛 → 𝑅𝑛 conform 

to hypotheses 𝐻1(2), 𝐻2, and 𝐻3. Then, the 

solution point 𝑥∗ is referred to the attraction point of 

the Shamanskii process defined in (7) with at least 

𝑚 + 1 order of convergence. 

 

For further reading on the Shamanskii method and 

its convergence, please refer to [5], [6], [12], [13]. 

 

The purpose of this paper is to consider cases of 

where the Jacobian 𝐹′(𝑥𝑘) is singular. The next 

section presents the method derivation and reports 

the numerical results in section 3. The conclusion 

followed by a discussion of the results is presented 

in section 4. 

 

  

2 Method Formulation 
 

A Shamanskii-like process with diagonal Jacobian 

approximation: 

 

Given a system of nonlinear equation (1), we 

consider its Taylor’s expansion at the point 𝑥𝑘, i.e.,  

𝐹(𝑥) = 𝐹(𝑥𝑘) + 𝐹′(𝑥𝑘)(𝑥 − 𝑥𝑘) +
(𝜊‖𝑥 − 𝑥𝑘‖2)   

    (9) 

We further defined the incomplete expansion of the 

nonlinear function (1) by the Taylors series as 

follows: 

�̂�(𝑥) = 𝐹(𝑥𝑘) + 𝐹′(𝑥𝑘)(𝑥 − 𝑥𝑘) +
(𝜊‖𝑥 − 𝑥𝑘‖2)   

    

(10) 

where 𝐹′(𝑥𝑘) = 𝐽𝐹(𝑥𝑘) denotes the Jacobian matrix 

of (1) as the point 𝑥𝑘.  

In order to apply the accurate information needed on 

the Jacobian to the updating matrix, from (10), we 

enforce some conditions as follows. 

�̂�(𝑥𝑘+1) = 𝐹(𝑥𝑘+1)   (11) 

Applying (11) to (10), we have 

𝐹(𝑥𝑘+1) ≈ 𝐹(𝑥𝑘) + 𝐹′(𝑥𝑘)(𝑥𝑘+1 − 𝑥𝑘)     (12) 

which implies  

𝐹′(𝑥𝑘)(𝑥𝑘+1 − 𝑥𝑘) ≈ 𝐹(𝑥𝑘) − 𝐹(𝑥𝑘+1)   (13) 

Now, we apply the above derivation to propose the 

Jacobian approximation of 𝐹′(𝑥𝑘). Let  

𝐷𝑘 ≈ 𝐹′(𝑥𝑘)   (14) 

be the diagonal matrix that would be updated during 

the iteration process. Substituting (14) in (13), we 

have:  

𝐷𝑘+1(𝑥𝑘+1 − 𝑥𝑘) ≈ 𝐹(𝑥𝑘) − 𝐹(𝑥𝑘+1)   (15) 

We derived the components of the diagonal matrix, 

i.e., 𝐷 = 𝑑𝑖𝑎𝑔(𝑑1, 𝑑2, … , 𝑑𝑛) as follows. From (15), 

we have 

𝐷𝑘+1 =
𝐹(𝑥𝑘) − 𝐹(𝑥𝑘+1)

(𝑥𝑘+1 − 𝑥𝑘)
 

  (16) 

which implies 

𝑑𝑘+1
(𝑖)

=
𝐹𝑖(𝑥𝑘) − 𝐹𝑖(𝑥𝑘+1)

𝑥𝑘+1
(𝑖)

− 𝑥𝑘
(𝑖)

 
  (17) 

Hence, the diagonal element of the diagonal matrix 

is 

𝐷𝑘+1 = diag(𝑑𝑘+1
(𝑖)

)   (18) 

For 𝑖 = 1,2, … , 𝑛 and 𝑘 = 0, 1, … , 𝑛. 

Diagonal components defined in (18) can be used if 

the denominator is negligible i.e.,|𝑥𝑘+1
(𝑖)

− 𝑥𝑘
(𝑖)

| >

10−8. Otherwise, we set 𝑑𝑘
(𝑖)

= 𝑑𝑘−1
(𝑖)

. 

