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1 Introduction

The classical Fibonacci numbers, denoted by F, are
generated from the recurrence relation

Fp=Fp1+F2 (n2>2),

with initial condition Fy = 0 and F; = 1. Over the
decades, numerous results on the properties and appli-
cations of the Fibonacci numbers have been reported
[4].

Recently Ohtsuka and Nakamura [6] found inter-
esting properties of the Fibonacci numbers and proved
Theorem 1 below, where |- ]| indicates the floor func-
tion and N, (N,, respectively) denotes the set of posi-
tive even (odd, respectively) integers.

Theorem 1 Letn > 1. Then

S -1 .
Z i — Fn - Fn—l, éfn € Ne; (1)
k:}’le Fn_Fn—l_l, #HENO)
) -1 .
ZL _ FoiFn—1, ifnelN,; 2)
el i3 Fy1Fy, ifn € N,.
=n

After the work of Ohtsuka and Nakamura [6], di-
verse results in the same direction have appeared in
the literature [1-3], [5], [7-9]. In particular, Wang and
Zhang [8], [9] considered the even/odd-indexed Fi-
bonacci numbers and the Fibonacci 3-subsequences.
According to the results of [8], [9], Theorem 2 and
Theorem 3 below hold.

Theorem 2 Letn > 1. Then
-1

KiFL%) J:an—an_z_ 1,

k=n

3)
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Theorem 3 Forn > 1, we have
i L B _ 2F3n_2, ifn € Ne; (5)
= F3k - 2F3n_2 - 1, lfn S NO,
P -1 ) ) ) ‘
KZ%) J:{ Py~ Fyes el
= F Fy, —F5, 5—1, ifneN,.
(6)

Before going further, we note that the following
identities can be easily proved:

Fap 2
2F3,0 =

The purpose of this paper is to generalize Theo-
rem 1-Theorem 3. More precisely, we obtain identi-
ties related to the numbers

-1 S -1

(ST ISR oo

k=n k=n

2 Main Results

First, we present two lemmas which will be used to
prove our main results.

Lemma4 [4]

FuFn— FosiFpi = (_l)n_ka+k—an-
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Lemma 5 below is obtained by letting n = k + 1
and interchanging the roles of &k, m in Lemma 4.

Lemma 5

Fusk = FiFpe1 + Fr_1Fpy.

Proposition 6

1 1
< —, IfpeN ,neN,, (7
Fpn_Fpn—p Z Fpk lfp e Or p,n o (1)
i ! if peN, and neN,. (8)
e —’ o e-
f=n Fpk Fpn Fpnp
Proof: Consider
1 1 1
X, = - -
Fon=Fpnp  Fppsp=Fpn  Fpp
(Fpn - Fpn—p)(Fpn+p - Fpn)Fpn’
where, by Lemma 4
X = FpnpFpnip = F12m

_ —p—172
= (=P Fy.
If peN,or p,neN,, then X; <0 and

1 1 1
- < .
Fpnsp = Fpn - Fpn

FP” - FP”—P

Repeatedly applying the above inequality, we have

1 o 1
_—<ZF_p,;

if peN,or p,neN
Epn=Fpn—p & ”

Similarly, if p € N, and n € N,, then X; > 0 and we
obtain

> 1
DI ey o

if pe N, and n € N,.
k=n Fpn-p

Hence the proof is completed. |

Proposition 7

i 1 1
k:ank Fpn pn—p_l,

if peN, or p,neN,.
)
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Proof: Consider
1 1
X, = -
Fpn_Fpn—p_l Fpn+2p_Fpn+p_1
1 1
FP” FP""’P
(Fpn - Fpn—p - 1)(Fpn+2p - Fpn+p - 1)
1
X,
FpnF pntp

where, by Lemma 4

A

X2 = (Fpnszp = DFpupFpnip — F3,)
+(Fpn-p + D(F puFpniop = F o)
_FP"—PFP'! - FP" - FP"+P + FP"+PFP"+2P
= (=P P Y (Fpnsap — 1)
+H=DP" F A (Fpuep + 1)

_Fpn—prn - Fpn - Fpn+p + Fpn+prn+2p-

Now assume that p € N,. We can easily show that
X, > 0forn = 1. Hence let n > 2. By Lemma 5, we
have

A

X, = _FI%(Fpn+2p + Fpn—p) - Fpn—prn - Fpn
_Fpn+p + Fpn+prn+2p
= (Fpn+p_F[Z;)Fpn+2p_FZFpn—p_Fpn—prn
_F[m - FP”"’P
= (Fprn+l + Fp—len - Flzy)Fpn+2p
2
—F Fpn—rp = Fpn—pFpn = Fpn = Fpnip.
Since, forn > 2
FpFpnet = Fp > FpFp,
then
Xy > (Fp+Fp0)FpuFpnizp — FoFpup
—Fpn—pFpn = Fpn = Fpnep
= (Fp + Fp—l)Fpn(FZprn+1 + F2p—1Fpn)
2
—F o Fpnrp = FpnpFpn = Fpn = FpFppi1
—F, 1 Fp,
= (FZprn_l)Fprn+1+(FpF2p—len_l)Fpn
+(Fp—1F2prn+l_Fpn—1)Fpn
+Fp_1Fop1Fon = F3Fpn_p = Fpn
> 0.
If p,n € N,, then
X2 = _Flzj(FerZp - Fpn—p - 2) - Fpn—prn
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_Fpn - Fpn+p + Fpn+prn+2p
2
> _Fp(Fpn+2p + Fpn—p) - Fpn—prn - Fpn
_Fpn+p + Fpn+prn+2p
> 0.

Consequently, we have

1 N 1 - 1 1
Fpn Fpn+p Fpn_Fpn—p -1 Fpn+2p_Fpn+p_1,

from which we can obtain the inequality

1 1
— <——  ifpeN,orp,neN,,
Dy <R P eeorpnen,

and the proof is completed. |
Theorem 8 below follows from Proposition 6 and

Proposition 7.
Theorem 8
© -1
KZ F_k) J =Fpp—Fp,p—1, ifpe€N,andn > 1.
k=n = P
(10)

Proposition 9

(o)

|
. N ifpeN,andneN,.
Fon— Fpnp + 1 ZF,,k if p € No andn € Ne

k=n
(11)
Proof: Consider
1 1
X; = -
Fpn_Fpn—p+1 Fpn+2p_Fpn+p+1
1 1
Fon Fppip
(Fpn - Fpn—p + 1)(Fpn+2p - Fpn+p + 1)
1
FPnFP""'P ’
where

X5 = X+ 2Fpn+ Fpnip)Fpnp = Fpu
+Fppip — Fpniop)

= (D" P (Fpniap — 1)
(=D o (F ey + 1)
_FP”—PFP” - FP" - L pntp + FP”+PFP”+2P
+2(Fpn + Fpnip)Fpn—p = Fpn + Fpnip

_Fpn+2p)-
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Here, X, is as defined in the proof Proposition 7.
If p €e N, and n € N,, then, by Lemma 4 and
Lemma 5

X; = F? Fpn+2p + FpnpFpn 2(
+2(F; onep — FpnFpn2p) — Fprn—p
~Fpn = Fpnip = FpnspFpusap = 2F;

= FoFpnszp+ FonpFon+2F5 = F2Fpu_p

Fpn-pFpn+p)

_Fpn - Fpn+p - Fpn+prn+2p
= FIZ;(FZprIHI + F2p—1Fpn) + Fpn—prn
2 2
+2F2 — F2F pu_p = Fpy
_(Fprn+l + Fp—len)
_(FprnH+Fp—1Fpn)(F2prn+l+F2p—1Fpn)

For the case where p = 1 and n € N,, it is easily seen
that X3 < 0. If p > 3 and n € N,, then

X3 < (FyFapFpnsi = FpFapFy L))
+(F3Fap-1Fpn = Fap 1 FapF pnFpni1)
+(Fpn-pFpn — Fp-1F2pF pnF pnp)
+(2F; = F3F pn_p)

< 0.

Hence we have

1 1 1 1
- <—+t——.
Fpn_Fp11—p+1 Fpn+2p_Fpn+p +1 Fpn Fpn+p

Repeatedly applying the above inequality, we obtain

1 S
————— < » —, ifpeN,andneN,,
Fpn— Fpup + 1 kZ_: F ? ¢

=n

and the proof is completed. |

From Proposition 6, Proposition 7 and Proposi-
tion 9, we obtain the following result.

Theorem 10 Let p € N,,. Then
00 -1
\‘(Z L) J = { Fpn_FP”—p’ ifneN, ;
po—= F o Fon—Fppp—1, ifneN,.
(12)

Proposition 11

(o)

1 1 )
W < Z F—zk, if peN, or p,neN,;(13)

pn=p  k=n
i ! < ! if peN, and neN,. (14)
— <=, .
2 2 2 ’ o e
k=n Fpk Fp _Fpn -p
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Proof: Consider