We present the proposed diagonal update to the 

Shamanskii method (MSDM) and its Algorithm as 

follows. 

𝑥𝑘+1 = 𝑥𝑘 − 𝐷𝑘
−1 [𝐹(𝑥𝑘) + 𝐹 (𝑥𝑘 − 𝐷𝑘

−1𝐹(𝑥𝑘))] (19) 
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Algorithm 1 (MSDM) 

Consider the systems of nonlinear equation defined 

in (1). 

Step 1. Given an initial guess 𝑥0 and 𝐷0 = 𝐼𝑛, set 

𝑘 = 0. 

Step 2. Compute for 𝐹(𝑥𝑘) 

Step 3. Compute for 𝐷𝑘 by (18). 

Step 4. Update new iterate using (19). 

Step 5. Convergence and stopping criteria 

Check if ‖𝑥𝑘+1 − 𝑥𝑘‖ + ‖𝐹(𝑥𝑘)‖ ≤ 10−8
, 

stop. Else, go to step 2 and set 𝑘 = 𝑘 + 1. 

 

3 Results 
In this section, we present some numerical 

computations based on number of iterations, CPU 

time, and storage requirements to illustrate the 

theoretical analysis presented above. We considered 

the classical methods of Shamankii (SM), Chord 

(CNM), and Newton (NM), respectively for 

comparison to demonstrate the performance of the 

proposed (MSDM) method. All problems are taken 

from Waziri et al., [11], Shin et al., [14], and More 

et al. [15]. The codes were implemented on 

MATLAB (2018b) subroutine programing. The 

problems employed includes small scale problems 

and large-scale problems with either dense or sparse 

Jacobian. The termination criterion for this 

computation is  ‖𝑥𝑘+1 − 𝑥𝑘‖ + ‖𝐹(𝑥𝑘)‖ ≤ 10−8
, 

and 𝑥𝑘+1 is the final iterate. We denote dimension 

with “Dim” through the paper. 

 

Problem 1: Structured Exponential function 

𝐹𝑖(𝑥) = 𝑥𝑖 − 0.1𝑥𝑖+1
2  

𝐹𝑛(𝑥) = 𝑥𝑛 − 0.1𝑥𝑛
2 

𝑖 = 1, 2, 3, … , 𝑛 − 1,      𝑥0 = (0.05, 0.05, … ,0.05) 

 

Problem 2: Structured Exponential function 

𝐹𝑖(𝑥) = 𝑥𝑖
2 − 1 

𝐹𝑛(𝑥) = 𝑥𝑛 − 0.1𝑥𝑛
2 

𝑖 = 1, 2, 3, … , 𝑛,      𝑥0 = (0.05, 0.05, … ,0.05) 

 

Problem 3: Extended Trigonometric of Byeong-

Chun 

𝐹𝑖(𝑥) = cos (𝑥𝑖
2 − 1) − 1 

𝑖 = 1, 2, 3, … , 𝑛,          𝑥0 = (0.06, 0.06, … , 0.06) 

 

Problem 4: Extended Spares System of Byeong 

𝐹𝑖(𝑥) = 𝑥𝑖 − ∑
𝑥𝑖

2

𝑛2

𝑛

𝑖=1

+ ∑ 𝑥𝑖 −

𝑛

𝑖=1

𝑛 

𝑖 = 1, 2, 3, … , 𝑛,        𝑥0 = (1.1, 11.1, … ,1.1) 

 

Problem 5: System of 𝑛 Nonlinear equations   

𝐹𝑖(𝑥) = (1 − 𝑥𝑖
2) + 𝑥𝑖(1 + 𝑥𝑖𝑥𝑛−2𝑥𝑛−1𝑥𝑛) − 2 

𝑖 = 1, 2, 3, … , 𝑛,         𝑥0 = (0.3,0,3, … ,0.3) 
 

Table 1: Results of Problem 1 base on iteration number/CPU time 

Dim NM CNM SM DSM 

25 3/0.0313 5/0.0497 4/0.0156 4/0.0313 

50 3/0.0313 6/0.0552 4/0.0313 4/0.0456 

100 3/0.0625 7/0.0313 4/0.0469 4/0.0313 

500 3/0.2344 8/0.3125 4/0.2969 4/0.4844 

1000 3/0.7344 8/1.1875 4/0.9375 4/4.5781 

5000 * 8/64.4219 4/43.6250 4/46.371 

 

Table 2: Results of Problem 2 base on iteration number/CPU time 

Dim NM CNM SM MDSM 

25 10/ 0.0156 4/ 0.0156 11/ 0.0156 8/ 0.0062 

50 10/ 0.0313 4/ 0.0109 11/ 0.0313 8/ 0.0079 

100 10/ 0.1250 4/ 0.0469 11/ 0.1250 8/ 0.0210 

500 10/ 0.6250 4/ 0.1719 11/ 0.6406 8/ 0.9063 

1000 10/ 2.2188 4/ 0.6875 11/ 2.2813 8/ 7.7813 

5000 * 4/ 32.328 11/ 98.2031 8/87.1525 

 
Table 3: Results of Problem 3 base on iteration number/CPU time 

Dimension NM CNM SM DSM 

25 12/0.0255 6/0.0313 12/0.0313 4/0.0025 

50 12/0.0469 6/0.0156 12/0.0469 4/0.0050 

100 12/0.1094 6/0.0156 12/0.1250 4/0.0313 

500 12/1.1563 6/0.2188 12/1.0469 4/0.4063 

1000 12/1.1563 6/0.9688 12/3.9219 4/4.2031 

5000 * 6/50.7031 12/149.343 4/92.7452 

 

Table 4: Results of Problem 4 base on iteration number/CPU time 

Dim NM CNM SM DSM 

25 17/0.0262 52/0.0103 18/0.0239 11/0.0058 

50 21/0.0781 78/0.0156 22/0.0625 10/0.0123 

100 26/0.3750 142/0.1719 27/0.3594 9/0.0237 

500 43/2.8125 * 44/2.8906 9/1.0156 

1000 49/10.4219 * 50/10.6875 9/8.5156 

5000 * * * 8/480.8347 

 

Table 5: Results of Problem 5 base on iteration number/CPU time 

Dim NM CNM SM DSM 

25 12/0.0469 4/0.0088 13/0.0222 9/0.0048 

50 12/0.0313 4/0.0156 13/0.0469 9/0.0117 

100 12/0.1875 4/0.0313 13/0.1563 9/0.0469 

500 12/0.8438 4/0.1719 13/0.8594 9/0.9531 

1000 12/2.6563 4/0.6250 13/2.8750 9/8.6719 

5000 * 4/33.1094 13/122.625 9/71.2349 

 

 
Figure 1: Performance based on number of Iterations 
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The performance of Newton-type methods 

frequently degrades with the Jacobian matrix been 

singular. Tables 1 to Table 5 above presents the 

obtained results used to estimate the zeros of the 

given nonlinear functions using the classical 

Newton’s method, the Chord Newton method, 

classical Shamanskii method, and the proposed 

Modified Shamanskii method. We observed the 

proposed MSDM uses less computational cost than 

the classical methods employed. This is due to the 

diagonal approximation scheme derived which 

makes the method cheaper compared to other 

methods. 
 

 
Figure 2: Performance based on CPU 

 

Also, from Figures 1 and 2, it can be seen that the 

performance of the proposed method is better in 

terms of number of iterations and CPU time than the 

other existing methods employed. Another 

advantage of the proposed method is the ability to 

bypass the point at which the Jacobian is singular as 

in the case of problem 4. Results have shown that 

the proposed method is an improvement with 

respect to matrix storage, computational cost and 

time. 

 

4 Conclusion 
The main aim of this paper is proposing a `new 

technique using the shamanskii algorithm 

accelerated by a diagonal Jacobian approximation 

procedure. The goal of the new method is to 

improve the complexity and convergent rate of 

existing methods, while reducing the computational 

cost and storage requirement at each iteration. With 

a diagonal updating scheme to the shamanskii 

method, we avoid the high and perilous computation 

of the Jacobian inverse during the iteration process. 

Numerical results reported has shown that the 

proposed method is promising. 
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