¥ 1 1 1
= R 2 2 2 2
Fon=Fpnp  Fonsp=Fpn - Fpn
- 2 2 2 2 27
(Fpn - Fpn—p)(Fpn+p - Fpn)Fpn

where, by Lemma 4

) 2 4
i = FoupFpnp=Fpn

= (_l)lm_p_l(Fpn—prnﬂJ + Flzm)
If peN,or p,n e N, then Y; <0 and
1 1 1

- < —=.
2 _ g2 2 _ 2 2
Fpn Fpn—p Fpn+p Fpn Fpn

Repeatedly applying the above inequality, we have

[

1 .
<Z—2, if peN,or p,neN,.
k=n = pk

1

2 _ 2
Fpn = Fonp

Similarly, if p € N, and n € N,, then Y; > 0 and we
obtain

o 1 1 ,
Z— <—, ifpeN,andn eN,.
k=n Fpe Fpn = Fpnp
Hence the proof is completed. |

Proposition 12

[ee)

1 1 .
Zﬁ<w, lf‘peNeOl’p,HENo.
p

= pn—-p ~
(15)
Proof: Consider
Y 1 1
2 T = 2 T 2
Fpn_Fpn—p_l Fpn+2p_FPn+P_1
1 1
Flzm F127n+p
- 2 2 2 2
(Fpn = Fpn—p - 1)(Fpn+2p - Fpn+p -1
y 1
Flzaanmﬂ)’
where, by Lemma 4
YZ = (Flzm + Fpn—prn+p)(F[2m - Fpn—prn+p)
_F]%n—p(FIZWl+p + Fpann+2p)
X(Flzyn+p - Fpann+2p)
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_F127n+2p(F127n + Fpn—pFpnip)

X(Flzm — Fpn—pFpnip)

~(Frep + FonFons2p)(F sy = FonF pnazp)

+HF puspFonsap = FonpFon = Fon = Fpnep
= (V" PENF 0+ D(F oy + FpupFpnsp)

=D FF, 4 D(F oy + FonFpnszp)

2 2 2 2 2 2
+Fpn+prn+2p - Fpﬂ—PFpﬂ - Fpn - Fpn+p'

Assume that p € N,. Since

F]21n+2p > Flz)n + Fpn—prn+p,
F127n+pF12m+2p > F?m—pF?m + Fzzm + Fzz;n+p’
then
Vo = F)(F> 0+ D(Fp,+ FpupFpnip)
—F3(Fap p+ D(Fo )+ FonFpnizp)
+F12m+pF12m+2p - Fzzm—szzm - Fzzm - F127n+p
> 0,

and so Y, > O for p € N,.
If p,n € N,, then we also have Y, > 0.
Consequently, if p € N, or p,n € N, we have

1 1 1 1
Fpn_Fpn—p_l Fpn+2p_Fpn+p_1

>

F ;2m Fpn+p
from which we obtain the inequality

i 1 3 1
F? F},,,—F}m_p—l

if peN,or p,neN,,

and the proof is completed. |

From Proposition 11 and Proposition 12, we ob-
tain the following the result.

Theorem 13
o -1
ZL =F2-F> _1, ifpeN,andn > 1
2 = Fpn=Fpnp=l, ifp€Neandn 2 1.
k=n ~ pk
(16)
Proposition 14
. <i 1 if pe N, andn e N
—, Iifp oandn e
2 2 2
Fpn_Fpn—p+1 k:ank
(17)
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Proof: Consider

1 1
Y; =
: 2 2 2 2
F - FP” P +1 Fpn+2p FI”“’P +1
1 1
Fay  Fl,
- 2 2
(Fpn - pn pT 1)(Fpn+2p Fpn+p 1))
1
F2 nFoip
where
V3 = V+2F,, +Fp )Fo ,—Fr +Fr
2
Fpn+2p)

= (=D PFN(Fr 0, + DFpy + FonpFpnip)

(=D N, D(F s p+ FpnF pniap)

2 2 2 2 2 2
+F pn+pF pn+2p -F pn pF pn F -F pn+p
2 2 2 2
+2(F,, + Fpn+p)( on—p = Fpn + Fopsp

2
Fpn+2p)

Here, ¥, is as defined in the proof Proposition 12.
If pe N, and n € N,, then Y3 < 0 and we have

1 1 - 1 N 1
2 2 2 2 )
Fpn = Fpn pT 1 Fpn+2p - Fpn+p +1 Fp Fpn+p

Repeatedly applying the above inequality, we obtain

(o)

# Z , if peN,andn eN,,
Fin = Fpnp+ k=n
and the proof is completed. |

From Proposition 11, Proposition 12 and Propo-
sition 14, we obtain the following result.

Theorem 15 Let p € N,. Then

-1

(Ze) -

k=n

l:f‘n eNe ;
ifn e N,.

(18)
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